
pharmaceuticals

Review

The Current and Potential Therapeutic Use of Metformin—The
Good Old Drug

Józef Drzewoski 1,* and Markolf Hanefeld 2

����������
�������

Citation: Drzewoski, J.; Hanefeld, M.

The Current and Potential

Therapeutic Use of Metformin—The

Good Old Drug. Pharmaceuticals 2021,

14, 122. https://doi.org/10.3390/ph

14020122

Academic Editor: Félix Carvalho

Received: 31 December 2020

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
2 Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;

hanefeld.radebeul@t-online.de
* Correspondence: jozef.drzewoski@umed.lodz.pl

Abstract: Metformin, one of the oldest oral antidiabetic agents and still recommended by almost
all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become
the medication with steadily increasing potential therapeutic indications. A broad spectrum of
experimental and clinical studies showed that metformin has a pleiotropic activity and favorable
effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM)
and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and
population studies indicating that metformin is safe and well tolerated and may be associated with
cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies,
but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the
risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the
lifespan. This paper presents some arguments supporting the initiation of metformin in patients with
newly diagnosed T2DM, especially those without cardiovascular risk factors or without established
cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new
drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential
beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.

Keywords: metformin; pleiotropic effect; oxidative stress; inflammation; cardioprotection; nephro-
protection; polycystic ovary syndrome; non-alcoholic fatty liver disease; gestational diabetes; type 1
diabetes; cancer; longevity

1. Introduction

Metformin has served people with T2DM for more than six decades. Its important role
in the management of chronic hyperglycemia and its consequences were best demonstrated
by the results of the United Kingdom Prospective Diabetes Study (UKPDS), a multicenter,
randomized, prospective study with a median follow-up of 10.7 years. This landmark
clinical trial showed that only metformin, independently of the glucose-lowering effect,
significantly reduced diabetes-related death, myocardial infarction, any diabetes-related
endpoints, and all-cause mortality in 342 overweight/obese people with newly diagnosed
T2DM and low cardiovascular (CV) risk [1]. By contrast intensive glucose control with
sulfonylureas and insulin had no significant effect on major adverse cardiovascular events
(MACE) (1).

Importantly, a continued beneficial effect after metformin therapy on vascular com-
plications of diabetes was observed in a 10-year post-trial follow-up of the UKPDS [2].
Metformin has also been shown to be effective in secondary prevention of cardiovascu-
lar outcomes [3,4]. The cardioprotective properties of metformin were also observed in
several retrospective, non-randomized clinical trials with mostly relatively short duration.
However, owing to differences in design and methodology the results of these studies,
are not easy to interpret and the real impact of metformin on the cardiovascular system
remains uncertain.
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The preference for metformin over other available oral hypoglycemic agents in the
initiation of T2DM therapy has been based predominately on the results of the UKPDS.
Moreover, the leading role of metformin as first line drug in the treatment of newly
diagnosed T2DM is supported by more than 60 years of very good experience with this
drug in everyday clinical practice. However, according to the principles of evidence-based
medicine, the strongest arguments supporting any given drug as the drug of the first choice
in the management of any disease, should be provided by the results of meta-analyses and
systematic reviews of randomized, high quality, controlled clinical trials. In the case of
metformin, the findings from the majority of such studies have demonstrated substantial
clinical benefits, including significant antihyperglycemic effect, relatively good tolerance
and very low risk of hypoglycemia. Moreover, what is of particular importance, a desirable
impact of this drug on the cardiovascular system and modifiable cardiovascular risk factors
(obesity, insulin resistance (IR), hyperglycemia, hyperinsulinemia and dyslipidemia) has
been demonstrated in numerous studies and meta-analyses [5–8]. However, significant
cardioprotective effects of metformin on the cardiovascular system have been questioned
by some researchers and clinicians [9–11]. Nevertheless, already in 2006 the American
Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
recommended—in a joint statement—the use of metformin along with diet and exercise as
the initial pharmacologic intervention in subjects with T2DM [12]. The most recent ADA
2020 Standards of Care reiterated his position regarding the initiation of therapy in T2DM
pointing out that metformin together with the lifestyle intervention should be continued as
long as it is tolerated and not contraindicated [13]. Various other international and national
guidelines also recommend prescription of this medication to control hyperglycemia in
people with newly diagnosed T2DM.

Rapidly growing evidence of cardiorenal protection from large cardiovascular out-
come trials (CVOTs) with some representatives of the newer classes of antidiabetic agents,
including sodium-glucose co-transporter 2 inhibitors—(SGLT2 inh.)—empagliflozin,
canagliflozin and dapagliflozin, glucagon-like peptide-1 receptor agonists (GLP-1Ras)—
liraglutide, semaglutide has revealed significant glucose independent reduction in (MACE),
including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke and heart
failure requiring hospitalization for unstable angina or heart failure (HF) [14–17]. Fur-
thermore, it was reported that SGLT-2 inh. and GLP-1RAs medications may reduce the
risk of kidney disease progression [18,19]. Spectacular results of these very well-designed
studies with thousands of participants with T2DM and coexisting cardiorenal diseases
when compared with not entirely convincing studies with metformin have opened a hot
debate whether metformin should still occupy the leading position among antidiabetic
drugs used to treat T2DM [9–11,20]. In a recent update to the previous recommendations
for the management of hyperglycemia in type 2 diabetes, ADA and EASD advise that—
after failure of metformin monotherapy—early implementation of GLP-1RAs or SGLT2
inh. could be considered to reduce the risk of MACE or chronic kidney disease (CKD)
independently of baseline glycated hemoglobin A1c (HbA1c) or individualized HbA1c
target [21].

This review primarily focuses on the pleiotropic activity of metformin and its favorable
effects in different clinical conditions. It also presents some arguments that it is probably
too early to replace metformin with newer hypoglycemic drugs as an initial pharmacologic
therapy in newly diagnosed T2DM.

2. A Brief History of Metformin

The long and turbulent history of metformin is closely linked to Galega officinalis,
a traditional herbal medicine (also known as—among other names—as goat’s rue and
French lilac) that was used since the Middle Ages to treat symptoms of what we now
know to be diabetes [22,23]. The herb is a rich source of alkaloids, including guanidine
(aminomethanamidine) and the less toxic galegine (isoamyleneguanidine). The glucose-
lowering activity of guanidine was already demonstrated in experiments on rabbits by
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Watanabe in 1917 [24]. The pioneering synthesis of metformin was performed in 1922 by
two Irish chemists, Werner and Bell, but it was not used for a long time [25]. The chemical
structure of galegine moiety was described by Barger and White in 1923 [26]. Preclinical
experiments with galegine—a less toxic guanidine-like alkaloid—revealed that in rabbits
and dogs the hypoglycemic effect was too profound, leading to their death [27]. The results
of the first human studies published in 1927 by Muller and Reinwein showed that the
hypoglycemic effect of galegine was marked in individuals with diabetes and, interest-
ingly, only mild in subject with normoglycemia [28]. Subsequent research confirmed these
observations but the variability of glucose concentration, short duration of hypoglycemic
effect and poor tolerance limited its clinical utility. To eliminate these drawbacks a se-
ries of guanidine analogues were synthesized. It was soon proved that molecules with
two guanidines (biguanidines) in the same structure: metformin (1,1-dimethylbiguanide),
phenformin (phenylethylbiguanide) and buformin (buthylbiguanide) have a greater hy-
poglycemic effect than those containing only one guanidine (monoguanidines). Until the
1940s, metformin was forgotten as an agent possessing weaker hypoglycemic activity than
phenformin and buformin. Accidently, during clinical studies conducted at the time of the
Second World War with a new antimalarial agent having a biguanide structure, a decrease
in blood glucose concentrations was observed. This response to the tested compounds
inspired Jean Stern, a French clinician, to assess the usefulness of metformin in the treat-
ment of adult-onset diabetes. The results of his studies showing that oral administration
of metformin effectively lowered glycemia in T2DM without causing hypoglycemia and
lactic acidosis, were published already in 1957 and 1958 resp. [29,30]. Subsequent to the
reports by Stern, metformin was introduced into the UK and other European countries
in 1958 for the treatment of T2DM. Despite the positive information coming from Europe
about good clinical effects of metformin, the agent was approved by the FDA for use in
the United States only in 1994 and put on the marked one year later. The main cause of
the delayed decision by the FDA was concern about increased risk of lactic acidosis and
cardiovascular side effects associated with buformin and phenformin.

