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Objective: Thoracic perivascular adipose tissue (PVAT) has been shown to release factors 
that influence the functioning of neighboring vascular tissue. Cardiovascular complications 
of obesity are on the rise; therefore, this study set out to determine if adipose-specific 
ablation of vascular endothelial growth factor-A (VEGF-A) plays a role in the maintenance 
of aortic structure and function.

Methods: Adipose-specific VEGF-A-deficient mice were previously generated. 
Fabp4cre(+). VEGFflox/flox and Fabp4cre(−). VEGFflox/flox mice were maintained on chow diet. 
PVAT gene expression was measured with real-time quantitative PCR. Aortic vasomotor 
response was assessed with isometric tension measurements. Collagen deposition was 
analyzed histologically in the vascular media and compared using ratiometric 
pigment density.

Results: PVAT-specific adiponectin expression was decreased in Fabp4cre(+). VEGFflox/flox 
mice. Isometric tension measurements revealed a dose-dependent dysfunction in response 
to acetylcholine within the distal aortic segment of Fabp4cre(+). VEGFflox/flox. Fabp4cre(+). 
VEGFflox/flox mice exhibited increased aortic deposition of collagen within the thoracic 
adventitial and medial spaces.

Conclusion: These data demonstrate that decreased expression of VEGF-A within the 
surrounding adipose tissue microenvironment of the thoracic aorta has a detrimental 
effect on aortic integrity and vascular function. Modulation of angiogenic pathways within 
PVAT may offer an important avenue toward the treatment of adipose tissue dysfunction 
in obesity and its vascular complications.
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INTRODUCTION

Arterial stiffening is a loss of arterial elasticity, progressing with age (Bramwell and Hill, 1922; 
Hallock, 1934; Eliakim et  al., 1971; Tounian et  al., 2001; Mitchell et  al., 2004; McEniery et  al., 
2005) and obesity (Sutton-Tyrrell et  al., 2001; Safar et  al., 2006), therefore affecting a large 
portion of the population. It is a precursor to isolated systolic hypertension (Najjar et  al., 2008; 
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Kaess et  al., 2012), which increases the risk of stroke and heart 
disease (Nielsen et  al., 1995; Blacher et  al., 1999; Meaume 
et  al., 2001; Boutouyrie et  al., 2002; Cruickshank et  al., 2002). 
With a large majority of the United States population expected 
to be obese by 2030, it is critical to understand the mechanisms 
by which increased adiposity or changes to adipose tissue 
composition contribute to vascular dysfunction.

The presence of metabolically active brown adipose tissue 
(BAT) in human adults has been confirmed (Nedergaard et al., 
2010). The quantity of BAT is also negatively correlated with 
obesity and age (Yoneshiro et  al., 2011); in addition, imaging 
studies show metabolically active BAT along the thoracic, but 
not the abdominal, spinal area (Cypess et  al., 2015). This 
adipose tissue surrounding the thoracic aorta is similar to 
interscapular BAT in structure and gene expression pattern 
(Fitzgibbons et  al., 2011). Because of its juxtaposition, thoracic 
perivascular adipose tissue (PVAT) influences vascular function, 
mainly by releasing vasoactive, and in the context of obesity, 
inflammatory molecules (Soltis and Cassis, 1991; Löhn et  al., 
2002; Verlohren et al., 2004; Gao et al., 2009; Greenstein et  al., 
2009). High-cholesterol and high-fat diet increase PVAT 
pro-inflammatory cytokine production in mouse models of 
atherosclerosis and abdominal aortic aneurysm respectively, 
further linking obesity to increased risk of cardiovascular disease 
(Police et al., 2009; Dobrian et al., 2015). In addition, decreased 
expression of adiponectin, an anti-inflammatory cytokine released 
by adipocytes, is observed in PVAT under conditions of obesity. 
Local administration of recombinant adiponectin in mice is 
able to reverse neointimal thickening observed in obesity 
(Takaoka et  al., 2009), providing evidence that functional 
adipokines are released by PVAT. However, it should be  noted 
that these studies were performed on adipose tissue depots 
that are phenotypically similar to white adipose tissue (WAT). 
The detailed examination of the paracrine function of perivascular 
brown adipocytes is warranted and important, as it will provide 
novel targets to modulate cardiovascular pathologies associated 
with both aging and obesity.

