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Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury stud-
ies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of 
Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon 
degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired 
disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration 
and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) 
and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, 
how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease 
mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant 
activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies 
suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN 
is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits 
axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives 
onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss 
or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
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Introduction

Traumatic injury has long been used to study peripheral 
nerve degeneration and regeneration [1, 2], in part because 
morphological similarities with peripheral neuropathies 
and other nerve disorders suggested similar mechanisms 
and the potential to inform therapies [3]. More recently, the 
advent of molecular biology and the use of spontaneous and 

induced mutants in mice and other species have revealed 
similar molecular mechanisms underlying injury and dis-
ease. The central theme of this review is that both the axon-
intrinsic degeneration mechanism after nerve injury and the 
Schwann cell response leading to nerve repair have been 
revealed mostly by nerve injury and genetic modification  
studies but are proving highly relevant also in peripheral 
nerve disorders, including many that do not involve traumatic  
injury. Good drug targets and genetic therapies have emerged 
in both fields that promise to underlie future advances in the 
treatment of peripheral neuropathies.

A transected nerve degenerates by Wallerian degeneration 
[2]. For the first 150 years after Wallerian degeneration was 
first described, we knew very little of its molecular mecha-
nism, but in the last 20 years, this has changed dramatically. 
Lubinska in the 1970s and early 1980s had moved beyond 
Waller’s original concept that injured axons die passively 

 *	 Peter Arthur‑Farraj 
	 pja47@cam.ac.uk

 *	 Michael P. Coleman 
	 mc469@cam.ac.uk

1	 Department of Clinical Neurosciences, John Van Geest 
Centre for Brain Repair, University of Cambridge, Robinson 
Way, Cambridge CB2 0PY, UK

/ Published online: 30 September 2021

Neurotherapeutics (2021) 18:2200–2221

http://orcid.org/0000-0002-1239-9392
http://crossmark.crossref.org/dialog/?doi=10.1007/s13311-021-01125-3&domain=pdf


because they lack “nourishment” by the soma, suggesting 
instead a specific, soma-derived inhibitor of axon degenera-
tion and of the Schwann cell response. She proposed that 
this inhibitor is delivered by anterograde axonal transport 
and becomes depleted distal to a site of injury [4, 5]. Today, 
the best known match for this inhibitor is NAD-synthesizing 
enzyme nicotinamide mononucleotide adenylyltransferase 
2 (NMNAT2) [6], because it is essential for axon growth 
and survival [7], quickly depleted distal to an axon injury 
[6] and functionally similar to a much more stable, aberrant 
fusion protein that strongly delays Wallerian degeneration 
[8]. Further understanding of the degenerative mechanism 
that NMNAT2 blocks has been largely driven by Drosophila 
genetics followed by confirmation in mammals [9–11]. It 
seems Wallerian degeneration is a remarkably well-conserved 
process involving enzymes that are functionally interchange-
able between mammals and flies. The central execution step 
involves Toll-like receptor (TLR) adapter protein sterile alpha 
and TIR motif containing protein 1 (SARM1) [10], which 
has unexpected, intrinsic NADase and other enzyme activities 
required for its prodegenerative role [12]. The existence of a 
protein whose activated form kills axons but which is inhib-
ited in healthy axons through the actions of other proteins has 
led to the concept of a programmed axon death mechanism 
(Fig. 1) that underlies both Wallerian degeneration after nerve 
injury and axon loss in a wide range of inherited, toxic and 
metabolic disorders.

Ramon y Cajal demonstrated the regenerative ability 
of peripheral nerves and postulated that it was likely some 
property of the distal stump that attracted axons to regener-
ate through it. Cajal further described in great detail the 
fragmentation of myelin sheaths, Schwann cell proliferation 
and lateral infiltration of Schwann cell tubes with haema-
togenous macrophages [1]. Progress was made in the 1960s 
with the application of electron microscopy, which allowed 
detailed visualisation of the cellular events that occur after 
nerve injury. However, up until the last two decades, there 
has been much debate over three questions. Firstly, do 
Schwann cells actively respond to nerve injury through a 
controlled molecular mechanism or do they passively revert 
to an immature phenotype when they lose axonal-derived 
differentiation signals following axon degeneration? Sec-
ondly, do Schwann cells contribute to myelin clearance or 
is all myelin and axonal debris removed by macrophages and 
other immune cells? Thirdly, how important are Schwann 
cells for axon regeneration and functional nerve repair? 
Through use of mouse conditional knockout technology, 
we now know that Schwann cells actively respond to nerve 
injury and this process is regulated by a number of genes, 
but expression of the transcription factor c-JUN is crucial 
[13, 14] (Fig. 1). We also know that Schwann cells do not 
revert to an immature phenotype after injury but are instead 
reprogrammed to an injury specialised cellular state, termed, 

repair Schwann cells [13, 15]. Repair Schwann cells use a 
form of macroautophagy, termed myelinophagy to clear 
myelin debris after injury, alongside myelin clearance by 
haematogenous macrophages [16, 17]. Finally, if repair 
Schwann cell formation is disrupted, then sensory and motor 
axon regeneration is significantly slowed, a substantial pro-
portion of neurons die and the PNS repair process is perma-
nently arrested [13].

In the last decade, there have been substantial advances in 
the understanding of the cellular and molecular mechanisms 
that govern axon degeneration and the Schwann cell injury 
response. Furthermore, there has been recent progress in 
linking some of these underlying mechanisms to neurologi-
cal disease and to developing therapies to both protect from 
axon loss and to promote axons to regenerate once they have 
been damaged. In this review, we will highlight the current 
understanding of the signals that govern the axon intrinsic 
mechanism of degeneration and the Schwann cell response 
to PNS injury and repair. This includes what is known from 
studies using rodents, fish and flies about the molecular path-
ways governing axon degeneration, those regulating repair 
Schwann cells, demyelination and the axon extrinsic mecha-
nisms of regeneration. We will not discuss the axon intrinsic 
mechanisms of regeneration, which are reviewed elsewhere 
[18–20]. It is important to remember that many additional 
cell types play significant roles in PNS injury and repair 
too, including cells of the innate and adaptive immunity, 
satellite glia in the dorsal root ganglion (DRG), perineurial 
glia, endoneurial fibroblasts/tactocytes and endothelial cells. 
These topics are beyond the scope of this review and are 
discussed in detail elsewhere [21–26]. We will then com-
ment upon recent research linking genes involved in regu-
lating axon degeneration and repair Schwann cells to PNS 
diseases. Finally, we will discuss the current translation of 
these fundamental biological mechanisms into therapies to 
both protect against axon loss and promote axon regrowth in 
the diseased or injured PNS, and some immediate, outstand-
ing questions for these fields to answer.