Since the introduction of metformin to T2DM therapy, countless number of patients
have been treated successfully with this globally available medication having a favorable
risk/benefit profile recommended by IDF guidelines as first line drug [31]. Hence, it is
not surprising that metformin is still the most commonly prescribed oral antidiabetic
medication worldwide with the prescription rate of 45–50% of all prescriptions and taken
by over 150 million people each year [31–33]. Long-term positive experience with the use
of metformin, strong evidence of clinical efficacy, safety, high adherence rate, low cost,
general availability and cost-effectiveness were behind the decision of the World Health
Organization to put it on the list of essential medicines: “medicines that satisfy the priority
of health care needs of the population” [34].

3. Pleiotropic Effects of Metformin
3.1. Effects of Metformin on Glucose Metabolism

Despite intensive research the molecular mechanisms of metformin action have yet to
be fully understood. Nevertheless, the knowledge that has accumulated so far indicates
that they are unique and that their clinical and metabolic effects are extremely beneficial for
the patient with T2DM. Briefly, in view of the evidence available, metformin interacts with
multiple targets and signaling pathways within different cells thereby influencing many
physiological and pathological processes, particularly associated with insulin resistance
(IR) [5,35–39]. The most classical effect of metformin is reduction of hyperglycemia and
alleviation of its clinical symptoms. The drug’s action results primarily from the inhibition
of hepatic gluconeogenesis leading to a reduction of hepatic glucose output. The second
important effect of metformin is an improvement of insulin signaling leading to subsequent
increase of skeletal myocyte glucose uptake [38,40–48]. In animal studies it was demon-
strated that metformin reduces hepatic glucose production by 50 to 60% [47]. Such a strong
influence of metformin on liver gluconeogenesis has been confirmed in human studies.
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Their results showed that treatment of patients with T2DM with metformin resulted in
over 30% decrease in this process [43,44,48].

It has been established that AMP-activated protein kinase, AMPK, is a critical energy
sensor of the cell and cellular regulator of glucose, lipids and protein metabolism [49,50].
Multiple studies have shown that inhibition of hepatic glucose production by metformin is
most likely possible both through AMPK-dependent mechanism and AMPK—independent
mechanism [35,38,39,51–53]. Zhou et al. were the first to demonstrate in a series of exper-
iments on isolated rat hepatocytes and rat liver that metformin affects the formation of
functional AMPK heterotrimeric complex which is subsequently phosphorylated by up-
stream liver kinase B1 (LKB1). Phosphorylation of this enzyme is required for metformin’s
inhibitory effect on glucose production by hepatocytes and for metformin stimulated glu-
cose uptake by skeletal muscle [54]. The effect of metformin on AMPK activation was
confirmed by Shaw et al. who noted that hepatic knockout of LKB1, an enzyme necessary
for AMPK phosphorylation, abolishes the anti-hyperglycemic effect of metformin in mice
fed a high-fat diet [55].

Studies on isolated mitochondria, submitochondrial particles, mitochondrial mem-
branes and isolated mitochondrial respiratory chain have shown that reduction of gluconeo-
genesis by metformin in hepatocytes can also be attributed to a mild and transient inhibition
of the mitochondrial respiratory chain of complex I [56–60]. Mitochondrial complex I in-
hibition by metformin, preventing mitochondrial adenosine triphoshate (ATP) synthesis,
leads to an increase of adenosine monophosphate (AMP) level in the cell. Subsequently,
AMP binds to one subunit of the AMPK making it more susceptible to phosphorylation by
LKB1. Activated AMPK enhances insulin sensitivity of the liver and switches hepatocytes
from an anabolic pathway, such as gluconeogenesis, fatty acid and protein synthesis, to
a catabolic pathway, such as glycolysis and fatty acid oxidation consuming less energy
and restoring energy balance [35,40,52–54,61]. As a result of improving insulin signaling
and insulin sensitivity metformin increases glucose uptake and utilization in skeletal mus-
cles thereby i regulating glycemic control in people with dysglycemia [62–65]. In turn,
increasing the insulin sensitivity of adipose tissue by metformin inhibits lipolysis and
reduces the release of free fatty acids [FFA] from adipocytes and their accumulation in the
liver and other organs [35,65–67]. The inhibition of the mitochondrial respiratory chain
of complex I by metformin in primary hepatocytes and animal models was observed at
supra-pharmacological concentrations of metformin, 10–100 times higher than maximal
therapeutic concentrations of the drug in the blood of T2DM patients [32,51,57]. Impor-
tantly, it has been reported that low metformin concentrations which are within the range
of its therapeutic concentrations are also able to activate AMPK without inhibiting the
mitochondrial respiratory chain of complex I and altering the AMP/ATP ratio [32,51,54,68].
Therefore, apart from AMPK dependent mechanisms of anti-hyperglycemic effects of
metformin, other putative mechanisms of glucose homeostasis regulation by metformin
have been proposed. These mechanisms include direct allosteric inhibition of the key mito-
chondrial gluconeogenesis enzymes in hepatocytes, ATP depletion, decreasing production
of cyclic AMP by adenyl cyclase, increasing glucagon-like peptide-1 (GLP-1) secretion by
enterocytes, decreasing activity of (dipeptidyl peptidase-4 (DPP-4), the enzyme responsible
for inactivating GLP-1 in circulation and tissues, modulation of bile acid recirculation
and metabolism, and improved action of intestine-pancreas axis by modifying the com-
position of the intestinal microbiota, modulation of hepatic redox potential by alteration
in the glycerol-phosphate shuttle and blocking 1,6-biphoshatase-1 in the liver, inhibition
of duodenal AMPK signaling and mechanism involving the lysosome, rather than the
mitochondrion [39,40,53,69–80]. Recently, there has been particular interest in the effects
of metformin on the gut. The results of several recent studies suggest that metformin
increases glucose intestinal absorption and glucose utilization in enterocytes limiting the
access of glucose to the bloodstream [71–73].

Insulin resistance is one of the major pathogenic mechanism of T2DM and metformin
action is directed to the improvement of insulin sensitivity, especially in the liver and
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muscle [35,53,81–84]. The reduction of IR may be due to two different mechanisms. The
direct effect of the drug on insulin sensitivity in hepatocytes occurs via the activation of
AMPK, resulting in increased insulin receptor expression and tyrosine kinase activity with
subsequent inhibition of gluconeogenesis and an increase in glycogen synthesis and beta
oxidation of FFAs in the liver [35,38,40,83–85]. Activation of AMPK in the skeletal muscle
by metformin promotes the recruitment and activity of glucose transporter 4 (GLUT4)
transporters and enhances the uptake of glucose from the bloodstream and its utilization in
anaerobic glycolysis [53,64,86,87]. The effect of metformin in adipose tissue through AMPK
activation results in increased activity of glucose transporters (GLUT1 and GLUT4)], and
increased fatty acids oxidation and lipolysis inhibition. Furthermore, metformin reduces
the level of FFAs, proinflammatory cytokines and the outflow of several hormones from
adipocytes. As a result, lipid accumulation in the liver is inhibited and insulin sensitivity
of this organ improves [35,87–90].

The indirect effect of metformin on IR may arise as a consequence of reduced gluco-
toxicity and lipotoxicity [90–92]. A large number of preclinical and clinical studies have
proven that the normalization of chronic hyperglycemia and hyperlipidemia through
metformin-dependent improvement in insulin sensitivity can significantly reduce the de-
structive effects of these metabolic defects in many organs including the cardiovascular
system, brain, liver, eyes and pancreas [1–4,93,94]. That is why early prevention of these
metabolic disturbances and their harmful aftermath by metformin treatment can diminish
the risk of beta cell damage and chronic diabetic complications [94–96]. At this point, it
should be noted that the direct effect of metformin on IR, a unique feature of this drug,
makes possible, at least at this moment, potentially broader therapeutic use of it (e.g.,
prediabetes, polycystic ovary syndrome (PCOS)) than of any of the newer hypoglycemic
drugs [36,38,53,94].

3.2. Pleiotropic Effects of Metformin beyond Glucose Control

T2DM is a complex disease associated with an increasing risk of some pathological con-
ditions, including obesity, metabolic syndrome, atherosclerotic cardiovascular diseases, cer-
tain types of cancer, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases,
PCOS, dementia and metabolic complications of non-retroviral infection [5,37–42]. Grow-
ing evidence suggests that metformin may substantially inhibit or delay their progression
and improve prognosis, when added to the standard therapy of all of the above-mentioned
diseases [36,41,94,97–102]. Moreover, metformin is sometimes used as an adjunct agent,
together with insulin, to treat patients with type 1 diabetes [103,104].

