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Abstract: The development of colorectal cancer, responsible for 9% of cancer-related deaths, is favored
by a combination of genetic and environmental factors. The modification of diet and lifestyle may
modify the risk of colorectal cancer (CRC) and prevent neoplasia in up to 50% of cases. The Western
diet, characterized by a high intake of fat, red meat and processed meat has emerged as an important
contributor. Conversely, a high intake of dietary fiber partially counteracts the unfavorable effects
of meat through multiple mechanisms, including reduced intestinal transit time and dilution of
carcinogenic compounds. Providing antioxidants (e.g., vitamins C and E) and leading to increased
intraluminal production of protective fermentation products, like butyrate, represent other beneficial
and useful effects of a fiber-rich diet. Protective effects on the risk of developing colorectal cancer
have been also advocated for some specific micronutrients like vitamin D, selenium, and calcium.
Diet-induced modifications of the gut microbiota modulate colonic epithelial cell homeostasis and
carcinogenesis. This can have, under different conditions, opposite effects on the risk of CRC,
through the production of mutagenic and carcinogenic agents or, conversely, of protective compounds.
The aim of this review is to summarize the most recent evidence on the role of diet as a potential
risk factor for the development of colorectal malignancies, as well as providing possible prevention
dietary strategies.

Keywords: colorectal cancer; diet; nutrition; red meat; processed meat; fiber; vitamins; short chain
fatty acids (SCFA)

1. Introduction

Colorectal cancer (CRC) is a highly common malignancy, being the third leading cause
of cancer death worldwide. It has been estimated that in 2018 the incidence of new cases
has been approximately 2 million, determining 1 million deaths worldwide [1].

CRC is a silent disease, often presenting in advanced form, developing as a slow,
multi-step process, that takes approximately 5–10 years from premalignant lesions to CRC [2].

Moreover, being influenced by several risk factors related to the patient (including age,
sex, and familial predisposition) and environment (diet, excess body weight, and tobacco
use), CRC may be modulated by targeted risk reduction measures [3].

Although in the past years the carcinogenic effect of diet was mainly attributed to high-
fat, high-calorie diets, an increasing amount of attention is now focused on the specific role
of different nutrients like fibers, vitamins, and minerals, as well as of intestinal microbiome
metabolism.

Indeed, the World Cancer Research Fund/American Institute of Cancer Research
(WCRF/AICR), suggests that CRC could be prevented in up to 50% of cases, modifying risk
factors such as diet and lifestyle behaviors [4]. The same report states that consuming whole
grains, dietary fiber, and dairy products decreases the risk of CRC. Conversely, the Western
diet, characterized by a high intake of red and processed meat (rich in heme iron) and
fat increases the risk of CRC. Some evidence supports the protective effect of vitamin C,
fish, and vitamin D, in decreasing the risk of CRC [4].

Nutrients 2021, 13, 143. https://doi.org/10.3390/nu13010143 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-1350-4876
https://orcid.org/0000-0002-1888-7290
https://orcid.org/0000-0002-7076-5493
https://orcid.org/0000-0001-8513-3758
https://orcid.org/0000-0001-6341-5711
https://www.mdpi.com/2072-6643/13/1/143?type=check_update&version=1
https://doi.org/10.3390/nu13010143
https://doi.org/10.3390/nu13010143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13010143
https://www.mdpi.com/journal/nutrients


Nutrients 2021, 13, 143 2 of 13

Thus, dietary intervention has emerged in the last decades as an attractive strategy to
reduce the occurrence and progression of CRC.

The aim of this narrative review is to summarize the most recent evidence on the role
of diet as a potential risk factor for the development of colorectal malignancies, as well as
providing dietary strategies that may counteract this effect.