Basic Biology of Injury‑Induced Axon 
Degeneration

Today’s detailed knowledge of the molecular mechanism of 
programmed axon death stems from the discovery in 1989 
of an overtly normal strain of mice in which a spontaneous 
mutation delayed the axon degeneration distal to a nerve 
injury by tenfold [27]. Instead of the normal latent phase 
of around 36 h, during which substantial Schwann cell 
morphological responses discussed below begin, the distal 
stump remains intact for 2–3 weeks [28]. Both PNS and 
CNS axons of these Wallerian degeneration slow (WLDS 
mice are protected; they remain functionally competent for 
much of their extended survival time if an action potential 
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is artificially evoked in the distal stump [8, 27], and the 
molecular mechanism is clearly distinct from programmed 
cell death by apoptosis [29, 30]. However, the principle of 
a self-destructive mechanism blocked by upstream regula-
tors and activated by multiple, diverse stimuli does indeed 
mirror that of apoptosis. Why it should be evolutionarily 
beneficial to have a self-destruct mechanism for rapid axon 
loss remains unclear but possible explanations including 
preventing spread of pathogens around the nervous system 

by axonal transport [31] and promoting subsequent nerve 
repair. This seems consistent with the slower degeneration  
in the mammalian CNS, although there are indications that this 
mostly reflects slower removal of myelin debris [32], while  
axon degeneration itself is only marginally slower [33].

The discovery that the WLDS mutant gene encodes an 
NAD synthesising enzyme [8] of the NMNAT family that is 
partially targeted into axons [34] began a series of findings, 
still going on today, of how closely axon survival is linked 

Fig. 1   Overview of the molecular mechanisms within the axon and 
the Schwann cell during Wallerian degeneration. Upon nerve transec-
tion, the axonal transport of NMNAT2 is interrupted, and NMNAT2 
already present in axons is degraded in a PHR1- and proteasome-
dependent manner. Conversion of NMN to NAD by NMNAT2 is 
halted so NMN builds up inside the axon. NMN binds the SARM1 
octamer, causing a conformational change and its activation. SARM1 
activity generates cyclic ADP-ribose (cADPR) from NAD but also 
other products from nicotinamide adenine dinucleotide phosphate 
(NADP) and other substrates, such as nicotinic acid adenine dinucleo-
tide phosphate (NaADP) and 2′-phospho-cyclic ADP-ribose (cAD- 
PRP). It is incompletely understood how SARM1 activation leads to 
further downstream steps in the axonal degeneration pathway, such 
as calcium release,  ROS generation, ATP decline and the role of the 
molecule Axundead. The timings of the activation of the molecular 
pathways involved in the Schwann cell injury response in relation to 
those that regulate the axon degeneration machinery have not been 
fully delineated. It is likely that the majority of the Schwann cell 
injury response occurs during or slightly after axon degeneration has 

been executed. During axon degeneration, placental growth factor 
(Plgf) is released from axons and activates VEGF receptors leading to 
constriction of actin filaments in the Schwann cell, which helps break 
up axon fragments. It is possible that mTORC1 activation contributes 
to this process. Within the nucleus, c-JUN upregulation mediates a 
substantial amount of the Schwann cell response to nerve injury, 
especially repair program gene expression, cell shape change forming 
repair Schwann cells, upregulation of myelinophagy to aid in myelin 
sheath removal and repression of the myelin program through inhibi-
tion of Krox-20 function. Other pathways that aid myelin clearance 
include calcineurin, MEK-ERK, Notch and P38 MAPKinase pathway 
activation, though their full mechanism is not completely understood. 
Furthermore, TAM receptor phagocytosis also contributes to myelin 
clearance. Within the nucleus, both OCT6 and HDAC1/2 repress 
c-JUN function and the polycomb repressive complex 2 (PRC2) 
represses a number of other repair program genes. Broken lines with 
question marks highlight a hypothetical association or an unknown 
quality. Created with BioRender.com
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to NAD-related metabolism (Fig. 1). Overexpression of 
other NMNAT isoforms was found to protect injured axons 
too, at least if these are axonally targeted and sufficiently 
stable [35–38]. However, when endogenous NMNATs are 
removed, the only one whose loss causes an axonal pheno-
type is NMNAT2 [7, 39, 40] ([41] p. 3).

The remarkable finding that murine WLDS protects 
injured axons when ectopically expressed in Drosophila 
validated the use of Drosophila as an experimental organism 
for further genetic analysis [42, 43]. This led to the identifi-
cation of dSarm, the Drosophila orthologue of SARM1, as 
a protein required for injured axons to undergo rapid axon 
degeneration, and confirmation that mammalian SARM1 is 
also an essential effector of Wallerian degeneration [10]. 
An RNAi-based screen in mouse neurons subsequently con- 
firmed this finding [44], and further research revealed an 
unexpected NAD degrading enzyme activity of SARM1 [12,  
45]. SARM1 is also an nicotinamide adenine dinucleotide 
phosphate glycohydrolase (NADPase) and has base exchange 
activities that are sometimes even dominant over its NADase 
activity [46, 47]. Any one of these activities could drive 
or contribute to axon degeneration, although most attention 
has so far focussed on NADase. NMNAT2 was found to 
be a upstream negative regulator of SARM1, in fact Sarm1 
deletion in mice completely rescues the otherwise perinatal 
lethal Nmnat2 null phenotype in which long axons fail to 
grow [48, 49]. This, and a similar, recent finding of complete 
protection by Sarm1 deletion from a neurotoxin [50, 51],  
shows the full protective capacity that could be achieved by 
effective targeting of SARM1, at least in disorders where 
programmed axon death is activated very specifically.

Considerable recent progress has begun to reveal how 
NMNAT2 holds the SARM1 enzyme activity at basal levels. 
Loss of NMNAT2 from injured axons leads to accumulation 
of its substrate, NMN, which was found to promote axon 
degeneration [52]. Sequestering NMN using an ectopically 
expressed bacterial enzyme, NMN deamidase, is highly pro-
tective [53]. For several years, this led to competing hypoth-
eses regarding whether axons die from NAD depletion or 
from accumulation of its precursor NMN to toxic levels [54] 
until these were unified by the exciting discovery that NMN 
is an activator of SARM1 NADase [47] (Fig. 1). Thus, accu-
mulation of NMN after NMNAT2 loss does not just accom-
pany NAD depletion due to loss of its synthetic enzyme; 
it actually drives NAD depletion even faster by increasing 
NAD degradation. In the latest developments, NAD has been 
found to oppose the activating effect of NMN through bind-
ing of the same allosteric site in the inhibitory ARM domain, 
countering one another at physiological levels of each [46, 
55]. Another, more potent activator has also been identi-
fied [50, 51]. Vacor mononucleotide (VMN), an analogue 
of NMN and a metabolic product of the disused neurotoxin 
vacor, was found to bind and activate SARM1 with around 

twice the potency of NMN, killing neurons and their axons, 
suggesting this is the likely basis of vacor toxicity [56]. With 
all three structures now available [50, 51, 55, 57], these find-
ings greatly facilitate rational drug design targeting SARM1 
regulation.