Metformin acts not only as a glucose-lowering drug but exhibits additional benefits, in-
cluding moderate anti-inflammatory and anti-oxidative effects [93,105,106]. Hyperglycemia-
related inflammation and oxidative stress are closely associated with IR and all these
abnormalities affect beta cell leading to its secretory dysfunction and increased apoptosis
resulting in T2DM development and progression [41,105,106]. Moreover, studies show that
metformin slightly reduces body mass and arterial blood pressure in overweight and obese
people [107–109]. It may also improve lipid profile and balance between profibrinolytic and
anti-thrombotic factors [5,110]. However, recently the results of research showing potential
anti-neoplastic and anti-ageing effects of metformin are of particular interest to scientists
and clinicians [36,37,111,112]. The consequences of the pleiotropic effects of metformin are
depicted in Figure 1.
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3.2.1. Metformin and Inflammation

The mechanisms responsible for diabetes–related inflammation and the role of met-
formin in inhibiting this process are extensively reviewed in refs [105,106].

Numerous studies using various animal and human cells (e.g., bovine aortic en-
dothelial cells or human umbilical vein endothelial cells) have revealed that metformin
suppresses hyperglycemia– related low–grade inflammation through the inhibition of nu-
clear factor kappa B (NF-κB) signaling cascade in various cells via AMPK- dependent and
AMPK—independent pathways. Inhibition of NF-κB by AMPK reduces the expression of
pro-inflammatory cytokines such as interleukin 1β, interleukin 6 and tumor necrosis factor
alfa (TNFα). On the other hand, the drug increases the synthesis of anti-inflammatory
cytokines (IL-4 and IL-10). Metformin is also capable of inhibiting chronic inflammation
indirectly through improving insulin sensitivity, controlling hyperglycemia, advanced
glycation end-products (AGEs)formation, body mass loss and diabetic atherogenic dyslipi-
demia [38,94,105,106,113]. The evaluation of the anti-inflammatory effects of metformin in
people with prediabetes and T2DM have shown that treatment with this agent resulted in
decreased plasma insulin level, plasminogen activator type 1 (PAI-1) antigen, C- reactive
protein (CRP) and fibrinogen [114]. Krysiak and Okopień have shown a suppressive effect
of metformin on the release of pro-inflammatory cytokines from monocyte and lymphocyte
taken from patients with impaired glucose tolerance [115,116].

3.2.2. Metformin and Oxidative Stress

Accumulating evidence from experimental and clinical studies indicates that chronic
hyperglycemia is associated with elevated levels of free radicals, including extremely
reactive oxygen species [ROS]. Excessive production of free radicals and the subsequent
decline in cellular antioxidant defense leads to the oxidation of cell constituents, particularly
lipids, proteins and DNA [117]. Consequently, oxidative stress promotes the injury and
apoptosis of all body cells, including beta cells leading to the development of diabetes
and its chronic complications. It was reported that metformin alleviates oxidative stress
and endoplasmatic reticulum stress (ER) which are also responsible for pancreatic β-
cells destruction [95]. It has been proven both in experimental and human studies that
metformin improved the antioxidant status [93,95,96,118–121]. The mechanism of the
antioxidant effect of metformin has not been fully clarified yet. However, as oxidative
stress, inflammation, and IR are all involved in AMPK signaling, the potential benefits of
metformin therapy in T2DM may be the results of this enzyme’s activation. Interestingly,
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Singh et al. have demonstrated in a prospective clinical study that insulin sensitizers,
metformin and pioglitazone, have different anti-oxidant potential. Their findings indicate
that metformin significantly decreases malondialdehyde (MDA) level and strengthens the
anti-oxidant defense system (SOD). Pioglitazone significantly reduced MDA, but failed to
raise the SOD level. This may suggest that metformin has a more extensive antioxidative
effect than pioglitazone [122].

4. Clinical Aspects of Metformin

The aforementioned pleiotropic activities of metformin justify its leading position in
the treatment of T2DM and opens new possibilities for using this exceptional medication
prevention and management of various diseases (Table 1).

Table 1. The old recommendations and new possibilities for the use of metformin.

Approved to Treat No Formal Indication
(Used Off-Label)

Investigated for New
Applications

T2DM Prediabetes/obesity Cardioprotection

T1DM Nephroprotection

GDM Cancer

PCOS Anti-aging

NAFLD COVID-19

4.1. Type 2 Diabetes

After more than 60 years of clinical use the key role of metformin in the management
of chronic hyperglycemia in T2DM may be said to have been proven beyond question. An
uncountable number of clinical studies and real-world practice have strongly demonstrated
its effectiveness, safety and good tolerance in monotherapy as well in combination with
other glucose -lowering drugs. Therefore, metformin use along with diet and exercise as
the initial pharmacologic intervention in subjects with T2DM is still recommended by ADA
and EASD [12,13]. Since the role of metformin in T2DM has been extensively reviewed in
the current literature, we decided to focus on other potential therapeutic applications of
this unique drug.

4.2. Prediabetes

The prevalence of prediabetes is rapidly increasing worldwide and according to the
International Diabetes Federation 453.8 million of the world’s population will have im-
paired glucose tolerance [123]. People with prediabetes are at a high risk of progressing to
T2DM and are prone to develop cardiovascular disease, including coronary heart disease
and HF, cardiovascular death and stroke [124]. These individuals are often overweight
or obese with elevated IR. Therefore, the use of metformin—an agent which significantly
improves insulin sensitivity and modestly reduces body weight—to inhibit the progression
or delay of early glucose metabolism disturbances—is understood when lifestyle interven-
tion fails [125]. Furthermore, it is rational to consider metformin use in patients already
exhibiting early stages of microvessel disease and fatty liver.

The efficacy of metformin to delay or prevent the conversion of prediabetes to diabetes
has been proven in the landmark study—Diabetes Prevention Program (DPP)—which is
the largest randomized clinical trial examining metformin use for diabetes prevention. The
aim of this study was to assess whether intensive lifestyle intervention and metformin may
prevent or delay the onset of T2DM in people at high risk of diabetes. The results of this
trial showed that after 2.8 years of follow-up the incidence of diabetes was 58% lower in
the lifestyle intervention and 31% lower in the metformin group in comparison with the
placebo group [126]. The role of metformin in patients with stable coronary heart disease
induced by dysglycemia and insulin resistance was assessed in the Codyce Multicenter
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Prospective study. The findings of this study indicate that, by decreasing hyperglycemia
and insulin resistance, metformin may improve the endothelial function and reduce the
high risk of MACE in people with glucose metabolism disturbances [114,125].

Summarizing the results from 40 studies on metformin use for diabetes prevention
among people at higher risk published between 1998 and 2017 Moin et al. could conclude
that the agent is effective, safe, tolerable, and cost effective. Therefore, they suggest
increasing use of metformin in the real-world practice, particularly in obese persons with
BMI ≥ 35 kg/m2, with elevated fasting glucose concentrations and HbA1c levels between
5.7–6.4% and women with a history of gestational diabetes [127]. Based upon the positive
results of many studies, metformin is the only anti-diabetic agent recommended by the
ADA to consider for the prevention of T2DM in people with prediabetes [128]. The use
of the drug is permitted by low in some countries (e.g., Poland, Turkey, Philippines and
the United Kingdom) [125]. To the best of our knowledge none of the newer anti-diabetic
medications is recommended and used for the primary prevention of diabetes.

4.3. Type 1 Diabetes

Metformin is quite often used off-label as an add-on to insulin in T1DM because it has
been observed that it may improve the whole-body and peripheral IR in young diabetics
with obesity [129,130]. Therefore, until recently the rationale for it use was mainly based
on the reduction in insulin-dose requirement observed in some clinical studies [130]. The
first clinical studies evaluating the influence of metformin on glycemic control in patients
with T1DM were performed in the mid-1980s with rather disappointing results [131].
However, studies carried out in the following years provided more optimistic results.
Some of them have shown that addition of metformin to insulin resulted in a reduction
in insulin requirement with or without improvement in HbA1c [132–134]. Vella et al.
reported the results of a meta-analysis of the five randomized clinical trials assessing the
role of metformin in T1DM. They found a significant reduction in insulin dose requirement
but without lowering HbA1c [135]. A multicenter clinical trial performed in the USA
in 2013/2014 aimed at assessing the effect of the addition of metformin in a dose of
2000 mg per day, to basal-bolus insulin in 140 overweight/obese adolescents with poorly
controlled T1DM. At the end of the six-month-treatment with insulin plus metformin
there was not improvement in glycemic control but insulin dose requirement and BMI
were significantly reduced in comparison to placebo. However, the use of metformin was
associated with significantly higher rate of gastrointestinal adverse effects. The authors
of this trial concluded that these results do not support prescribing metformin to obese
adolescents with T1DM to improve glycemic control [136].

Surprisingly, the data from the REducing with MetfOrmin Vascular Adverse Lesions
(REMOVAL) trial have shown that metformin in adults aged 40 years or older with long-
durationT1DM can reduce weight and also moderately reduce insulin requirement, as well
as LDL-cholesterol levels, and, what is of particular importance, it inhibits the progression
of atherosclerosis. These findings create a new perspective for the wider use of metformin
in T1DM, especially in middle-aged overweight/obese people with diabetic dyslipidemia,
and receiving high doses of insulin [104].