2. Materials and Methods

A systematic electronic search of the English literature up to November 2020 was per-
formed using Medline, Excerpta Medica database (EMBASE), Web of Science,
Scopus, and the Cochrane Library. The search strategy used a combination of Medical
Subject Headings (MeSH) and keywords as follows: “colorectal cancer”, “CRC”, “colorectal ade-
noma”, “risk factors”, “carcinogens”, “diet”, “dietary habit”, “food”, “meat”, “red meat”,
“processed meat”, “heme iron”, “proteins”, “fat”, “lipids”, “carbohydrates”, “sugar”,
“refined sugars”, “nitrates”, “nitrites”, “nitrosamines” “dietary fibers”, “vegetables”,
“fruit”, ”dietary minerals”, “calcium”, “selenium”, “nutrients”, “vitamins”, “vitamin C”,
“vitamin D”, vitamin E”, “antioxidants”, “gut microbiota”, “fecal organic anions”,
“fecal short-chain fatty acids”, “short chain fatty acids”, “SCFA”, “butyrate”.

Three authors (Filippo Vernia, Salvatore Longo, and Gianpiero Stefanelli) identified
relevant articles by screening the abstracts. Additional studies were selected after a manual
review of the reference list of the identified studies and review articles. Any discrep-
ancy was resolved by consensus, referring to the original articles. Out of 4573 citations,
118 relevant articles were selected and included in the present narrative review.

3. Red and Processed Meat and Colorectal Cancer

Processed meat, defined as meat that has been transformed through salting,
curing, fermentation, smoking, or other processes to enhance flavor or improve preserva-
tion, and red meat have been included in 2015 in the list of substances that can contribute
to the development of cancer, by the International Agency for Research on Cancer (IARC).
Based on available data, the study group concluded that processed meat is carcinogenic
(Group 1), while red meat is probably carcinogenic (Group 2A) [4].

Therefore, it has been recommended that the intake of red meat is limited to less
than three portions weekly, corresponding to 350–500 g (12–18 oz) of cooked weight [4].
Processed meat, more so smoked and nitrite-containing foods, should be avoided, as no
level of intake can confidently be associated with a lack of risk [4].

The association between CRC and enhanced consumption of red and processed meat,
leading to this recommendation, is supported by considerable evidence.

The European Prospective Investigation into Cancer and Nutrition (EPIC) provided
strong evidence of this association in more than 500,000 individuals [5] as habitual meat con-
sumers had a 20% higher risk to develop CRC, compared to non-consumers or occasional
consumers [5].

Similarly, the Norwegian Women and Cancer (NOWAC) cohort, including 88,000 women,
concluded that consuming more than 60 g processed meat a day doubles the risk of
developing CRC compared to less than 15 g [6].

Other cohorts reported that the daily ingestion of 100 g of fresh red meat determines a
17% increased risk of CRC, while 50 g processed red meat raises the risk by 18% [4].

In contrast, there is not enough evidence to support the role of white meat consump-
tion in increasing the risk of CRC.

The carcinogenic effects of red and processed meat are mainly related to the presence
of growth-promoting dietary components, such as heme and arginine, enhanced mutagenic
intestinal environment, and intestinal inflammatory response [7].

The best-studied mechanism involves heme iron [8], converted in the colon into
cytotoxic heme factor (CHF). This damages the surface epithelial cells [9] and induces
reactive epithelial hyperproliferation. The abundance of mucin-degrading bacteria, such as
Akkermansia muciniphila, and sulfate-reducing bacteria enhances these effects [9].
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Colonic damage is boosted by the production of reactive oxygen species (ROS) induced
by heme iron, which favors the oxidation of DNA, lipids, and proteins [10].

Heme has been shown in animal models to inhibit colonocyte apoptosis and exfolia-
tion, providing an additional mechanism contributing to carcinogenesis [11].

Heme iron increases the production of N-nitroso compounds (NOCs) [12].
Nitrosamines, synthesized by the intestinal microbiota from the nitrites, are particularly
active carcinogenic compounds [13]. Processed meat is still often supplemented with
nitrites to favor preservation. Free nitrosyl heme has been shown in animal models to
synthesize more NOCs during cooking than native heme [14]. Moreover, hemoglobin
and myoglobin directly react with nitrites, forming N-nitroso-hemoglobin and N-nitroso-
myoglobin, possibly explaining the dose-dependent effect of red meat [15].