Some additional progress has been made upstream of 
NMNAT2 and downstream of SARM1. NMNAT2 is tar-
geted to axonal transport vesicles by palmitoylation, which 
unexpectedly lowers its stability and its capacity to pro-
tect injured axons [35, 36]. A partial explanation is that 
NMNAT2 also exists in a separate, soluble pool [35, 36, 58] 
and that turnover of the vesicular and soluble proteins is reg-
ulated by different proteins. The MYCBP2(PHR1)/FBXO45/
SKP1A ubiquitin ligase complex regulates turnover of the 
vesicular form, and kinases DLK and LZK regulate the half-
life of the soluble form. Interestingly, inhibition of these 
proteins, or corresponding gene deletion, is also protective 
[9, 59]. Stathmin-2 (STMN2) has an as-yet undefined role as 
another, albeit weaker inhibitor of programmed axon death 
[60] which may be important in the context of ALS (see 
below). Its many similarities to NMNAT2, including being 
targeted by palmitoylation to the same vesicle population 
and being turned over by the same enzymes [58], suggest 
this is the most likely point at which it impacts the pathway, 
although this remains to be determined.

Downstream of SARM1, the loss of NAD, and subse-
quently of ATP, is not the only important consequence. The 
loss of NADP, and consequently of NADPH, is likely to 
limit the capacity for reactive oxygen species (ROS) buffer-
ing, especially as SARM1 NADPase is also activated by 
NMN [46], and there is SARM1-dependent accumulation of 
calcium [61] that may drive degeneration through calpains 
[62], likely due to the several calcium mobilising products 
of NAD cyclisation and base exchange (Fig. 1). The Dros-
ophila protein Axundead also has a poorly understood but 
essential role downstream of dSarm [63] that may yet fit with 
any of these mechanisms (Fig. 1).

The Schwann Cell Response to Nerve Injury

Myelinating and non-myelinating Schwann cells have major 
roles in both the degeneration and regeneration phase of 
nerve injury. Schwann cells react early to nerve injury with 
changes in gene expression; however, it is still not clear 
whether these changes occur before or at the time of axon 
degeneration [14, 64]. Several studies, conducted first in 
zebrafish and later in mice, have shown that Schwann cells 
participate in the breakup of the axon during the process 
of axon degeneration [65–70]. This process involves the 
formation of constricting actomyosin spheres and partially 
requires placental growth factor signalling from the axon, 
the vascular endothelial growth factor receptor (VEGFR) on 
Schwann cells, activation of mechanistic target of rapamycin 
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(mTOR) and potentially calcineurin B in Schwann cells [65, 
69, 71, 72]. Furthermore, it has recently been shown that 
Schwann cells upregulate glycolysis after injury and that this 
process may actually help to protect axons for a short period 
after injury prior to axon degeneration [65].

During or slightly after the process of axon degenera-
tion, though the exact timing is still unknown, Schwann 
cells undergo a remarkable biochemical and morphologi-
cal transformation into repair Schwann cells [13–15]. This 
conversion can be described as a reversible injury-induced 
change of cellular state, termed adaptive cellular repro-
gramming. This is similar to other adult mammalian cel-
lular responses to injury, such as fibroblast to myofibroblast 
conversion in wound healing, as well as the PNS neuronal 
upregulation of an axon regeneration program [73]. As part 
of this transition, repair Schwann cells ingest a propor-
tion of their own myelin sheaths using a form of macroau-
tophagy, termed myelinophagy [17]. Lipidated LC3 (LC3-
II), a marker of autophagosomes, is strongly expressed 
in demyelinating Schwann cells, in vitro and in vivo, in 
addition to many autophagy machinery genes, such as 
Atg7. When Atg7 is specifically inactivated in Schwann 
cells, autophagy and thus myelin clearance after nerve 
injury is significantly perturbed [17, 74, 75]. Additionally, 
Schwann cells also use phagocytosis through TAM recep-
tors and the necroptosis pathway to clear myelin debris [74, 
76] (Fig. 1). The formation of repair Schwann cells also 
involves substantial morphological changes to myelinat-
ing and non-myelinating Schwann cells transforming into 
vastly longer, bipolar, branched repair Schwann cells that 
partially overlap with neighbouring cells within their basal 
lamina tubes, forming the bands of Büngner [15]. Correct 
formation of the bands of Büngner likely underlies efficient 
axon regeneration [13]. This potentially explains why PNS 
regeneration is more efficient after nerve crush compared to 
a full nerve transection as a crush injury maintains continu-
ity of the Schwann cell basal lamina tubes between proxi-
mal and distal sites [77]. On the contrary, when a nerve 
is fully transected a multicellular bridge is formed from 
Schwann cells, fibroblasts, perineurial cells, blood vessels, 
macrophages and regenerating axons [22]. A number of 
factors have specific roles in modulating the Schwann cell 
phenotype specifically in the nerve bridge,these include 
SOX2, TGFβ1, Robo signalling and ephrin-B/EphB2 sig-
nalling. These are reviewed elsewhere [22, 78].

Repair Schwann cell formation involves large-scale 
changes in gene expression. Genes involved in myelin dif-
ferentiation are suppressed, and instead there is upregula-
tion of genes involved in a repair program [79]. The repair 
program broadly comprises of (1) re-expression of some 
developmentally expressed genes such as N-cadherin, Sox-
2, c-Jun, p75ngfr and Gfap, which are normally repressed 
in myelinating Schwann cells; (2) expression of cytokines 

and chemokines, such as tumour necrosis factor-α (TNF-
α), interleukin-6 (IL-6), IL-1α/β, leukaemia inhibitory fac-
tor (LIF) and monocyte chemoattractant protein-1/CCL2 
(MCP-1); and (3) upregulation of genes and proteins that 
are important in promoting axon guidance and neuron sur-
vival, such as GDNF, BDNF, artemin, NT3, sonic hedgehog 
(SHH), semaphorins (e.g. Sema4F) and ephrins (e.g. Epha5) 
in addition to cell adhesion and matrix molecules such as 
integrins (e.g. Itgb2), collagens (e.g. Col18a1) and matrix 
metalloproteins (e.g. Mmp17) [13, 14, 64, 80].

The transition of a myelinating Schwann cell into a repair 
Schwann cell shares many similarities with the process of 
epithelial-mesenchymal transition (EMT) [14]. Myelinating 
Schwann cells represent an epithelial-like cell, since they 
have tight junctions, a basement membrane, cell polarity 
with an adaxonal and abaxonal membrane and express epi-
thelial proteins such as E-cadherin, claudin-19, occludin and 
the polarity protein, PAR3 [81–85]. Their injury induced 
conversion into repair cells involves the formation of a more 
motile, proliferative and invasive cellular state, similar to 
cells of mesenchymal origin and express a number of EMT-
enriched genes such as vimentin, snail, Tgf-β1, Wt1, Met, 
Hmga2, mir221 and mir222 [64, 86].