By contrast to metformin, none of the newer hypoglycemic agents is used in the
treatment of T1DM. However, a few short-term randomized trials with SGLT-2 inh. as
adjunctive to insulin therapy in T1DM were performed [137–142]. At the end of these
studies HbA1c decreased only by −0.25 and 0.52% and weight reduction ranged between
−2.2 and −4.4 kg. Notably, treatment with SGLT-2 inh. was associated with increased risk
of diabetic ketoacidosis [139]. The risk of this serious complication is also higher in T2DM
patients treated with these agents than in those receiving placebo [143]. Moreover, genital
mycotic infection and volume depletion-related events may also develop during therapy
with SGLT-2 inh. Another limitation of the usage of this group of the newer hypoglycemic
medications is their suggested association with bone fracture and lower limb amputation.
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However, the data on these complications is inconclusive and appears to be related to a
specific representative of this class of drugs (canagliflozin) [144].

4.4. Gestational Diabetes (GDM)

Another advantage of metformin over newer hypoglycemic agents is its increasing
use in the treatment of glucose metabolism disturbances in pregnancy [145]. This is
because the results of numerous clinical studies indicate that metformin is an effective,
safe and cheap option for women with gestational diabetes and T2DM in pregnancy and
may improve maternal and perinatal outcomes [145–147]. The positive results of The
Metformin in Gestational Diabetes [MiG] and MiG TOFU, showing that metformin had
similar pregnancy outcomes to insulin therapy with less maternal weight gain and a high
degree of patient acceptability, have a great impact on the current medical practice in
many countries [148,149]. A meta-analysis of eight clinical trials involving 1712 pregnant
women with GDM have proven that metformin and insulin therapy have similar impact on
glycemic control. Interestingly, metformin treatment was associated with a lower incidence
of neonatal hypoglycemia and neonatal intensive care admission [150].

Metformin is classified as pregnancy category B medication and if there is a clinical
need for it, it is considered safe. Unlike metformin, all newer hypoglycemic medications
are classified as pregnancy category C medications and are not used in the treatment of
GDM and T2DM in pregnancy because of concern about serious adverse effects.

4.5. Polycystic Ovary Syndrome (PCOS)

Metformin is the only anti-diabetic drug that is used in women with PCOS for the
treatment of metabolic derangements. The syndrome is often associated with obesity,
IR and hyperinsulinemia, and other reproductive and metabolic disturbances [151,152].
Metformin, by increasing insulin sensitivity in target organs, can correct to some extent
these abnormalities and reduce the risk of glucose intolerance as well as reducing the level
of androgens, and controlling the menstrual cycle of women with PCOS [151–154]. It has
been reported that metformin, besides its antihyperglycemic effect, has a positive influence
on bleeding disorders in women with PCOS and has significant ovulation stimulatory
effect compared with placebo [155].

A meta-analysis of 13 studies involving 1606 pregnant women with PCOS performed
by Zeng et al. has shown that metformin treatment can improve clinical pregnancy rate
and decrease the possibility of preterm delivery [154]. It may also reduce the risk of
pregnancy-induced hypertension, early pregnancy loss, increase vaginal delivery and live
birth rate. Moreover, metformin use in pregnant women decreases elevated blood glucose
levels without increasing the risk of hypoglycemia [154]. The most recent meta-analysis
published in 2020 has shown that use of metformin is associated with less frequent GDM
development than control diets [156]. Although metformin is not approved for PCOS
management, it is still the most commonly prescribed medication alone or in combination
with clomiphene in women with PCOS [155,157].

In the literature available only one small, short-term study assessing the effects of em-
pagliflozin in obese women with polycystic ovary syndrome was found [158]. The results
obtained showed that treatment with this agent significantly improved the anthropometric
parameters and body composition without changes in hormonal or metabolic parameters.
The results of a short-term study involving 36 obese women with PCOS suggest that li-
raglutide may reduce body weight and abdominal circumference and eating behavior [159].
Recently, a systematic review and meta—analysis have shown that GLP-1RAs were more
effective in improving insulin sensitivity and reducing body weight and abdominal girth
than metformin. However, the authors of this publication underline several limitations of
the studies included in the meta-analysis [160].

It has been reported that dipeptydyl peptidase-4 that has an impact on adenosine
deaminase activity, Anti Mullerian Hormone and insulin levels as well as on IR [161].
Interestingly, Ferjan et al. showed in a pilot randomized study that sitagliptin may prevent
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weight regain in metformin intolerant obese women with PCOS [162]. The same authors
reported that sitagliptin in combination with metformin prevented weight regain more
effectively than metformin [163]. Therefore, further studies are warranted to prove a
possible therapeutic benefit and advantage of these newer groups of hypoglycemic agents
over metformin in the management of PCOS.

4.6. Non-Alcoholic Fatty Liver Disease (NAFLD)

A high proportion of people with T2DM also have NAFLD, as both diseases are closely
associated with obesity and both are independent classical risk factors for cardiovascular
major events. In preclinical studies metformin has been shown to improve NASH and
decreases hepatocyte lipid synthesis with subsequent reduction of triglyceride accumu-
lation [164]. Clinical studies, though not all of them, have reported that when metformin
is used for the treatment of T2DM in people with obesity, it significantly reduces body
weight, limb, android and gynoid fat mass while increasing the total lean mass. Moreover,
metformin may correct several components of metabolic syndrome such as impaired glu-
cose tolerance, lipid metabolism disturbance and reduces alanine transferase serum levels.
Although, these studies suggest that metformin might be beneficial in the treatment of
NAFLD, exercise and caloric restriction are the only approved treatment options acceptable
for NAFLD. Nevertheless, metformin is frequently prescribed off-label to patients with this
disease, because it is believed that activation of AMPK is associated with a plethora of bene-
ficial effects, including decreasing oxidative stress and inflammation of the liver [165]. Only
a few small -scale clinical trials with SGLT2 inh and GLP-1Ras in individuals with NAFLD
have been conducted with some promising results [166,167]. Therefore, further studies are
needed to assess their real role in this frequent health problem of the modern society.

4.7. Cardiovascular Protection

Diabetes exacerbates the dynamics of atherosclerosis and it is estimated that about
two-thirds of deaths in people with diabetes are due to cardiovascular disease, of which
approximately 40% are from coronary artery diseases [CAD], 15% from other forms of heart
disease, principally heart failure [HF], and about 10% from stroke [168–172]. Therefore,
minimizing the risk of these life-threating complications should be a prioritized strategy of
treatment and clinicians should be convinced that the hypoglycemic agent which they are
going to prescribe to the patient has proven cardioprotective proprieties. In 2020 we have
evidence from CVOTs for SGLT2-inhibitors and GLP1-agonists that they are both effective
glucose-lowering and cardio-renoprotective drugs (ADA/EASD guidelines 2020).

The cardioprotective effects of metformin were demonstrated in a series of preclini-
cal studies. The results of 27 animal studies of experimental myocardial infarction were
subjected to meta-analysis by Hessen et al. The data obtained suggest that metformin
significantly limits infarct-size, reduces postinfarction remodeling and improves cardiac
function in animals. However, the authors of this meta-analysis emphasize the methodolog-
ical shortcomings, risk of publication bias and substantial between –study heterogeneity.
All this makes it difficult to formulate an unambiguous opinion about the cardioprotective
effect of metformin [173].

The current knowledge indicates that the mechanism responsible for the cardiopro-
tective action of metformin is complex and multidirectional [173–175]. Molecular research
shows that metformin exerts both AMPK–dependent and AMPK-independent effects on
the cardiovascular system [175,176]. Restoring the glucose uptake by cardiomyocytes and
switching their metabolism from lipid utilization to glucose utilization, metformin signifi-
cantly contributes to the improvement of cell mitochondrial respiration and ATP synthesis
in failing heart and determines the effectiveness of the systolic and diastolic function of
the heart [177–179]. AMPK activated by metformin in endothelium cells promotes their
integrity, stimulates the production of nitric oxide and reduces oxidative stress [178,180].
Moreover, the agent has the ability to reduce the level of vascular cell adhesion molecules
(ICAM-1 and VCAM-1), inhibits conversion of monocyte to macrophage with decreased
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secretion of pro-inflammatory cytokines and reduced monocyte adhesion to endothelial
cells with decreased secretion of proinflammatory cytokines [181,182].