Additionally, arginine, as a precursor of polyamines, has been proposed as a potential
CRC risk factor [16]. Polyamines, such as putrescin, spermidine, and spermine, are involved
in cellular processes, including proliferation, and provide an additional mechanism linking
red meat to CRC [7,17].

Several genotoxic and mutagenic substances particularly NOCs and oxidized lipids re-
sult from preservation, curing, and/or cooking process and bacterial metabolic activity [7,18].
Heterocyclic amines (HCAs) formed upon over-heating amino acids and sugars, either alone
or in association with polycyclic aromatic hydrocarbons (PAHs), and nitrites/nitrates,
are also harmful [7].

An additional mechanism contributing to CRC is lipidic peroxidation [7]. This results
in the production of O6-carboxymethyl guanine adducts and other molecules with toxic
and mutagenic effects [19]. Interestingly, lipidic peroxidation is further enhanced by heme
iron [20], in relation to the catalytic activity on the bacterial production of aldehydes,
which in turn increases the genotoxic effect [21].

Some evidence supports the potentially harmful effect of other protein fermentation
products. Hydrogen sulfide promotes both inflammation and the proliferation of CRC
cells [22,23], 4-hydroxyphenyl-acetic acid is genotoxic, and phenylacetic acid and phenol
exert cytotoxic effects [24].

4. High-Fat Diet, Biliary Acids, and Colorectal Cancer

Recent data further support the tumor-promoting activity of high-fat diets, largely depend-
ing on the complex interactions between the gut microbiota and bile acid metabolism [25,26].

Excess dietary fat stimulates the hepatic synthesis of bile acids, resulting in increased
amounts of bile acids escaping the ileal reabsorption by apical sodium-dependent bile acid
transporter or the ileal bile acid transporter. As a consequence of their deconjugation by
microbial enzymes, the ratio of primary to secondary bile acids entering enterohepatic
cycling and within the colonic lumen is modified [26].

Recent data support the well-known concept that lower levels of bile acids and
7αdehydroxylating bacteria are present in the stool of healthy rural Africans than in those
of healthy African Americans. The latter group consuming a high-fat, low-fiber diet
has a much high prevalence of CRC, compared to the former one, consuming a low-fat,
high-fiber diet [27]. Interestingly, a diet switch leads to lower fecal levels of bile acids and
7α-dehydroxylating bacteria in African Americans, while the opposite is true for rural
Africans, in parallel to an increase of mucosal markers associated with CRC risk [28].

Despite several studies aiming to clarify the tumor-promoting function of bile acids,
including oxidative stress and inflammation, the underlying molecular mechanisms remain
unclear. Multiple mechanisms stimulating CRC cell proliferation have been advocated for
secondary bile acids, including receptor-dependent signaling pathways [29], the activa-
tion of β-catenin cell-signaling, extracellular signal-regulated kinases 1 and 2 (ERK1/2),
signaling via activator protein 1 (AP1) and c-Myelocytomatosis (c-Myc) target pathways [30,31].
An additional CRC pathway activated by secondary bile acids is the nuclear factor kappa
B (NF-κB) pathway [32].
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Recently, the role of farnesoid X receptor (FXR) signaling in gut—liver crosstalk has
been identified as central in the control of intestinal epithelial cell proliferation. FXR de-
ficiency promotes the proliferation of colonic epithelial cells accompanied by a high ex-
pression of cyclin D1 [33] in keeping with the reduced expression of FXR in precancerous
lesions and CRC [34]. Animal studies show that a high-fat diet induces an altered activity
of FXR, correlating with higher numbers of Ki-67+ cells in colonic crypts [35]. The cell cycle
antigen Ki-67 is a nuclear protein associated with cellular proliferation.

5. Fibers and Colorectal Cancer

The observation that the prevalence of CRC increases inversely to the intake of dietary
fiber led in the last decades to extensive investigation on the protective role of fibers,
especially whole grain [4,36]. Similarly, the European Prospective Investigation into Cancer
and Nutrition (EPIC) study documented a 40% reduction in CRC risk in the highest quintile
of fiber intake compared with the lowest [5].