VEGF is a pro-angiogenic molecule known to stimulate 
vasodilation (Horowitz et al., 1997), while VEGF neutralization 
is associated with hypertension (Hurwitz et  al., 2004; Levine 
et al., 2004). It is widely known that VEGF produced by smooth 
muscle cells (SMCs) (Williams et  al., 1995) acts through its 
receptors on endothelial cells to regulate normal and pathological 
angiogenesis (Ferrara and Davis-Smyth, 1997). VEGF receptors 
are also expressed on SMCs (Brown et  al., 1997; Couper et  al., 
1997; Wang and Keiser, 1998; Grosskreutz et  al., 1999), and 
their activation critically regulates atherosclerosis and neointimal 
hyperplasia. Mouse models with overexpression of VEGF in 
adipose tissue demonstrate increased vascularization within 
adipose tissue, as well as, protection against systemic metabolic 
dysfunction (as induced by high-fat diet) (Elias et  al., 2012; 
Sun et  al., 2012, 2014). It has been shown that deletion of 
VEGF in adipose tissue results in increased WAT inflammation, 
BAT lipid accumulation, and disturbances with glucose tolerance 
(Sung et  al., 2013; Shimizu et  al., 2014); however, the role of 
endogenous VEGF in PVAT function and SMC regulation were 

not addressed. Therefore, determining the effect of brown 
adipocyte-derived VEGF on PVAT function, vascular tone, and 
cardiovascular disease related to aging and obesity has become 
increasingly important.

Although the capacity of the angiogenic signal provided by 
VEGF has been shown to drive BAT development (Sun et  al., 
2014), the critical role of brown adipocyte-derived VEGF in 
maintaining SMC function has not been demonstrated. Correlative 
studies using conditioned media demonstrate increased VEGF 
release from visceral and epicardial PVAT of obese and diabetic 
patients which induces vascular SMC proliferation (Schlich 
et al., 2013), however these studies do not assess the mechanical 
properties of the SMC (Qiu et  al., 2010).

MATERIALS AND METHODS

Animals
Fourteen week-old-male mice with adipose-specific VEGF-A 
ablation were previously generated (Mahdaviani et  al., 2017) 
using (Fabp4-cre #005069, Jackson Labs) and VEGFflox/flox mice 
(provided by Genentech, Inc.). Fabp4cre(−) VEGFflox/flox (n = 4) 
and Fabp4cre(+) VEGFflox/flox (n  =  8) mice were euthanized 
and PVAT dissected from a portion of the thoracic aorta was 
snap frozen in liquid nitrogen for RNA analysis. Another 
portion of the thoracic aorta was left intact and fixed in 10% 
formalin and processed for histological analysis. The Institutional 
Animal Care and Use Committee of Boston University School 
of Medicine approved these experiments.

Real-Time Quantitative PCR
Tissue from PVAT and BAT were processed using a Qiagen 
system. Tissue was disrupted with a TissueLyser and RNA 
extracted using the Qiagen RNeasy kit (Valencia, CA) followed 
by transcription using a QuantiTect® reverse transcription kit. 
Gene expression was analyzed using a ViiA™ 7 RealTime PCR 
system. Taqman Gene Expression Assays were performed using 
primer sets: Ucp1(#Mm01244861_m) and Adiponectin to 
analyzed transcript levels relative to GAPDH (#Mm99999915_m). 
mRNA quantitation was calculated and expressed as fold change 
relative to control tissue. 

VEGF-A Protein Quantification
Tissue from PVAT, BAT, and WAT samples were collected and 
processed by a TissueLyser (Qiagen) and protein extraction 
was carried out. VEGF-A quantification was determined using 
a mouse VEGF-A ELISA kit (R&D systems).

Isometric Tension Measurement
Thoracic aortas were collected and placed in a chilled 
physiological salt solution (PSS) (KCl 4.7 mM, CaCl2 2.5 mM, 
KH2PO4 1.2  mM, MgSO4 0.6  mM, NaHCO3 25  mM, NaCl 
118.3  mM, and dextrose 5.5  mM). The PVAT was carefully 
removed and snap frozen in liquid nitrogen for RNA analysis. 
Each aorta was subsequently cut into 3–4 mm sections starting 
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1  mm distal to the left subclavian artery branch from the 
aortic arch. Aortic rings were hung in a constantly aerated 
bath of PSS then incrementally stretched to 2  g of tension. 
Rings were then tested for maximum contraction and viability 
with 10  min of 50  mM KCl. Washout was performed with 
PSS, then preconstricted to 70–80% of maximum with 
phenylephrine using half-log cumulative concentrations 
from  10−8–10−5  mol/L. Relaxation was performed with 
cumulative concentrations of Ach from 10−8–10−5  mol/L. 
Isometric tension analysis was performed as previously described 
(Adachi  and  Cohen, 2000).

Histological Characterization of Aorta
The aortas were perfused with 10% formalin to maintain a 
patent lumen. The aortas were then removed with PVAT 
attached, fixed overnight, and then prepared for paraffin 
embedding. 5-μm specimens were cut and stained using Masson’s 
trichrome (Sigma-Aldrich HT15-KT). The level of collagen 
deposition, indicated by an Aniline blue stain, was analyzed 
using Photoshop CS6 as a percentage of the aortic wall.