Metformin may protect against the negative effects of angiotensin II on cardiovas-
cular system, inhibit the synthesis of the plasminogen activator inhibitor type 1 (PAI-1),
reduce platelet aggregation as well as transforming growth factor-β and preventing the
opening of the mitochondrial permeability transition pore and, finally, regulating calcium
turnover in cardiomyocytes [178,183–186]. It has also been reported the metformin elevates
the expression of endothelial nitric oxide synthase (eNOS) and peroxisome proliferator
–activated receptor –gamma coactivator-1 alfa in cardiomyocytes [179]. The agent may
also reduce myocardial cell apoptosis and promote autophagy. Activation of AMPK and
improving signaling pathway of this enzyme by metformin increases insulin sensitivity of
cardiomyocytes with all positive results of this effect, including improvement of glucose
and lipid metabolism in in these cells [174,176,178,187].

It should also be pointed out that metformin inhibits adipocytes differentiation and
hypertrophy and reduces adipose tissue inflammation, hence potentially decreases the
risk of cardiac fibrosis and diminishes the density of micro-arteries leading to structural
changes and systolic and diastolic dysfunction of the myocardium. Moreover, the agent
may positively change leptin to adiponectin rate in pericoronary fat in patients with acute
myocardial infarction [174,178,187–190].

The mechanisms of cardiovascular effects of metformin, described briefly above, are
supported by clinical studies assessing the influence of the drug on the development and
progression of atherosclerosis-related diseases, including CAD, in people both with and
without T2DM. Interestingly, metformin seems to be cardioprotective both in people with
short and long duration of the disease [4,11,191]. Notably, metformin treatment results in
the inhibition of atherosclerosis progression also in people with type 1 diabetes [192].

Most, although not all, clinical studies have shown that metformin, lowering IR, may
reduce the risk of chronic vascular complications of diabetes and significantly decrease
modifiable cardiovascular risk factors, including hyperglycemia and hyperglycemia -
related inflammation and oxidative stress, increased platelet aggregation PAI, HbA1c,
dyslipidemia, IR, visceral obesity, and blood pressure [192–194]. The effect of metformin
on cardiovascular risk factors is depicted in Figure 2.
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The evidence from multiple studies and from everyday practice indicates that the
level of HbA1c– the most reliable marker of glycemic control- positively correlates with the
risk of cardiovascular complications and is an independent risk factor for CVD, especially
CAD and ischemic stroke [195–198]. In the UKPDS study HbA1c levels were the third most
important factor, behind dyslipidemia and hypertension, in determining cardiovascular
risk in T2DM patients [168].
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Stratton et al. evaluated the relation between exposure to glycemia over time and the
development of macrovascular and microvascular complications finding that 1% reduction
in updated mean HbA1c was associated with reductions in risk of 21% for any end point
related to diabetes, 21% for deaths related to diabetes, 14% for myocardial infarction, and
37% for microvascular complications. Based on these results it was concluded that any
reduction in HbA1c is likely to reduce the risk of diabetes complications, with the lowest
risk being in people with HbA1c values of <6.0% [199]. Therefore, an elevated level of
HbA1c should be reduced to the target without risk of hypoglycemia and agreed between
the doctor and patient as soon as possible. The ability of the newer, particularly oral
hypoglycemic agents (SGLT-2 inh. and DPP-4 inh) to reduce the value of this biomarker
is weaker than that of metformin which decreases HbA1c by approximately −1.2 and
1.5% [200–202].

The stronger antihyperglycemic effect of metformin without increasing the risk of
hypoglycemia and shortening the time of exposure to high blood glucose level seems
to favor this agent over newer ones in the initiation of pharmacotherapy of T2DM, at
least in patients without established cardiovascular disease or cardiovascular risk factors
(primary prevention). However, metformin is also effective in the secondary prevention of
atherosclerosis associated diseases in T2DM patients [199,203–206].

The preventive effect of metformin under real world conditions in monotherapy
or in combination on the cardiovascular system has been shown both in clinical trials
and in primary care settings. Here are some examples: Eurich et al. demonstrated in a
large group of subjects treated with metformin alone or in combination, that the mortality
rates among T2DM and HF patients were substantially lower than in sulfonylurea users.
Moreover, they did not observe increased hospitalization and death rates attributable to
metformin-induced lactic acidosis [207]. Similarly, Aguilar et al. observed in a study on
6185 ambulatory patients with HF and diabetes that metformin users had significantly
lower rates of mortality than non-users and total hospitalization rate was not significantly
different between the two compared groups.

Mohan et al. conducted a randomized controlled trial involving 68 patients with diag-
nosed coronary artery disease with IR and/or prediabetes assessing the effect of a 12-month
treatment with metformin XL in doses of 2000 mg daily or placebo on the left ventricular hy-
pertrophy. They found that metformin significantly reduced left ventricular mass and left
ventricular mass indexed to height. Moreover, the drug decreased systolic blood pressure,
body weight, and oxidative stress [208]. Interestingly, Lexis et al. showed that prolonged
metformin treatment of T2DM patients in the case of MI with ST-segment elevation MI
reduced its size in comparison with non-metformin users [209]. The REACH (Reduction of
Atherothrombosis for Continued Health) study showed that treatment with metformin of
patients with atherothrombosis was associated with a 24% reduction of mortality compared
with no metformin regime [3]. These observations are in agreement with the results of the
very first systematic review of eight studies conducted by Eurich et al. [210]. The aim of this
review was to determine whether there is any association between hypoglycemic agents
and morbidity and mortality in diabetics with HF. Based on the data obtained, the conclu-
sion was drawn that—when compared to other anti-hyperglycemic therapies—metformin
significantly reduced mortality and hospital admissions. These effects were noted despite
the similar decrease in HbA1C values, confirming previous suggestion that metformin may
have additional beneficial effects beyond the blood glucose lowering property [210]. Six
years later Eulrich et al. confirmed previously obtained data in a new systematic review
of observational studies involving 34,000 patients with T2DM and HF [211]. In another
meta-analysis of 53 studies published in 2017 by Campbell et al. it was proved again that
metformin significantly reduces the risk of all-cause mortality. The authors suggested that
the agent may decrease the risk of ageing-related diseases (i.e., cardiovascular disease,
cancer] but the effect was independent of its hypoglycemic activity [211].

Very recently, Han et al. published a systematic review and an updated meta-analysis
assessing the relationship between metformin and cardiovascular complications. To accom-
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plish this task they examined 40 clinical trials comprising 1,066,408 patients with diagnosed
CAD. The findings of this meta-analysis strongly support the experience over decades of
many clinicians and researches that metformin may significantly decrease cardiovascular
mortality, all-cause mortality and CV events, defined as recurrent MI, HF, recurrent angina,
atrial fibrillation (AF), malignant arrhythmia, cardiac death in patients with MI and HF.
Furthermore, it was found that besides the anti-hyperglycemic effect, metformin could
reduce all-cause mortality in the T2DM subgroup of patients with HF only [6].

Considering the cardioprotective potency and safety of metformin, a recently pub-
lished of 17 observational studies is of particular interest. The aim of this work was to
compare the effect of diabetes regimens that included metformin to regimens without
metformin on prespecified clinical outcomes in people with T2DM coexisting with HF and
moderate to severe chronic kidney disease (CKD) or chronic liver disease (CLD). It was
found that metformin use in patients with T2DM and historical metformin contraindica-
tions (CKD, HF or CLD) was associated with lower all-cause mortality. Furthermore, a
lower rate of hypoglycemia was registered in the metformin group than in the compared
group [212]. These findings are in accordance with the results of other studies [211,213,214].

However, in contrast to the studies suggesting a beneficial impact of metformin on
the structure and function of the left ventricle, the findings from sub-analysis of the Gly-
cometabolic Intervention as adjunct to Primary Coronary Intervention in ST-Elevation
Myocardial Infarction [GIPS-III Study] did not confirm metformin’s ability to improve
diastolic function of the left ventricle [215]. The uncertainty about the substantial cardiopro-
tective effect of metformin made Griffin et al. perform a meta-analysis of randomized trials
and found that metformin treatment reduces, albeit insignificantly, the risk of all-cause
mortality in diabetics (−4%), cardiovascular death (−3%), MI (−11%), peripheral vascular
disease (−19%) and increases the risk of stroke (+4%). The emerging doubts will be difficult
to dispel because conducting a large, long-term study assessing the effect of metformin
monotherapy on the cardiovascular system is, for many reasons, extremely difficult to
implement [9].

However, despite the opinions questioning the cardioprotective effects of metformin,
a large number of diabetologist and general practitioners, based upon their positive experi-
ence, prescribe this particular agent to their patients with newly-diagnosed T2DM. When
considering the possibility of replacing metformin with the newer antidiabetic agents as the
first-line treatment of T2DM, it is worth noting that there is a lack of data on the long-term
cardiovascular effect of these medications. The average duration of CVOS was around
five years while the effect of metformin on chronic vascular T2DM complications had been
observed in the UKPDS Effect of [1,2] over two decades and in some clinical trials 2–3 times
longer. The studies with newer generation of hypoglycemic medications were performed
in patients with a long history of the disease and already had cardiovascular disease or
a number of risk factors for it. However, it should be underlined that the substantial
proportion of people with newly-diagnosed T2DM, particularly young, are often without
cardiovascular disease or risk factors, except hyperglycemia. That is why we agree with
Griffin et al. who assume that “metformin will hold its leading position in the management
of hyperglycemia in diabetes for difficult to foresee period of time” [9].