This has also been recently confirmed by an update of the National Institutes of Health
and American Association of Retired Persons (NIH-AARP) Diet and Health Study [37],
following more than 10,000 participants over 15 years. The study confirms that the intake of
whole grains, but not dietary fiber from other origins, is inversely associated with CRC risk.
Participants in the highest quintile of intake of whole grains had a 16% lower risk of CRC
compared with those in the lowest quintile [37]. This study also strongly suggests that the
protective effect depends on the whole grain-containing food, in which other constituents
(e.g., folate) are present, more than the fiber content. This important point was previously
undefined [38].

The chemoprotective effect of fibers in different colonic segments however seems to
vary with food source [39]. Similar partially conflicting conclusions have also been drawn
for the inverse association between fibers and adenoma [40,41].

Several mechanisms have been suggested to explain how dietary fiber may reduce
CRC, ranging from dilution of carcinogens in larger amounts of stool resulting from the
ingestion of non-fermentable fiber, to highly sophisticated intracellular metabolic effects
triggered by fermentation by products [36]. The mere reduction of fecal pH induced by
dietary fiber fermentation decreases the production of bacterial carcinogens deriving from
bile acid metabolism [42]. Intraluminal acidification reduces intestinal transit time and
colonocyte exposure to carcinogens, thus representing an additional chemoprotective effect
of dietary fiber [43]. Moreover, it has been reported a higher large bowel intraluminal pH
in patients with CRC compared to healthy controls [44,45], more so when measuring the
pH of the colonic mucosal surface than that of luminal contents [46].

Fiber fermentation by gut microbiota leads to the production of short-chain fatty acids
(SCFA), predominantly acetate, butyrate, and propionate, in a ratio of 3:1:1 [47].

Butyrate, besides representing the main energy source in normal colonocytes, shows a
protective effect on colonic mucosa [48]. Butyrate has anti-inflammatory properties, as it
has been reported a reduction of plasmatic pro-inflammatory cytokines and an increment
of regulatory T-lymphocytes in animal models [49].

Butyrate reduces proliferation and increases differentiation of CRC cells [48].
Furthermore, it has been also reported that butyrate induces apoptosis in CRC

cells [50], acting as a potent histone deacetylase inhibitor and through the activation
of the Fas receptor-mediated extrinsic death pathway [51].

An additional mechanism by which butyrate may determine a protective effect against
CRC is the induction of colonocyte apoptosis, due to the production of cellular reactive
oxygen species (ROS) [52], which determines the release of proapoptotic factors [53].

Of particular interest is the differing behavior of butyrate on normal colonic cell lines
and colon cancer cells. In normal cells, it increases cell weight, increases DNA content,
and increases proliferation and crypt length, with the energy provided. This is in line with
the mucosal anti-inflammatory effect of butyrate reported in ulcerative colitis [54].
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In cancer cells favors the arrest in the G1 phase and differentiation due to a direct
effect on mutated G protein and decreases cloning efficiency and adhesion to laminin [55].
The reduction of cellular proliferation and increase of differentiation of CRC cells has also
been described in small in vivo studies [56].

Other putative beneficial mechanisms of butyrate are represented by the modulation of
micro-RNAs (miRNAs), small non-coding RNA molecules. High butyrate levels reduce the
expression of MYC oncogene, which in turn reduces the levels of the miRNA-17-92 cluster
miRNAs, playing a central role in cellular proliferation, metastasis, and angiogenesis [57].

More recently attention has been paid to the differing effects of different fibers
(e.g., soluble and insoluble) which modulate the composition of the microbiota and influ-
ence the microbial production of butyrate and other intermediate compounds of bacterial
metabolism [58].

Despite the vast amount of evidence deriving from epidemiologic, basic science,
and animal studies, results in humans are still conflicting and largely inconclusive [59,60].

6. Vitamins, Minerals, and Colorectal Cancer

Besides the higher intake of fibers associated with a lower intake of meat, consumption
of fruit and vegetables may reduce the incidence of CRC [61] in relation to their content of
specific micronutrients, such as vitamins and polyphenols [36].