Molecular Signals that Regulate Repair Schwann 
Cells, Remyelination and the Non‑cell Autonomous 
Regulation of Axon Regeneration

We will briefly summarise the major transcription factors, 
signalling pathways and epigenetic factors that regulate 
repair Schwann cells, but this topic has been comprehen-
sively reviewed elsewhere [14] (Figs. 1 and 2). The tran-
scription factor, c-JUN, was identified as a central regu-
lator of repair Schwann cells, controlling demyelination/
myelinophagy, expression of many repair program genes, 
such as Shh, Bdnf and Gdnf, axon regeneration, motor and 
sensory neuron survival and functional recovery [13, 17, 87] 
(Fig. 1). C-JUN expression is suppressed in Schwann cells 
in the adult nerve and is strongly upregulated after nerve 
injury [88]. C-JUN acts as an inhibitor of myelination and 
re-myelination, and its timely O-GlcNAcylation is necessary 
to inhibit its activity and promote remyelination of regener-
ated axons [88–90]. Additionally, the POU domain transcrip-
tion factor, OCT-6 is upregulated by Schwann cells after 
injury and appears to repress c-JUN induction and delay 
demyelination and axon regeneration [91] (Fig. 1). Another 
important transcription factor is STAT3 which promotes the 
long-term survival of Schwann cells after nerve injury, in 
addition to maintaining the expression of c-JUN and other 
repair program genes [92].

The transcription factor ZEB2 and two transcriptional 
activators of the Hippo signalling pathway, YAP and TAZ, 
are required for Schwann cell remyelination after injury but 
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not for the initial formation of repair Schwann cells, myelin 
clearance or c-JUN upregulation (Fig. 2). ZEB2-deficient 
Schwann cells fail to remyelinate, and it is postulated that 
this is due to maintained expression of myelination inhibi-
tors, such as Sox2, Hey2 and Id2. While it is uncertain 
whether physiological levels of YAP/TAZ directly regulate 
c-JUN in Schwann cells, in vivo, YAP/TAZ does appear 
to be required for eventual c-JUN downregulation during 
remyelination [93–96]. Furthermore, the tumour suppres- 
sor protein, merlin, is important for timely c-JUN upregula-
tion though not for demyelination and is crucial for adequate 
axonal regeneration and proper remyelination after injury. 
In the absence of merlin, YAP is aberrantly overexpressed 
after nerve injury, and deletion of Yap is sufficient to rescue 
the regenerative deficit in merlin null mice [97].

Epigenetic factors such as chromatin remodelling 
enzymes, non-coding RNAs and DNA methylation also 
regulate the Schwann cell injury phenotype [14, 98]. Nerve 

injury induces demethylation of the repressive histone 
mark, H3K27 trimethylation, at enhancers of a number of 
repair program genes (Fig. 1). Importantly activity of the 
histone demethylases, KDM6B/KDM6A, appears not to be  
involved [99, 100]. Concurrently, repair program gene pro-
moters gain the active H3K4 methylation mark, which is 
also postulated to drive their expression [101]. The poly-
comb repressive complex 2 (PRC2) acts as a histone meth-
yltransferase and is responsible for repressing expression 
of a number of Schwann cell injury genes such as Fgf5, 
Shh, Sema4f, EphA5, Olig1, Runx2, Nrg1 and Mmp17, likely 
through H3K27 trimethylation [102] (Fig. 1). Deletion of 
the Eed subunit of PRC2 in Schwann cells leads to aber-
rant upregulation of a subset of repair program genes in the 
uninjured state and early after injury. However, Eed appears 
to be largely dispensable for repair Schwann cell formation, 
since demyelination, c-JUN expression and remyelination 
are normal, and there is only a temporary delay in axonal 

Fig. 2   Overview of the molecular mechanisms of Schwann cell remy-
elination. Schwann cell remyelination is promoted by axonal signals 
centred around NRG1 type III and basal lamina signalling via the 
g-protein coupled receptor, GPR126, similar to myelination during 
development. One distinct molecular difference from development 
is that Schwann cell derived soluble NRG1 type I also contributes 
to remyelination. Certainly macroscopically, remyelination leads to 
thinner myelin sheaths and shorter internodal distances compared to 

developmental myelination. C-JUN is an inhibitor of remyelination 
and OGT, through direct O-GlcNAcylation, represses c-JUN function 
to allow remyelination to proceed. YAP/TAZ is required for remyeli-
nation, in addition to other important regulators of myelination, such 
as CTCF,  ZEB2, HDAC1/2 and HDAC3. SLI = Schmidt-Lanterman 
incisure. Broken lines with question marks highlight a hypothetical 
association or an unknown quality. Created with BioRender.com
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regeneration, in its absence [102]. These findings suggest 
that H3K27 demethylation of enhancers may work in paral-
lel with upregulation of c-JUN-dependent genes in Schwann 
cells after nerve injury.

The chromatin remodelling enzymes, histone deacety-
lases (HDACs) have been shown to have several roles in 
Schwann cells after injury. Deletion of Hdac1/2 in Schwann 
cells leads to accelerated myelin clearance and axon regen-
eration but impaired remyelination, whereas Hdac3 dele-
tion has no effect on demyelination or regeneration but leads 
to exaggerated remyelination [91, 103]. Hdac 1/2 deletion 
impairs OCT-6 upregulation after injury and causes exag-
gerated levels of c-JUN expression, which may explain  
why there is faster demyelination and axon regeneration  
[91] (Fig. 1). HDAC2 has been shown to de-acetylate eukar-
yotic translation elongation factor 1 alpha 1 (eEF1A1), inac-
tivating its ability to shuttle SOX10 out of the nucleus, thus 
allowing remyelination to proceed [104] (Fig. 1). HDAC4 
is known to supress expression of c-JUN in Schwann cells 
in development, but it’s function has not yet been studied 
after nerve injury [105]. Additionally, the CCCTC-bind-
ing factor (CTCF) has recently been shown to be crucial 
for both PNS myelination and remyelination after injury, 
likely through modifying the chromatin accessibility of 
myelin gene promoters and enhancers, in particular, Krox-
20 [230]. MicroRNAs appear to help repress the expres-
sion of some repair program genes during development and 
also promote remyelination [106, 107], whereas the role of 
long non-coding RNAs remains largely unknown [14, 231]. 
Finally, there are no global changes in the DNA methylome 
after nerve injury arguing against a major role for CpG meth-
ylation in regulating the repair cell phenotype. It is unknown 
whether DNA hydroxymethylation or hemimethylation play  
roles in Schwann cells however [64, 108].

A number of signalling pathways are activated in 
Schwann cells soon after injury [14]. The mTOR path- 
way is activated rapidly after nerve trauma, and, condi- 
tional removal of mTORC1 in Schwann cells leads to a 
delay in demyelination, slower c-JUN upregulation and 
impaired upregulation of glycolysis [65, 109] (Fig. 1). The 
Notch pathway has a major role in controlling the rate of 
demyelination in injured nerves though it remains unknown 
whether it regulates repair Schwann cell formation, c-JUN 
expression and axon regeneration [110] (Fig. 1). The Raf-
MEK-ERK mitogen-activated protein kinase pathway 
(MAPK) is important in regulating cytokine and chemokine 
expression by Schwann cells, macrophage influx into the 
nerve, demyelination after injury and may also play a role in 
regulating blood-nerve barrier integrity, in addition to axon 
regeneration rates [111–114] (Fig. 1). It remains uncertain 
whether the Raf-MEK-ERK pathway works in parallel to or 
mainly upstream of c-JUN controlled events within repair 
Schwann cells. Furthermore, ERK1/2 also has differing 

roles in myelination and remyelination, which is reviewed 
in more detail elsewhere [14]. The p38MAPK and c-Jun-
N-terminal kinase (JNK) pathways are also both activated 
after nerve injury [88, 115] (Fig. 1). Inactivation of p38α, 
the major p38MAPK isoform expressed in the PNS, demon-
strated slower myelin clearance after injury but no effect on 
macrophage influx or axonal regeneration, whereas the role 
of the JNK pathway in Schwann cells in vivo has not been 
studied yet [116]. Additionally, Schwann cell RalGTPases 
have been shown to regulate remyelination and motor neuron 
reinnervation and calcineurin B has recently been shown to 
regulate myelinophagy, independently of c-JUN expression 
[72, 117].