4.8. Nephroprotection

The prevalence of CKD has increased worldwide mainly as a result of the rapidly
increasing number of people with diabetes [216,217]. CKD attributed to diabetes (diabetic
kidney disease, DKD) affects approximately 30% of people with T1DM and about 40% with
T2DM. This microvascular complication of chronic hyperglycemia often leads to end-stage
renal disease and significantly increases the risk of cardiovascular disease and premature
death. Therefore, renoprotection as well as cardioprotection remain the major therapeutic
challenge in diabetes. Unfortunately, the current methods of pharmacological treatment
of DKD are not effective enough and many patients will need, sooner or later, dialysis or
kidney transplantation.
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Recently, several CVOTs with the newer hypoglycemic medications have shown that,
beyond the anti-hyperglycemic effect, these agents significantly reduced cardiovascular
risk and prevented the development and progression of albuminuria and lowered the
decline in estimated glomerular filtration rate [eGFR) [218–223]. DPP-4 inhibitors are
considered to have neutral or in some studies beneficial renoprotective effects [220,224].
Therefore, the ADA and EASD recommend early initiation of combination therapy with
some never agents in T2DM assuming that it may significantly increase the probability
of achieving the glycemic target for a specific patient and significantly reduce the risk of
chronic cardiorenal complications [225]. In spite of the very promising results of clinical
trials indicating renoprotective effects of some newer antidiabetic drug, uncertainty remains
as to whether they are superior or equivalent to metformin. To answer this question
is not easy due to the lack of direct long-term observational comparative studies with
the newer hypoglycemic drugs and metformin. Evidence from a series of experimental
studies suggests that metformin has nephroprotective properties attenuating kidney injury
produced by different toxins, including exposure to high glucose concentration [226,227].

The molecular mechanism of renoprotective effects of metformin is complex and not
fully clarified. However, multiple data indicate that the key role is played by the activation
of AMPK and subsequent improvement of mitochondrial biogenesis and a whole cascade
of beneficial effects induced by this enzyme in kidney cells [228,229]. This hypothesis is
supported by the observations indicating that the activity of AMPK in the kidney of diabetic
rats was reduced and metformin could repair this abnormality trough the inhibition of
oxidative injury [229].

The impact of metformin on the kidney in diabetics is also a consequence of both
its glucose lowering-dependent and glucose-independent mechanism [230]. The toxic
effect of hyperglycemia on the kidney is well recognized both in animal models and in
humans. Hyperglycemia increasing oxidative stress and generation of free radicals, induc-
ing low-grade chronic inflammation, and autophagy is responsible for podocyte damage
and its death and for the intensification of tubule-interstitial fibrosis. Therefore, metformin
with its potent anti-hyperglycemic effect, inhibition of advanced glycation end products
accumulation in various tissues and decreasing hyperglycemia -related inflammation and
oxidative stress may slow down all these kidney damaging processes [229–231]. Exper-
imental studies on mammalian cells have shown that metformin increases the level of
anti-aging protein (klotho protein) which may inhibit the progression of various kidney
diseases. In addition, the drug has an ability to decrease the level of the mammalian target
of rapamycin [mTOR] protein and reverse the effect of hyperglycemia on the activity of
Madin -Derby Canine Kidney cells (MDCK cells) [232]. Another study demonstrated that
in rat diabetic nephropathy model metformin increases the expression of anti-oxidative
genes and inhibits pro-inflammatory genes [233]. It was also shown that metformin, in
addition to the inhibitory effect on oxidative stress and inflammation, inhibits ER stress and
related mesangial expression of transforming growth factor and production of extracellular
matrix and induces autophagy [230,233]. However, the renoprotective effects of metformin
has been questioned by some researchers. Lee et al. observed a selected group of T2DM pa-
tients enrolled under the pay -for—performance program of the National Health Insurance
in Taiwan. The aim of that study was to assess the impact of metformin on the development
of end-stage kidney disease and CKD. The findings indicate that among metformin users
vs. non-users the risk of the end-stage kidney disease and CKD development was 22% and
25% higher, respectively [234].

Numerous clinical studies have demonstrated that metformin decreases insulin re-
sistance and improves intracellular signaling of insulin, reduces glucotoxicity and lipo-
toxicity. Hyperglycemia and diabetic dyslipidemia are among the major risk factors of
CKD development and progression. Therefore, it is rational to expect that metformin—by
reducing the mean HbA1c by approximately 1.0–1.3% and improving lipid profile and
when implemented soon after T2DM diagnosis—will attenuate the risk of chronic diabetes
complications, including kidney impairment [74]. The post-interventional phase of the
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UKPDS showed a 16% reduction in microvascular complications of T2DM, defined as
vitreous hemorrhaging, retinal photocoagulation, or renal failure [2]. These results are
in line with the data presented in a recent retrospective study conducted on a very large
group of T2DM patients with DKD stage 3. It has been shown that long-term metformin
use was associated with 35% and 33% risk reduction in all-cause-mortality and end-stage
renal disease progression, respectively. It is especially important that metformin usage did
not increase the risk of lactic-acidosis [235]. Interestingly, Stephen et al. observed that many
kidney transplant recipients were safely treated with metformin. No association between
metformin use and worsening of patient’s condition or allograft survival was found [236].

Recently, evaluation of data from a cohort study of the Swedish National Diabetes
Register with 51,675 patients aged from 40 to 85 years with T2DM and different levels
of kidney function receiving metformin therapy or any other antidiabetic treatment in
outpatients’ clinics and primary healthcare clinics showed no increased risk of CVD and
all-cause mortality. Lactic acidosis and serious infection did not develop in patients with
eGFR 30–45 mL/min/1.73 m. The authors of this study concluded that the benefits of
metformin use clearly outbalance the risk of severe side effects [237].

Charytan et al. showed that metformin treatment in people suffering from T2DM and
CKD was associated with a reduced risk of all-cause mortality and cardiovascular death by
51%. Moreover, the drug decreased the cardiovascular composite endpoint and the kidney
disease composite endpoint by 23% [238].

Bell et al. performed a retrospective analysis of the electronic health records of
25,148 T2DM patients, of whom 14,622 were treated with metformin at some point during
the study period and 4944 of the entire cohort had at least one episode of acute kidney
failure between 2004 and 2013. Interestingly, they found that the use of the drug did not
increase the risk of acute kidney disease. Moreover, the drug reduced all-cause mortality
and prolonged survival in patients with diabetes and CKD treated previously with this
agent [239]. These observations are in line with the results of a large observational study
including 469,688 T2DM patients treated in general practice. It was found that metformin
decreased the risk of severe kidney failure compared with sulfonylureas and insulin
use [240]. Metformin’s renoprotective effects have also been strongly supported by the
aforementioned systematic review by Crowley et al. They examined 17 observational
studies comparing the effect of diabetes regimens that included metformin to regimens
without metformin on prespecified clinical outcomes in people with T2DM coexisting with
HF, CKD or chronic liver disease. The results obtained showed that metformin exposure
in patients with T2DM and the presence of metformin contraindications (moderate CKD,
HF or chronic liver disease) was associated with lower all-cause mortality and fewer HR
readmissions in diabetics with CKD or HF. Furthermore, a lower rate of hypoglycemia was
found in the metformin group than in the comparison group [212].

A case control study performed in Lodz, Poland showed also that in spite of classical
contraindication 275 out of 558 hospitalized diabetics had been treated for a long time
before admission, with metformin alone or in combination with other hypoglycemic
agents. Despite contraindications none of them reported any serious adverse effects
and no significant pH changes were observed. Only three patients reported moderate
dyspepsia [241].

For a long time metformin has been contraindicated in moderate renal impairment
because of fear of the increased risk of serious metformin associated lactic acidosis (MALA).
However, long term experience with metformin use and data available from real-life
have proven that the drug is safe in such clinical situation. Observation of 50,048 T2DM
patients who were treated with different oral hypoglycemic agents revealed that a very
small number of them had developed MALA. The estimated incidence was only 3.3
cases per 100,000 person-years among metformin users [242]. These observations were
confirmed, among others, by pooled data from 347 cohort studies which indicated that the
incidence of MALA ranged from 4.3 to 5.4 per 100,000 patient-years in the group of patients
treated with metformin. The authors conclude that there is no evidence from prospective
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comparative trials or from observational cohort studies that metformin is associated with
an increased risk of lactic acidosis, or with increased levels of lactate, compared to other
anti-hyperglycemic treatments [243].