Vitamin C and E showed a direct tumor-suppressing effect on CRC cell lines [62,63].
A negative association has been also reported in a cohort from Shanghai [64] for vitamin
C, and in a Canadian cohort [65] for vitamin E, but not in other studies [66]. The possible
protective effect of these vitamins in CRC is thus debated although the removal of free
radicals counteracts the production of NOCs from nitrites and nitrates [67].

However, several intervention studies did not provide consistent support for an
inverse association between supplemental vitamin E or C, and CRC [68,69]

It has been advocated that vitamin D also reduces the risk of CRC inhibiting neo-
angiogenesis and cellular proliferation, and inducing apoptosis [70,71]. A metanalysis
published in 2005 highlighted the need to identify the required levels to exert this pro-
tective effect [72]. The issue is still unsolved, but very high Vitamin D concentrations are
likely required. In a recent prospective trial on 25,871 men, however, vitamin D supple-
mentation did not reduce the incidence of invasive cancer after a 5.3-year follow-up [73].
Therefore, these data seem to limit the effectiveness of this intervention.

An inverse association with CRC has been also reported for selenium and calcium.
The putative effect of selenium is due to its antioxidant and anti-inflammatory proper-

ties, and upregulation of the glutathione peroxidase 2 [74].
Despite a meta-analysis [75] reported that selenium supplementation is associated

with a reduction in the incidence of CRC, recent studies did not confirm the protective
effect [76,77].

Similar conclusions may be drawn for calcium intake. An old, pooled analysis from
prospective cohorts reported a 22% reduction in CRC incidence in the highest quintile of
dietary calcium intake compared to the lowest quintile [78]. More recent studies did not
confirm a protective role of this mineral [79,80], however, the evidence may be considered
somewhat stronger than for selenium.

Again, the underlying mechanisms are not clear. Calcium possibly acts indirectly,
form soaps that bind secondary bile acids and fatty acids [81], as well as directly, through the
reduction of cell proliferation and inducing apoptosis [70,71]. It has also been reported that
calcium may also contrast the cytotoxic effect of heme iron on the colonic mucosa [82].

Other putative mechanisms involve modulation of the expression of transforming
growth factor-alpha and beta 1 [83] and the expression of the b-catenin gene [84].

Among the most relevant microbial metabolites having a protective effect against CRC,
strong evidence is reported on niacin. It suppresses inflammation and tumor progression
acting both on macrophages and dendritic cells, as well as promoting differentiation of
Treg and IL-10-producing T cells [85].
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7. Gut Microbiota and Colorectal Cancer

The role of gut microbiota in the development of CRC through specific biochemical
pathways is becoming increasingly evident [86,87]. Microbes produce toxic metabolites or
carcinogenic products [88]. Moreover, other products of bacterial metabolism may exert an
indirect effect, as lactate that represents the prevalent energy source in CRC cells [89,90].

Similarly, bacterial toxins such as the enterotoxigenic one produced by Bacteroides fragilis
play a central role in CRC development through several mechanisms such as the activation
of β-catenin signaling, the cleavage of E-cadherin, and the induction of NF-κB pathway [91].
Similar pathways are also activated by Fusobacterium nucleatum and Escherichia coli [92,93].

However, the relationship between noxious bacterial species and CRC is probably
bidirectional, as it has been recently reported that after CRC treatment the gut microbiota
changes, becoming more similar to that of patients with a normal colon [94].

Conversely, as previously mentioned, some bacterial metabolites such as SCFA or
niacin have protective effects against CRC. Nonetheless, the specific role of most mi-
crobial metabolites remains unclear or displays differing effects in different conditions.
Succinate, for example, has been shown to inhibit CRC cell proliferation in some stud-
ies [95], while others suggest that succinate can promote metastasis [96].