Statistical Analysis
Data are presented as mean  ±  SEM and a Student’s two tailed 
t-test was used for comparison between groups. p  <  0.05 is 
considered statistically significant.

RESULTS

We recently published that the vast majority of VEGF in adipose 
tissue is derived from the adipocyte precursor fraction, with 

minimal expression of VEGF in other cell populations. As 
previously shown, and reproduced here, the level of VEGF-A 
in the BAT is three-fold greater than that of WAT (Mahdaviani 
et  al., 2016). Since mitochondria play an important role in 
thermogenesis and brown adipocyte function, we  hypothesized 
that the lack of VEGF was responsible for our observations. 
We  differentiated preadipocytes from interscapular BAT of 
Fabp4cre(+). VEGFflox/flox and control mice. Protein expression 
levels of VEGF, UCP1, and porin (VDAC) (used to asses 
mitochondrial content), and norepinephrine-stimulated uncoupling 
were all decreased in the adipocytes lacking VEGF. Acute ablation 
of VEGF by adenoviral-Cre knockdown resulted in decreased 
VEGF without affecting porin levels and decreased response to 
norepinephrine albeit to a lesser extent than chronic conditions 
(Mahdaviani et  al., 2016).

VEGF Is Required for Brown Adipocyte 
Formation and Maintenance
Since thoracic PVAT is molecularly similar to interscapular 
BAT (Fitzgibbons et al., 2011) and we find a strong BAT-associated 
phenotype in our mouse model, we  performed an in-depth 
analysis of PVAT and vascular function. We  show a significant 
reduction of VEGF protein in all adipose tissue depots, with 
a concomitant reduction in UCP1 expression in BAT and PVAT 
from mice harboring the cre-transgene (Figures 1A,B). Gross 
examination reveals “whitened” thoracic PVAT in the absence 
of VEGF (Figure  1C). Confocal microscopy shows decreased 
PVAT vascularization near areas of lipid droplet coalescence 
in Fabp4cre(+). VEGFflox/flox mice versus controls (Figure 1D). 
Morphological analysis reveals enlarged lipid droplets in the 
absence of VEGF (Figure 1E).

D
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FIGURE 1 | Disrupted adipose tissue phenotype in Fabp4cre(+). VEGFflox/flox mice. (A) Vascular endothelial growth factor-A (VEGF-A) ablation results in decreased 
VEGF-A protein expression measured by ELISA in white adipose tissue (WAT), brown adipose tissue (BAT), and perivascular adipose tissue (PVAT).  
(B) RT-PCR of PVAT from male Fabp4cre(+). VEGFflox/flox mice (n = 8) is reported as a fold-change relative to Fabp4cre(−) VEGFflox/flox (n = 4) control mice, normalized 
to GAPDH. (C) Gross examination of dissected thoracic PVAT. (D) Confocal micrographs depicting vascularity of thoracic PVAT [visualized by BS1-lectin (FITC) for 
vasculature and BODIPY (Texas Red) for adipocytes] and lipid droplet coalescence (arrowheads) (50 μm stack). (E) Representative photomicrographs of thoracic 
stained with hematoxylin and eosin (40× mag.). *p < 0.05.
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Brown Adipocyte-Derived VEGF Is 
Required for Aortic Remodeling
To assess extracellular remodeling, and potential increased risk 
toward the development of arterial stiffness, due to adipose-
specific VEGF deficiency, thoracic aorta samples were collected 
from young male Fabp4cre(±). VEGFflox/flox mice maintained 
on chow diet. Collagen levels were analyzed in the medial 
spaces of the aorta by first determining the number of pixels 
that constituted the vascular media then subtracting the number 
of Aniline blue stained collagen pixels (Figure 2A). Significantly 
increased collagen deposition was observed within the aortic 
media and adventitia of VEGF-deficient mice [cre(+) 
33.82  ±  2.15% vs. cre(−)  24.25  ±  2.24%] (Figure 2B).

VEGF-A Deletion in UCP1+ Cells Results in 
Impaired Aortic Relaxation
We hypothesized that the decreased vascularity within adipose 
tissue will lead to impaired vasomotor function, which is a 
prognostic indicator of vascular dysfunction. Functional relevance 
is evidenced by impaired acetylcholine (ACh)-induced aortic 
relaxation in Fabp4cre(+). VEGFflox/flox mice compared to controls 
(Figure 2C). Adiponectin is predominantly secreted from adipose 
tissue and its function to induce smooth muscle relaxation has 
been shown to be an important mechanism for vascular function 
and homeostasis (Lynch et al., 2013). We observed a significant 
decrease in adiponectin expression in Fabp4cre(+). VEGFflox/flox 
PVAT compared to Fabp4cre(−).VEGFflox/flox (Figure 2D).