According to the FDA Drug Safety Communication published in April 2016 metformin
can now be initiated in patients with stable eGFR /1.73 m2; however, it should not be started
in those with an estimated glomerular filtration rate (eGFR) of 45 to 60 mL/min/1.73 m2.
Reduction in total daily dose and close kidney function monitoring are recommended in
patients with eGFR between 30 and 45 mL/min/1.73 m2, and due to the risk of MALA,
it should not be used in patients with eGFR < 30 mL/min/1.73 m2. It is also worth
underlining that due to the potential risk of the acute kidney impairment after intraarterial
iodinated contrast administration, metformin should be stopped prior this procedure only
in patients with an eGFR below 60 mL/min/1.73 m2 or in patients with a history of liver
disease, alcoholism, or heart failure. eGFR should be checked after 48 h, with metformin
restarted if kidney function is stable.

4.9. Cancer

People with diabetes, particularly with T2DM, have increased risk of developing spe-
cific types of cancer (liver, pancreas, endometrium, colon and rectum, breast, bladder) and
death from cancer [36,97,244–247]. The possible relationship between these life-threatening
diseases comprises hyperglycemia, hyperinsulinemia, obesity and IR and several others
non-modifiable risk factors (age, sex, race/ethnicity) and modifiable risk factors (obesity,
diet, physical activity, tobacco smoking and alcohol consumption [244].

Metformin exhibits clinically desirable effects on glucose and insulin concentration
in the blood, IR and body weight. Therefore, it is not surprising that there is an interest
in using this cheap, available and well tolerated agent in cancer prevention and therapy,
especially that there is a continuously increasing number of clinical studies suggesting the
effectiveness of metformin in both glucose control and cancer prevention [248].

It is interesting that since the first publication suggesting that metformin may decrease
the risk of cancer development in T2DM patients, the underlying mechanism of its antineo-
plastic suppressing activity has remained only partially understood [97,245,247,249,250].
The current knowledge proposes at least two routes of metformin action which may con-
tribute to its anti-cancer properties. An indirect action on tumor cells is related to metformin
glucose lowering effect, reduction of hyperinsulinemia, insulin-like growth factor-1 (IGF-1)
and IR [160,161]. These changes may inhibit cancer cells proliferation through limiting
supplementation of energy (glucose) for cancer cells. Through this route metformin may
also reduce the level of proinflammatory cytokines, and an increase of immune response to
cancer cells, both of each may play a role in tumorigenesis [152,244,248].

Several molecular mechanisms responsible for direct anticancer activity of metformin
have been suggested. They include activation of AMPK in tumor cells or suppression
of: mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK),
protein kinase B (Akt), insulin//IGF-1 axis, NFκB pathways, and inhibition of complex
1 of the mitochondrial electron transport chain [36,97,98,245–256] Furthermore, it was
reported that metformin suppresses epithelial to mesenchymal transition and directly kill
stem cells [257]. Mechanism of metformin action in cancer is extensively reviewed in
ref. [251–253,255].

These briefly presented molecular effects of metformin on cancer cells have created
the hope that this agent may be useful in the prevention and treatment of specific types
of tumors in humans. This suggestion has been reinforced by the results of retrospective
observational studies as well as by reviews and meta-analyses [246,258,259]. Here are
some examples. Nearly two decades ago Evans et al. conducted a controlled case control
study of cancer incidence in patients with newly diagnosed T2DM who had or had not
received metformin. The risk of cancer in the metformin group was reduced compared
to non-metformin taking group. Interestingly, a trend towards a greater protective effect
was observed with increasing duration of exposure to metformin [246]. A significant risk



Pharmaceuticals 2021, 14, 122 17 of 33

reduction of pancreatic and hepatocellular cancer incidence in diabetic patients receiving
metformin was noted in a meta-analysis performed by Decensi et al. [259]. However, the
more recent studies assessing the role of metformin in cancer prevention and treatment
have produced mixed results. In the first observational prospective study with a median
follow –up of up to 9.6 years. Gijs et al. found that in patients taking metformin compared
with patients not taking metformin, the adjusted hazard ratio for cancer mortality was
0.46 [260]. Coyle et al. performed a meta-analysis of 27 eligible observational studies
assessing the adjuvant effects of metformin in patients with early—stage colorectal cancer
or with early stage prostate cancer on chemotherapy or radiotherapy. The findings indicate
that metformin use in patients with early stage colorectal or prostate cancer compared with
non-use was associated with a significant benefit in all outcomes (recurrence free survival,
overall survival and cancer-specific survival). Interestingly, no benefit was observed in
patients with breast and urothelial cancer [111]. These observations suggest that metformin
can be an useful adjuvant agent after chemotherapy or radiotherapy of specific types of
cancer. Numerous experimental and clinical studies have revealed that metformin increases
sensitivity to chemo- and radiotherapy [261–263]. Hirsch et al. provided evidence that
metformin has the ability to selectively kill cancer stem cell. Thus, it is likely to increase the
effect of chemotherapeutic drugs on tumor mass and prevents relapse [264].

Jiralerspong et al. assessed the effect of metformin on pathologic remission response
(pCR) in diabetic patients with breast cancer receiving three to six courses neoadjuvant
anthracycline based chemotherapy. The obtained results showed that those patients who
were treated with metformin during neoadjuvant chemotherapy had a higher pCR rate than
metformin non-users [263]. The findings from the meta-analysis of 17 retrospective cohort
studies comprising 14,333 patients with various cancer types and diabetes showed that
metformin appears to improve tumor response to radiotherapy. Furthermore, 2-year and
5-year overall survival rate was higher in metformin users than in non-users. However, the
authors of this publication emphasize that these results must be interpreted with caution
because of the fact that not all the studies were randomized [265].

A recently published systematic review and meta- analysis have confirmed that
monotherapy of T2DM with metformin was associated with a significantly lower risk of
cancer incidence than monotherapy with sulfonylurea [266]. A survival benefit associated
with metformin treatment in people with cancer and T2DM compared with treatment with
other hypoglycemic agents was found in the meta-analysis done by Yin et al. Therefore, the
authors conclude that metformin should be the drug of the first-line in the management of
such patients [267]. On the other hand, evaluating the electronic records of 315,890 people
aged 21–87 years with incident diabetes Danker et al. did not find an inverse association
between metformin use and the risk of major cancer event [268]. The inconclusive results
regarding the role of metformin in cancer prevention and treatment in people with diabetes
justify further on-going randomized studies.

4.10. Longevity

Another argument supporting the leading position metformin among currently avail-
able antidiabetic drugs is its impact on the life-span. It is rational to assume that any
glucose-lowering drug decreasing the risk of cardiovascular disease, renal failure or can-
cer will have a positive effect on the life-span. However, with the spectacular results of
CVOTs, it can be expected that the newer hypoglycemic drugs will extend the lives of
people treated with these medications. Unfortunately, there are not enough long-term
observations that could confirm this, while in the case of metformin, there is evidence from
some, but not all, preclinical experiments indicating that this agent can extend longevity
in worms and mice [269,270]. These observations have been at least partially confirmed
in some retrospective clinical observations. They have shown that administration of met-
formin is associated with a reduced incidence of several age-related disease. Bannister
and al compared all-cause mortality in a large UK register of T2DM patients treated with
metformin monotherapy or sulphonylurea respectively. with matched individuals without
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diabetes. They found that people initiated with metformin in monotherapy had longer
survival than those receiving sulphonylourea as a first line treatment. Interestingly enough,
the study also showed that patients with T2DM taking metformin had longer survival than
people without diabetes not taking this drug [271].

Recently, Campbell et al. presented a systematic review of 53 publications assessing
the effect of metformin on all-cause mortality and diseases of aging. The findings showed
that metformin using diabetics had significantly lower all—cause mortality then non
users and non—diabetics. People with T2DM treated with metformin also had lower all-
cause—mortality than those receiving sulphonylurea or insulin. Additionally, metformin
reduced cardiovascular disease in diabetics taking metformin compared to non-takers and
decreased the risk of malignancies compared to non-diabetics. Based on these results the
conclusion was made that metformin could extend the life and health span by acting as an
anti-aging therapeutics in humans [272].