Further complicating the interplay between host and microbiota, most bacterial
metabolites are not produced by individual species. End-metabolic compounds deriving
from the metabolism of some bacteria, represent intermediate metabolites for others.
For example, butyrate is produced by several bacteria distributed across four differ-
ent phyla: Firmicutes, Fusobacteria, Spirochaetes, and Bacteroidetes [97]. At the same time
Roseburia spp. can use acetate, produced by other bacteria, for synthesizing butyrate [98],
while methanogenic Archaea and sulfide-producing bacteria instead reduce or further me-
tabolize butyrate in the colon [99]. These interactions show how the production of microbial
metabolites by helpful/harmful species may not correspond to the concentration acting
on the colonic mucosa, limiting our knowledge on the doses of each bacterial compound
needed to have a beneficial/detrimental effect.

Diet may thus affect CRC risk directly providing helpful or noxious substances,
modifying the intraluminal media, influencing and modulating the abundance and type
of microbial community as well as increasing or reducing the production of specific
metabolites [100]. To further confound the issue, this complex interaction is further mod-
ulated by specific metabolic characteristics and microbial communities that are different
across individuals [101].

Despite the evidence is still conflicting [102,103], recent studies, suggest a possible
positive immunomodulatory effect, as well as an improvement of the gut-barrier activity
induced by several probiotics [104,105].

Further studies are therefore needed to clarify whether specific nutrients exert their
protective or damaging effect directly on the colorectal epithelium or indirectly by inducing
changes in the metabolism of the microbiome (Figure 1).

The rapidly increasing knowledge of the complex crosstalk between the host, gut mi-
crobiome, and microbial metabolites suggests that tailored dietary intervention might
become pivotal in the prevention of several diseases, including CRC.



Nutrients 2021, 13, 143 7 of 13Nutrients 2021, 13, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 1. Schematic representation of the mechanisms of specific dietary components in improving or contrasting the 
carcinogenic processes on large bowel mucosa. ↑: increase; ↓: reduction. 

8. Nutrients, Epigenetics and Colorectal Cancer 
In the last decade, an increasing amount of attention has been focused on the 

connection between gene regulation and CRC. Several nutrients affect gene expression, 
binding transcription factors, or being involved in post-translational modifications, such 
as acetylation and methylation. 

The promotion of intestinal carcinogenesis may be favored by epigenetic 
modifications triggered by red and processed- meat. 

Just one week of a high red meat diet induces the activation of the Nucleosome 
Remodeling and Deacetylase (NuRD) complex involved in methylation-mediated gene 
silencing, in human gut biopsy samples [106]. 

Heme-supplemented diet suppresses Wif1 and BMP2 genes—which antagonize the 
Wnt signaling cascade and promote differentiation of intestinal cells—in mice [11]. 

Heme also binds other transcription factors, including Bach1, promoting histone 
deacetylation, and repressing a subset of p53 target genes, involved in cellular senescence 
[107,108]. Mitotic chromosome alignment during metaphase is also affected by Bach1 
[109]. 

Conversely, the Mediterranean diet exerts a protective effect against CRC mediated 
by DNA methylation of the human runt-related transcription factor 3 (RUNX3) [110]. The 
methylation of apoptosis-related genes following the administration of other nutrients 
like n-3 polyunsaturated fatty acids and fibers, directly or mediated by SCFA and other 
fermentation products, is also protective [111,112]. 

The same proves true for other dietary components, such as polyphenols [113] 
vitamins [114–116], and minerals [116,117] alone or in combination. 

Dietary bioactive compounds influence epigenetic modification of CRC-related 
genes, but additional studies are needed to understand the mechanisms of action of 
putative protective nutrients, as most of the evidence comes from in vitro or animal 
studies. 

Nutritional therapies based on epigenetically active nutrients shall likely represent 
shortly a fruitful research field. 

  

Figure 1. Schematic representation of the mechanisms of specific dietary components in improving or contrasting the
carcinogenic processes on large bowel mucosa. ↑: increase; ↓: reduction.

8. Nutrients, Epigenetics and Colorectal Cancer

In the last decade, an increasing amount of attention has been focused on the connec-
tion between gene regulation and CRC. Several nutrients affect gene expression,
binding transcription factors, or being involved in post-translational modifications, such as
acetylation and methylation.

The promotion of intestinal carcinogenesis may be favored by epigenetic modifications
triggered by red and processed- meat.