Neuregulin-1 (NRG-1) has 15 different isoforms and 
multifaceted roles in PNS development and repair [118]. 
Membrane bound NRG-1 type III is expressed on axons, 
though Schwann cells upregulate expression of NRG-1 
type I after injury [119, 120]. Axonal NRG-1 and the erbB 
receptor complex expressed on Schwann cells appear largely 
dispensable for demyelination and repair Schwann cell for-
mation [121–123]. Axonal NRG-1 and Schwann cell erbB 
signalling does play a role in influencing the rate of axonal 
regeneration, and both axonal NRG-1 type III and Schwann 
cell produced NRG-1 type I regulate remyelination after 
nerve injury [120, 122–124] (Fig. 2). Additionally, the trans-
membrane protease, BACE1, which cleaves NRG1, and the 
ERBB2 binding protein, Erbin, are both required for proper 
Schwann cell remyelination  [125, 126]. The g-protein 
coupled receptor GPR126, expressed in Schwann cells, is 
important for both myelination and remyelination (Fig. 2). 
It also regulates, non-cell autonomously, macrophage influx 
into the injured nerve, axonal regeneration and terminal 
Schwann cell morphology as well as reinnervation of the 
neuromuscular junction, though its function in nerve injury 
does not require its prion protein ligand [127–129, 232]. 
GPR126 is dispensable for c-JUN upregulation and repair 
Schwann cell formation, however [128]. Schwann cells  
also upregulate many extracellular matrix (ECM) proteins 
and neurotrophic factors after nerve injury [130, 131]. 
Laminins, collagens, fibronectin and tenascins are all 
expressed by repair Schwann cells [131, 132]. Deletion of 
laminin γ1, Col18a1 and tenascin C in the PNS all lead to 
defective axon regeneration [133–135]. Interestingly, post-
translational modification of collagen by lysyl-hydroxylase 
3 in Schwann cells in zebrafish underlies target selective 
regeneration [136].

Repair Schwann cells express a number of neurotro-
phins after injury, these include NGF which binds TrkA and 
p75NGFR receptors; BDNF and NT-4/5 which bind TrkB 
receptors; GDNF and artemin, which bind GDNF receptors; 
and the neuropoietic cytokines, CNTF and LIF, which bind 
their cognate receptors and signal through gp130 [130, 137]. 
Creation of a pan-neurotrophin mouse, which expressed a 
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chimeric neurotrophin under the endogenous BDNF promoter, 
which is only active in repair Schwann cells after injury, 
accelerated motor and sensory axon regeneration [13, 138]. 
Use of NGF blocking antibodies demonstrated no reduction in 
nociceptor regeneration rates but did identify a role for NGF 
in injury-induced collateral sprouting [139–141]. Blocking 
BDNF function after injury led to reduced axon regeneration 
rates and a substantial reduction in myelinated axons num-
bers, however, BDNF haploinsufficiency is sufficient for nor-
mal sensory axon regeneration rates [142, 143]. Importantly, 
regeneration rates of Thy1.1 YFP labelled, sensory axons in 
NT-4/5 heterozygous and homozygous nerve grafts were sub-
stantially reduced [142]. GDNF and artemin are required for 
adequate motor neuron survival and regeneration, in addition 
to promoting the survival and function of a subset of large and 
small fibre DRG neurons [13, 87, 144–146]. Regarding the 
neuropoietic cytokines, CNTF acts as a lesion factor, released 
from myelinating Schwann cells, promoting the survival of 
motor neurons after injury, and LIF promotes the regeneration 
of sensory axons [147]. Finally, there are two additional fac-
tors produced by Schwann cells that have been shown to act in 
a similar way to the neurotrophins, the first is pleiotrophin and 
the other is sonic hedgehog, which promote PNS motor and 
sensory axon regeneration, respectively [13, 106, 148, 149].

Relevance of Molecular Mechanisms 
Regulating Axon Degeneration and Repair 
Schwann Cell for PNS Diseases

A common approach to developing therapies for inherited and 
acquired peripheral nerve disorders is to identify the genetic 
and environmental causes and then find ways to block them. 
Examples of success include over 70 known genes for Charcot- 
Marie-Tooth disease [150] and the neurotoxicity of cancer 
chemotherapeutics such as vincristine, paclitaxel, bortezomib 
and oxaliplatin in chemotherapy-induced peripheral neuropa-
thy [151, 152]. However, fully understanding and preventing 
the mechanisms these genes and toxins activate is more chal-
lenging. The well-characterised programmed axon death path-
way, which can already be blocked, at least in animal models, 
offers an alternative approach of identifying specific human 
diseases and patients in which this contributes to axon loss. 
Animal model studies have strongly validated this approach 
[153], and human genetics now provides important opportuni-
ties for translation by identifying and functionally characteris-
ing naturally occurring human mutations in programmed axon 
death genes and testing for association with disease.

Programmed Axon Death and Disease

The concept that degeneration after nerve injury may inform 
us about how axons degenerate in disease dates right back to 

Waller, who wrote of his observations on transected nerves: 
“it is particularly with reference to nervous diseases that it 
will be most desirable to extend these researches” [2]. When 
the discovery of delayed Wallerian degeneration in WldS 
mice raised the prospect of molecular understanding of the 
process in 1989, part of the impetus to identify the underly-
ing genetic cause was a similar thinking, that this could have 
therapeutic implications for non-injury disorders. Indeed, 
the concept that toxins could produce an effective “chemical 
transection” of axons had recently been proposed by Bouldin 
and Cavanagh [154], and if that was their mode of action, 
then the degenerative mechanisms may be similar.