DISCUSSION

The present study was designed to elucidate the effects of 
capillary rarefaction in PVAT and the subsequent impact on 
macrovascular function. Here, we demonstrate that PVAT from 
Fabp4cre(+). VEGFflox/flox show a decrease in vascularity and 
increased lipid coalescence. The results of this study demonstrate 
that VEGF-A deficiency in PVAT is a contributing factor toward 
several elements of vascular dysfunction. We  found that our 
Fabp4cre(+). VEGFflox/flox model displayed increased collagen 
deposition and decreased aortic relaxation in the thoracic aorta 
in young mice on chow diet, suggesting that there is an early 
physiological response to decreased VEGF-A within the PVAT.

Paradoxically, the concentration of adiponectin in circulation 
is inversely proportional to adipose mass, suggesting that 
adipose quality rather than quantity is more important for 
expression of adiponectin (Turer et  al., 2011). In terms of 
the anti-fibrotic role of adiponectin, this inverse correlation 
is also observed, with reduced circulating concentrations 
associated with increased fibrosis (Marangoni et  al., 2017). 
Although adiponectin expression in PVAT has been previously 
described (Antoniades et  al., 2009), we  further demonstrated 
that VEGF ablation affected the levels of adiponectin expressed 
in the PVAT. While this decreased adiponectin expression in 
PVAT may play an important role in this model, we  cannot 
exclude the fact that other adipokines may be  contributing 
to vascular dysfunction.

Endothelial cells are a dynamic paracrine organ and play 
a crucial role in maintaining vascular tone and mediating 
inflammatory processes. Endothelial dysfunction from obesity-
induced metabolic syndrome is characterized by a decrease in 
nitric oxide (NO) production (Calles-Escandon and Cipolla, 
2001). Our isometric tension measurements revealed that 
Fabp4cre(+). VEGFflox/flox aortic rings exhibited a dysfunctional 
vasomotor response which suggests that VEGF-A deficiency 
has both a structural and biochemical influence.

Limitations of our study include the possibility that the 
observed effects are attributed solely to PVAT. As such, the 
lack of PVAT during aortic ring isometric tension studies 
prevents conclusively determining the vasomodulatory 
properties of PVAT. To account for any changes occurring 
specifically by thoracic PVAT in our model, future studies 
may include isometric tension experiments with preserved 
PVAT and denervation of BAT. In addition, we  acknowledge 
that we cannot exclude the possibility that the microvasculature 
is contributing to any observed effects and would hypothesize 
that small vessels may also be  damaged in the long term, 
should hypertension be  observed. Furthermore, since it is 
possible that there may be  two arms to VEGF signaling – 
angiogenic and metabolic – one could envision devising a 
biased agonist to selectively activate the metabolic arm, thereby 
improving PVAT function without inducing a deleterious 
angiogenic response.

Taken together, these experiments suggest that the 
microvascular environment of PVAT has an important effect 

A B C D

FIGURE 2 | Impaired vascular tone in Fabp4cre(+). VEGFflox/flox mice. (A) Representative photomicrographs stained with Masson’s Trichrome (left) and area of 
analysis (right). (B) Quantification of collagen deposition in Fabp4cre(+). VEGFflox/flox (n = 4) and Fabp4cre(−). VEGFflox/flox (n = 4) groups. (C) Fabp4cre(+). VEGFflox/flox 
mice ACh-induced relaxation response is impaired in thoracic aorta. ACh response is expressed as % relaxation of a PE-induced contraction. Ring relaxation 
response cre (+) (n = 8) and cre (−) (n = 4). (D) Decreased adiponectin (apn) in PVAT of Fabp4cre(+). VEGFflox/flox mice (n = 4). *p < 0.05.
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on the function of its surrounding tissue, specifically, the ability 
of endothelial cells to modulate vascular tone. With the increasing 
prevalence of obesity and its association with capillary rarefaction 
in adipose tissue, further exploring the role of PVAT within 
this dynamic system is warranted. Such studies can help provide 
greater insight to various other comorbidities such as hypertension.

Our in vivo data suggest that VEGF produced by adipocytes 
cells prevents collagen accumulation in the aortic wall, and 
ex vivo experiments demonstrate a requirement of adipose-
derived VEGF in aortic relaxation. Our data also show that 
impaired VEGF signaling by adipocytes leads to abnormal 
aortic tone, remodeling, and stiffness, suggesting that paracrine 
effects of VEGF from adipocytes in the thoracic PVAT maintains 
adipose tissue and could contribute to effects on vascular 
integrity. Therefore, cardiovascular complications, as observed 
in obesity and aging, may benefit from modulation of this 
critical pathway to improve disease conditions.
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