4.11. COVID-19

Patients with diabetes are at higher risk from COVID-19 disease by increased inflam-
matory activity and vice versa COVID-19 increases the risk of diabetes and accelerate
its progression [273–276]. Interestingly enough another unique property of metformin
was signaled by the results of a retrospective study evaluating the effect of this drug
on the risk of mortality in 6256 patients (3302 F) aged ≥ 18 with T2DM or obesity and
hospitalized between 1 January and 7 June 2020 for COVID-19 confirmed by polymerase
chain reaction [277]. The patients included in the study were assigned to metformin home
users’ group (at least 90 days of metformin prescription from 12 months prior COVID-19
diagnosis) or non-users before hospitalization. It was found that of the 2333 people in the
metformin group, 18.9% died vs 21.3% of 3923 who died in the non-users group. These
results suggest that metformin use before hospitalization (metformin use is discontinued
at hospitalization in the USA) was not associated with significantly decreased mortality in
the overall sample of the patients. However, significantly reduced mortality was noted in
women with T2DM or obesity who were admitted to hospital for COVID-19 (OR 0.79, 95%
CI 0.64–0.98, p = 0.03) [277].

As mentioned earlier, it has been reported that both obesity and diabetes are asso-
ciated with chronic inflammation and that metformin reduces the level of pro-inflammatory
biomarkers and increases secretion of anti-inflammatory cytokines [35,38,39,105,106]. There-
fore, the authors of this study suggest preventive use of this agent before infection with
SARS-CoV-2 by people with diabetes and/or obesity while emphasizing an urgent need
for further research on this intriguing and particularly important topic. Considering the
devastating impact of COVID-19 pandemic on the world’s population the results of the
study presented above strengthen the position of metformin among antidiabetic drugs.

5. Pharmacogenetics of Metformin

Long-term clinical experience supported by numerous clinical studies clearly indi-
cates that a substantial percentage of T2DM patients do not achieve the expected level
of glycemic control while receiving metformin in monotherapy [278]. Considerable intra-
individual variability in metformin response may be caused by numerous factors such as:
age, gender, physical inactivity, insufficient dose of the drug, non-adherence, interaction
between metformin and other drugs and metformin interaction with microbiota [279,280].
Experimental and clinical studies in both healthy volunteers and diabetic patients have
shown that specific groups of genes (e.g., the family of SLC genes) are involved in met-
formin absorption, distribution, metabolism and elimination and, as a result, may affect
the pharmacological response to this drug [281–285]. It has also been demonstrated that
the polymorphisms of many genes may increase or decrease the therapeutic response to
metformin [286] The most thoroughly investigated gene was SLC22A1 encoding an organic
cationic transporter 1(OCT1) which is localized in hepatocytes. OCT1 is responsible primar-
ily for the uptake of metformin by the liver—a main target of the drug action on glucose
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metabolism. However, the role of SLC22A1 polymorphisms in response to metformin has
not been fully clarified [283,286,287]. As has recently been demonstrated in a systematic
review, which assessed the association between OCT1 polymorphisms and the biochemical
and clinical outcomes in metformin users, only some of this gene’s polymorphisms were
associated with the variable response to the drug [288]. Apart from OCT1, various other
transporters, play a role in metformin kinetics, including the multidrug and toxin extrusion
1 (MATE1), encoded by the gene SLC47A1 and MATE2-K, encoded by the gene SLC47A2.
These transporters regulate the renal clearance of metformin [281,289]. The impact of these
transporters on metformin elimination may contribute to a marked elevation of the drug
concentration, particularly in the liver, increasing the risk of lactic acidosis [290].

The absorption of metformin from the gut is primarily mediated by plasma membrane
monoamine transporter (PMAT), encoded by the gene SLC29A4 [291]. However, there is
lack of clinical data on the impact of PMAT on pharmacokinetic parameters of metformin
in human.

Dujic et al. performed a large-scale meta -analysis across 10 international cohorts
of the Metformin Genetics Consorciun (MetGen) to clarify the significance of nine candi-
date polymorphisms in five transporter gene (OCT1–3), MATE 1 and OCTN1 in glycemic
response to metformin. The findings from almost 8000 participants suggest that vari-
ations in these transport genes contribute little to variability on the glycemic response
to metformin in T2DM. This important study provides evidence that despite the well-
recognized role of cation-selective transporters in metformin pharmacokinetics, changes in
these transporters have no significant impact on glycemic response to metformin. There-
fore, there is uncertainty whether genotyping of metformin transporters could be used in
personalized metformin therapy. This can be elucidated in further studies involving large
populations [292].

6. Safety of Metformin

Extensive worldwide experience with the use of metformin in an uncountable number
of T2DM patients supported by numerous clinical studies clearly indicates that metformin
is safe and generally well-tolerated. However, in 20–30% of patients the drug may induce
gastrointestinal disturbance, mostly mild or moderate, such as dyspepsia, dysgeusia,
heartburn, abdominal pain, nausea, vomiting, bloating or diarrhea [293]. These symptoms
may have an unwanted impact on the quality of life and treatment adherence. However, in
the majority of patients, they often disappear with time or with the use of extended—release
pills, gradual dose titration, and metformin administration with meals. Nevertheless, in
approximately 5% of patients severe symptoms of gastrointestinal intolerance develop.
They are most likely related to high concentration of metformin in the intestine, increased
secretion of serotonin from enterochromaffin cells, decreased ileum absorption of the bile
acids, increased secretion of GLP-1 from enterocytes and altered microbiome. All these
factors have a substantial influence on gastrointestinal regulation, particularly intestinal
motility and secretion [294].

It has been reported that in 6–30% users, metformin is responsible for vitamin B12 mal-
absorption and/or deficiency. It is well-known that the low level of vitamin B12 increases
the risk of megaloblastic anemia and peripheral neuropathy. These complications develop
more frequently in the elderly patients and correlate positively with both the duration and
daily dose of metformin [295]. In patients who develop these complications, B12 should be
monitored and supplementation with vitamin B12 may be required [296–298].

Donnelly et al. analyzed data from A Diabetes Outcome Progression Trial (ADOPT)
and UKPDS, and from real-world showed that the use of 1 g of metformin daily increased
the risk of anemia by 2% per year [299]. Interestingly enough, the REMOVAL study showed
that mid-age people with T1DM treated with metformin over 3 years had biochemical
deficiency of vitamin B12 that was twice as high as individuals taking placebo (12% vs.
5%, respectively [192]. These findings are of clinical importance because in the younger
population vitamin B12 is often associated with gastroparesis, megaloblastic anemia and
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coeliac disease. At least three putative mechanisms of metformin-induced deficiency
of vitamin B12 have been proposed, including: (1) alteration of microbiome resulting
in the binding of the intrinsic factor-vitamin B12 complex (IF-vitamin B12 complex) to
bacteria and blocking its absorption into circulation, (2) altering the intestinal motility and
(3) inhibition of the calcium-dependent IF-vitamin B12 complex binding to the receptor
located in the terminal ileum [294]. The risk of lactic acidosis is described in the section
titled “Nephroprotection”.

7. Conclusions

Experimental and clinical evidence indicates that metformin has a pleiotropic mecha-
nism of action and, consequently, the drug reduces the elevated glucose level in people
with prediabetes and diabetes without increasing the risk of hypoglycemia and weight
gain. Moreover, metformin may reduce the development and progression of some types
of cardiovascular disease and inhibit the progression of kidney damage in people with
diabetes. It should also be highlighted that the historical contraindication (HR and kid-
ney impairment) for this inexpensive, safe, effective and generally accessible drug have
recently been challenged. Therefore, in most patients pharmacologic therapy with met-
formin should be initiated at the time of diabetes diagnosis. However, in patients with
cardiovascular risk factors or cardiovascular disease combined therapy with metformin
plus SGLT-2 or GLP-1RAs should be started as soon as possible.

Metformin is also promoted as an effective medication for PCOS and used off-label
in the management of T1DM, GDM and NAFLD. There are also increasing attempts to
use metformin in cancer prevention and treatment as well as the reduction of mortality in
people with diabetes and COVID-19 disease. This made it possible to use this remarkable
drug in a much larger group of patients worldwide. However, the rationale of these
observations can only be confirmed after long-term, well-designed studies have been
performed. The main points of the review are presented in Table 2.

Table 2. The main points of the review.

Metformin:

Is an effective and safe antihyperglycemic agent in monotherapy as well as in combination with
other anti-diabetic medicines.

Is indicated as the first -line therapy of newly diagnosed T2DM

Inhibits or delays the risk of the transition from prediabetes to T2DM

Lowers hyperglycemia mostly via inhibition of hepatic gluconeogenesis along with increasing
insulin sensitivity in skeletal muscle

Suppresses hepatic glucose production through the inhibition of mitochondrial respiratory chain
complex 1

Acts in AMPK—dependent and AMPK-independent manner

Shows multiple glucose-independent pleiotropic effects

Possesses cardioprotective properties

Has possible nephroprotective effect

Off-label use is increasing in PCOS, T1DM, NAFLD and obesity

Is considered to be promising agent in cancer prevention and treatment as well as an
anti-aging agent
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