Confirmation that axons can die through the same WldS-
sensitive pathway without physical injury first came in 
experiments with the cancer chemotherapeutics vincristine 
and paclitaxel [155, 156] in cell culture and mouse models 
of chemotherapy-induced peripheral neuropathies. Protec-
tion of axons exposed to these toxins by the WldS mutation 
clearly showed that physical injury was not necessary to acti-
vate this degenerative mechanism, strongly supporting the 
clinical relevance of understanding and blocking it. More 
extensive mechanistic similarities were later indicated by 
observations that Sarm1 deletion also protects axons and 
alleviates the pain responses in these models [157, 158] and 
that axons expressing lower than normal NMNAT2 levels 
show enhanced vulnerability to vincristine [159]. The find-
ings that WldS protects axons and alleviates symptoms in 
models of toxic disorders were quickly followed by reports 
of similar protection in mouse of genetic disorders, such as 
Charcot-Marie-Tooth 1B (CMT1B) involving myelin pro-
tein zero [160] and progressive encephalopathy with distal 
spinal muscular atrophy (SMA) involving biallelic muta-
tion of tubulin chaperone E (TBCE) [161, 162]. Models of 
many other PNS and CNS disorders were also found to be 
alleviated, involving other neurotoxins [163–165], mutations 
[166], metabolic perturbations [51, 158] and non-transecting 
physical forces such as raised intraocular pressure model-
ling a major risk factor for glaucoma [167, 168]. However, 
axons are not or not strongly protected in all disease models 
by blocking programmed axon death, suggesting these are 
predominantly driven by other mechanisms. These include 
SOD1 transgene models of ALS [169, 170], SMA models 
[171, 172] and some other causes of CMT [173]. Full sum-
maries of which models show protective responses are pro-
vided in earlier reviews [153, 174].

The ability to alleviate many disease models by blocking 
programmed axon death indicates that this pathway contributes 
to axon loss in these models, not necessarily as an initiating 
event, nor in isolation from other mechanisms, but at least at 
some level. However, it is also now clear that aberrant activa-
tion of programmed axon death can initiate some axonopathies 
or increase axon vulnerability to stresses that would not nor-
mally kill them. To illustrate this in animal models, Nmnat2 
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null mice fail to grow long axons and consequently die at birth 
with respiratory failure [7, 40]. Mice expressing only 30% as 
much NMNAT2 as C57BL/6 controls have axons that are 
more vulnerable to stresses such as vincristine, mitochondrial 
uncoupling and normal ageing [50, 51, 159]. Importantly, both 
of these mouse genotypes have human counterparts. Biallelic 
NMNAT2 null mutation is associated with a similar, even more 
severe stillbirth phenotype in humans [175]. Partial NMNAT2 
loss-of-function occurs in an inherited polyneuropathy with 
neuropathic pain [176], and NMNAT2 expression level shows 
wide variation in the human population [177]. Taken together 
with the observations in mice, this suggests a spectrum of 
intrinsic axon vulnerability in humans.

Aberrant activation can also occur directly through 
SARM1. In an exciting, recent development, SARM1 gain-
of-function has been shown to be a statistically significant risk  
factor in sporadic ALS and to associate with hereditary spastic 
paraplegia and other motor nerve disorders [178, 179]. Taken 
together, these studies report twelve different missense or 
microdeletion variants in 17 patients, altering the inhibitory, 
N-terminal ARM domain of the protein. All constitutively 
hyperactivate SARM1 basal NADase activity, and at least five 
of them to a level 20-fold higher than the wild-type enzyme 
[179]. Remarkably, this activity in this assay exceeds even that 
of the NMN-activated wild-type protein many times over, rais-
ing important questions about how these individuals survive 
at all, some with age of onset as late as 70 years [179]. Moreo-
ver, their occurrence in sporadic rather than familial cases 
suggests interaction with other risk factors to produce disease. 
Nevertheless, neurons expressing these gain-of-function vari-
ants are more sensitive to stress in primary culture and die 
in vivo [178, 179], further indicating their pathogenic role. It 
will be important now to determine whether SARM1 mediates 
the apparent contribution of STMN2 depletion to ALS [180, 
181] and whether the previously reported GWAS linkage to 
the SARM1 locus on chromosome 17 is mediated by SARM1  
gene expression level [182, 183].

There is also evidence of toxic hyperactivation of SARM1 
in human disease. A downstream metabolite of vacor, a dis-
used rodenticide and nicotinamide analogue, is a potent and 
direct activator of SARM1 that causes SARM1-dependent 
axon and neuronal death [50, 51]. Before vacor was banned, 
individuals who used it in suicide attempts and survived often 
developed widespread neurological deficits and peripheral 
nerve axon loss within hours or days [56]. It is extremely 
likely that SARM1 activation was the major cause of this 
rapid-onset neuropathy. Although these same individuals 
also often developed diabetes, the onset of neuropathy within 
hours suggests it was prior rather than secondary to diabetes, 
although the later may well have sustained the problem.

Table 1 summarises the accumulating evidence of aberrant 
activation of programmed axon death in specific human dis-
eases. Together with the more widespread alleviation of ani-
mal models of peripheral neuropathies, motor nerve disorders 
and other conditions [153, 174], this suggests that blocking 
this pathway will be beneficial in at least a subset of patients 
with activating genetics or environment in multiple disorders.

Repair Schwann Cell Molecular Mechanisms in PNS 
Diseases

While nerve regeneration in lower vertebrates and small mam-
mals is fairly efficient, the regenerative capacity of human 
nerves is much poorer. Less than 50% of patients undergoing 
surgical repairs of injured median or ulnar nerves regain ade-
quate motor or sensory function, in the long term [184]. Fur-
thermore, regenerative functional outcomes deteriorate with 
increasing age above 40 years; a more proximal lesion site, and 
thus increasing regenerative distance; and delaying surgical 
repair for greater than 6 months after trauma [184]. The reason 
for the deterioration in repair capacity of peripheral nerves 
appears to be in large part down to the response of Schwann 
cells [185]. Using nerve grafting experiments in mice, age-
related decline in repair capacity of the PNS was found to 

Table 1   Highlighting the relevance of programmed axon death to human peripheral nerve diseases. For additional summary of animal model 
data, see Conforti et al. [153]

Disease type Details References

Fetal akinesia deformation sequence Stillbirth with complete absence of skeletal muscle, likely of neurogenic origin, and 
hydrocephalus, associated with biallelic null mutation of Nmnat2

[175]

Polyneuropathy with erythromelalgia Distal sensory and motor axon loss, painful episodes of erythromelalgia in distal limbs 
especially following infection, associated with biallelic hypomorphic mutation of Nmnat2

[176]

ALS Late-onset (40–71 y) sporadic ALS, spinal or bulbar onset, often though not always progressing 
quickly. Associated with monoallelic constitutive hyperactivation of SARM1

[178, 179]

Upper and lower motor nerve disorder Middle age onset with unilateral leg weakness and wasting, slowly progressing over 25 y 
with later mild hand weakness and lower limb spasticity. Associated with monoallelic 
constitutive hyperactivation of SARM1

[179]

Vacor neuropathy Rapid onset (2 h-3d) lower limb weakness and numbness, ataxia, areflexia, following vacor 
ingestion. Often associated with additional CNS phenotypes and diabetes. Neurotoxic 
effect completely dependent on SARM1

[50, 51, 56]
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be due to the age of the nerve graft and not the host, suggest-
ing that the Schwann cell and not the neuronal or inflammatory 
cell response was responsible [186]. Aged Schwann cells have 
a reduced capacity to activate myelinophagy and upregulate 
repair program genes, especially the transcription factor c-JUN 
[186, 187]. The regenerative decline after delaying nerve repair 
is also largely due to a loss of regeneration support by repair 
Schwann cells in the distal stump, rather than a reduction in the 
intrinsic neuronal regeneration capacity [187–189]. Chronic 
denervation in mouse and human nerves leads to unfavour-
able changes in Schwann cells, with downregulation of c-JUN 
overtime, leading to senescence and eventually cell death [187, 
190, 191] (Table 2).