Just one week of a high red meat diet induces the activation of the Nucleosome
Remodeling and Deacetylase (NuRD) complex involved in methylation-mediated gene
silencing, in human gut biopsy samples [106].

Heme-supplemented diet suppresses Wif1 and BMP2 genes—which antagonize the
Wnt signaling cascade and promote differentiation of intestinal cells—in mice [11].

Heme also binds other transcription factors, including Bach1, promoting histone deacety-
lation, and repressing a subset of p53 target genes, involved in cellular senescence [107,108].
Mitotic chromosome alignment during metaphase is also affected by Bach1 [109].

Conversely, the Mediterranean diet exerts a protective effect against CRC mediated
by DNA methylation of the human runt-related transcription factor 3 (RUNX3) [110].
The methylation of apoptosis-related genes following the administration of other nutrients
like n-3 polyunsaturated fatty acids and fibers, directly or mediated by SCFA and other
fermentation products, is also protective [111,112].

The same proves true for other dietary components, such as polyphenols [113] vita-
mins [114–116], and minerals [116,117] alone or in combination.

Dietary bioactive compounds influence epigenetic modification of CRC-related genes,
but additional studies are needed to understand the mechanisms of action of putative
protective nutrients, as most of the evidence comes from in vitro or animal studies.

Nutritional therapies based on epigenetically active nutrients shall likely represent
shortly a fruitful research field.

9. Conclusions

The latest WCRF/AICR report assesses that CRC primary prevention mainly consists
of a healthy diet and a physically active lifestyle. A strong relationship between diet and
the development of CRC is widely accepted (Figure 1). Consumption of whole grains,
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dietary fiber, and dairy products is protective, which is the opposite to the consumption of
red and processed meat, and fat-rich diets. Some evidence indicates that consuming foods
containing vitamin C, E, and D as well as some minerals (e.g., calcium and selenium) might
decrease the risk of CRC [4]. However, studies on incidence and mortality are challenging,
due to the sample size and duration of randomized trials required to test the effect of
dietary intervention. Moreover, since specific nutrients are not consumed in isolation,
but as part of dietary patterns, and dietary components interact with each other, the actual
effect of diet on CRC risk may become apparent only when individual components are
considered as a whole. Thus, which type of whole diets proves of real benefit is still largely
undefined. More so for recommended doses of individual foodstuffs.

Due to the time required for the development of CRC, most hypotheses deriving from
in vitro or animal studies, have been tested in humans as polyp prevention trials, in which
the colorectal polyps are used as a biomarker of CRC risk. This strategy, however, might not
be fully satisfactory.

Despite the complex interplay with the dietary pattern, the microbiome is recognized
as central in the development of CRC, but current knowledge is only the tip of the iceberg
and dietary recommendations aiming to select or inhibit individual phyla or bacterial
strains are presently out of reach.

Epigenetic modifications induced by specific nutrients or microbial metabolites are a
new and promising research area that could significantly contribute to unravel the complex
colorectal carcinogenetic process.

Current dietary advice is aimed at limiting unhealthy, fat- and protein-rich Western
diets, in favor of increased consumption of fruit, vegetables, and cereals, or the so-called
Mediterranean diet.

Diet, however, is the expression of complex cultural interactions and is rapidly evolving.
There is an important variation in trends of colorectal cancer incidence worldwide which
were found to be related to the dietary habits of each country [118]. Nowadays, the so-called
Mediterranean diet markedly differs from that of a few decades ago. This is evidenced by
the increasingly frequent habit of following a high-calorie, high-fat, almost fibreless diet in
most of the urban areas of countries that traditionally followed the Mediterranean diet.

Food is a significant part of the culture of humans and is central to life and well-being.
Local dietary habits should always be considered and suggesting just one healthy diet to
different populations would likely lead to low adherence and unsatisfactory performance
in the prevention of CRC. However, the application of legislative and educational measures
promoting a healthy diet has become an urgent issue to stop the increasing tendency
of colorectal cancer reported worldwide [118]. Future recommendations shall likely be
tailored to individual patients, considering genetic and cultural backgrounds, as well as
individual risk factors, the interaction between nutrients and a patient’s specific microbiota.
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