The Schwann cell injury response is also activated in 
genetic and acquired neuropathies [199] (Table 2), similar to 
the situation described above for programmed axon death. In 
particular, c-JUN expression has been identified in Schwann 
cells in nerves of patients with a form of inherited neuropathy, 
Charcot-Marie-Tooth disease 1A (CMT1A) and inflamma-
tory neuropathies such as chronic inflammatory demyelinat-
ing polyradiculoneuropathy (CIDP), Guillain-Barré syndrome 
(GBS) and vasculitic neuropathy [192, 193]. Additionally, 
a recent genome wide association study of carpal tunnel 
patients revealed that single nucleotide polymorphisms in 
the Adamts17 gene, which is upregulated by repair Schwann 
cells after injury, appears to confer risk to the development 
of carpal tunnel syndrome, a very commonly occurring com-
pression neuropathy of the median nerve at the wrist [198]. 
The major question arising from all these findings is whether 
a partial Schwann cell injury response in the context of neu-
ropathy is a broadly protective or deleterious reaction?

Interestingly, deletion of c-JUN in Schwann cells in a 
mouse model of CMT1A leads to a more severe phenotype 
with greater sensory axonal loss [197]. This suggests that 

c-JUN is upregulated in Schwann cells partially as a pro-
tective response in the context of neuropathy. Additionally, 
both SOX2 and ID2, two inhibitors of myelin differentiation 
that are also upregulated in repair Schwann cells after injury 
and in the context of neuropathy, appear to play a protective 
role. Deletion of either Sox2 or Id2, specifically in Schwann 
cells, in the mouse model of CMT1B, increases endoplasmic  
reticulum stress markers and worsens the dysmyelination 
phenotype [196]. The idea that Schwann cells utilise a partial 
injury reaction as an initial protective response in neuropathy 
is further exemplified by the role of NRG-1 type I in CMT1A  
[194, 199]. NRG-1 type 1 is upregulated by Schwann cells 
in CMT1A nerves in postnatal development where it helps 
promote myelination and ameliorate the disease phenotype 
[194]. Transgenic overexpression of axonally derived NRG-1 
or supplementation with soluble NRG-1 in early postnatal 
development was sufficient to improve the myelination status 
of axons and compound motor action potentials (CMAPs) 
on neurophysiological testing in CMT1A rodent models 
[195]. However, despite the beneficial effects of NRG-1, 
prolonged Schwann cell NRG-1 type I paracrine signal-
ling in CMT1A actually drives pathological hypermyelina-
tion and onion bulb formation. The Schwann cell specific 
deletion of Nrg1 in a CMT1A mouse model led to a better 
clinical phenotype, with improved neurophysiological and 
neuromuscular function [194]. Thus NRG-1 has a complex 
role in inherited demyelinating neuropathies, but these stud-
ies demonstrate that there may be a therapeutic window for 
exogenous NRG-1 early on in the disease course for genetic  
neuropathies such as CMT1A.

The Schwann cell injury response is also relevant to PNS 
tumours. Dysregulation of crucial pathways that regulate 
repair Schwann cells appears to be important in the forma-
tion of malignant peripheral nerve sheath tumours (MPNST), 

Table 2   Highlighting the relevance of the Schwann cell injury response to peripheral nerve diseases

Disease type Details References

Chronic denervation after 
traumatic injury

c-JUN is downregulated in chronic denervation in mouse and human nerves after traumatic injury. 
This downregulation is correlated with Schwann cell death and regenerative decline

Transgenically augmenting c-JUN levels in mouse nerves in chronic denervation rescues regeneration 
potential

[187, 190, 191]

Inflammatory neuropathies c-JUN is expression is upregulated in Schwann cells in patients with Guillain–Barre syndrome, 
chronic inflammatory demyelinating neuropathy and peripheral nerve vasculitis

[192, 193]

Genetic neuropathies c-JUN is upregulated in Schwann cells in CMT1A patients
Deletion of Schwann cell c-Jun in a CMT1A mouse model worsens the phenotype, suggesting it is 

protective for sensory axons
NRG1 type 1 is upregulated in postnatal nerves of a CMT1A rodent model
Prolonged NRG1 type 1 signalling in a CMT1A mouse model is responsible for onion bulb formation
SOX2 and ID2 are upregulated in Schwann cells in a CMT1B mouse model and modulate ER 

stress

[192, 194–197]

Compression neuropathy A GWAS of patients with carpal tunnel identified Adamsts17 as a risk gene. Adamsts17 is strongly 
upregulated after nerve injury

[198]
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which are highly aggressive and invasive tumours that orig-
inate from the Schwann cell lineage [200]. Interestingly, 
despite repair Schwann cells adopting an EMT-like gene 
signature after nerve injury, lineage tracing studies in mice 
have shown that they remain lineage restricted and are not 
multipotent [14, 201]. This suggests that molecular regula-
tors of repair Schwann cells likely prevent tumour formation. 
In these tumours, the HIPPO-TAZ/YAP pathway is hyper-
activated, PRC2 is inactivated, and there is a complete loss 
of the H3K27 trimethylation mark along with inactivation 
of the Ink4a/Arf locus promoting unrestricted proliferation 
and malignant transformation [202–206]. Thus, deranged 
activation of key pathways and molecular regulators in repair 
Schwann cells plays a central role in tumourigenesis.

Future Treatment Strategies to Protect 
Against Axon Loss and Promote Axon 
Regeneration in the PNS

Therapeutic Opportunities in Programmed Axon 
Death

The ability of NMNAT overexpression or SARM1 deletion 
to delay axon loss and symptoms in animal models of widely 
varying neurological disorders [153, 174] has long suggested 
therapeutic potential if drugs could be developed to mimic 
these effects in patients. While the prospect of enhancing 
NMNAT activity or expression, or the NMNAT2 stabil-
ity, requires some novel approaches to drug discovery, the 
discovery of proteins such as SARM1 and MYCBP2/PHR1 
whose activities are required for axons to degenerate pre-
sents a seemingly more feasible way to block programmed 
axon death using inhibitors [9, 10, 12, 207]. Knockdown of 
SARM1 provides another route to protecting axons [208]. 
The discovery of SARM1’s NADase activity [12] and the 
serine-linked ubiquitylation activity of MCYBP2/PHR1 
[207], together with relevant structural information for each 
protein [207, 209], further increase their attractiveness as 
drug targets. Potential adverse effects of blocking drugs 
include interference with innate immunity for SARM1 and 
axon growth effects for MYCBP2/PHR1, but mouse data 
suggest that with careful targeting and/or timing, these risks 
could be largely avoided. Other points for intervention in the 
pathway include MAPK inhibition [210] and supplementa-
tion with NAD precursors such as nicotinamide [211], nico-
tinamide riboside [212] or nicotinic acid riboside.

A very important question is the degree of axon protec-
tion that may be feasible with such approaches. For some 
years, animal model data suggested this may be partial and 
temporary but applying one single, major stress, such as an 
overexpressed mutant transgene or a high dose of a toxin, 
to genetically homogeneous mice does not represent what 

happens in most human disease. Sporadic disease results 
from a combination of multiple genetic and environmental 
risks, and in patients where genetic or toxic activation of 
programmed axon death is one of these, there is a realistic 
likelihood that by fully removing that risk pharmacologi-
cally, there could be substantial protection. This is particu-
larly demonstrated by the lifelong rescue of the otherwise 
early lethal phenotype of Nmnat2 null mice when SARM1 
is removed [48] and the full rescue of vacor-treated Sarm1 
null neurons [50, 51]. It follows that it will be important 
to identify the specific diseases and patients in whom pro-
grammed axon death is most activated by genetic or toxic 
mechanisms as these are the individuals likely to respond 
best to drugs blocking SARM1 or other pathway compo-
nents. The recent discovery of such genetic or toxic activa-
tion mechanisms [50, 51, 178, 179] are important first steps 
towards this. Additional opportunities arise in disorders such 
as chemotherapy-induced peripheral neuropathies (CIPN) 
where the axonal stress is anyway temporary, so support-
ing axons through this period could allow full prevention or 
recovery [213]. Thus, in CIPN, ALS, rare, inherited poly-
neuropathies or any other disorders in which programmed 
axon death activation is identified, there are good prospects 
for long-term beneficial effects.

Another important consideration is whether SARM1 
would need to be fully inactivated for a protective effect or 
only partially inactivated. When its role in axon degeneration 
was first identified, transected homozygous null axons in 
mouse sciatic nerve were found to survive for 2–3 weeks, but 
those of hemizygous nulls were not protected at 5 days [10].  
Now, however, it has become clear that hemizygosity, and 
similar degrees of knockdown achieved with antisense oligo-
nucleotides, is also partially protective against multiple axon 
stresses including vincristine toxicity and axotomy [213, 
214]. Thus, it is reasonable to expect that partial inhibition 
or silencing of SARM1 in the right patients for the right  
disease could still be profoundly protective.

Therapeutic Opportunities in the Schwann Cell 
Response

There are two substantial problems that need to be addressed 
in order to successfully promote axon regeneration and func-
tional recovery after human traumatic neuropathy. Firstly, 
if a nerve is fully transected, a regeneration gap is formed 
that needs to be bridged either by an autologous nerve graft 
or by an artificial conduit, if a nerve graft is not suitable. 
Secondly, repair Schwann cell numbers decline over time 
in the denervated distal stump, and this adversely affects 
functional outcomes [190, 191, 215]. One way to overcome 
these issues is to culture, expand and transplant a patient’s 
own Schwann cells back into the injured nerve and/or nerve 
graft/conduit. Two cases of young adults with high sciatic 

P. Arthur-Farraj, M. P. Coleman2210



nerve injuries and large regeneration gaps, that normally 
have poor functional outcomes when treated with sural nerve 
graft alone, have been treated with combined autologous 
sural nerve graft and autologous Schwann cell transplant 
with good regenerative outcomes over a 3-year follow up 
period [216]. Thus, autologous Schwann cell transplant may 
afford some promise in improving surgical repair outcomes 
from traumatic neuropathies.

However, use of autologous Schwann cell transplants does 
remain constrained by the fact that the Schwann cell supply 
must come from the patient’s own nerves and that these trans-
planted Schwann cells, similar to endogenous Schwann cells, 
will, once transplanted, still lose repair-promoting potential 
over time and perish. In order to solve the first problem, 
Schwann cells can be cultured directly from human skin 
samples [217], or cell reprogramming technology has been 
used to generate human Schwann cells directly from skin 
fibroblasts [218–221]. The second problem requires boosting  
the repair capacity and/or survival of Schwann cells in the 
injured nerve. One way to achieve this is through neuro-
trophic factor administration. Application of exogenous 
GDNF and BDNF protein to various peripheral nerve exper-
imental animal injury models has generally shown positive 
outcomes. However, this approach, as a treatment strategy in 
patients, is limited as neurotrophins have short half-lives and 
penetrate tissues poorly [222]. Gene therapy can be used to 
abrogate these issues, however, continuous supply of GDNF 
to a regenerating peripheral nerve through lentiviral deliv-
ery results in aberrant sprouting and axon trapping, impair-
ing functional outcomes [223]. Thus delivery of lentiviral 
expressed GDNF using an immune evasive tetracycline 
inducible switch, allowing for a pulsed supply of GDNF to 
the injured nerve, can not only protect motor neurons from 
injury induced death but also promote long range motor 
axon regeneration in a spinal root avulsion model [146].  
The transcription factor c-JUN is another attractive  can-
didate to improve the PNS repair response in  situations 
where axon regeneration is impaired. These include long-
distance regeneration across an artificial conduit to bridge 
proximal and distal stumps; in chronic denervation; ageing; 
and to encourage regeneration after secondary axonal loss 
in inherited and acquired neuropathies [185]. In this regard,  
Schwann cells transduced with a tetracycline-inducible c-JUN  
lentiviral construct  and  then transplanted into a nerve 
conduit were able to enhance axonal regeneration across a 
10 mm gap in rats [224]. Furthermore, overexpression of 
one allele of c-JUN, specifically in Schwann cells, is able to 
rescue the decline in axon regeneration rates in aged animals 
and also after chronic denervation, without appearing to be 
tumourigenic in mice [89, 187].

It is likely a combination of the above strategies will 
be required in order to achieve adequate human periph-
eral nerve regeneration. Furthermore, cell transplant and 

gene therapy approaches will need to be applied alongside 
improved engineering of nerve graft conduits, a topic which 
is reviewed elsewhere [225].

Future Perspectives: Outstanding Questions

The genetic association of NMNAT2 and SARM1 with poly-
neuropathies and ALS and other motor nerve disorders [175, 
176, 178, 179] raises the question of whether coding or gene 
expression variants in programmed axon death genes influ-
ences also other disorders. Certainly, animal model stud-
ies suggest so. SARM1 deletion alleviates chemotherapy-
induced peripheral neuropathy with vincristine, paclitaxel, 
bortezomib, cisplatin and oxaliplatin and neuropathy in a 
type 2 diabetes model using a high fat diet [157, 158, 208, 
214, 226, 227], all of which suggest relevance to more com-
mon disorders of peripheral nerve. Association with idi-
opathic peripheral neuropathy, inflammatory neuropathies 
and other toxic neuropathies, building on findings with vacor 
as well as cancer chemotherapy drugs will also be impor-
tant to explore. SARM1 may also have a wider role in ALS 
than the rare coding variants so far identified, considering 
the reported GWAS linkage [182] and involvement of pro-
grammed axon death regulator STMN2 in this disease [180, 
181].

The Schwann cell injury phenotype does appear to vary 
between motor and sensory nerves and between myelinating 
and non-myelinating Schwann cells [234, 233]. One future 
research area will be detailing the transcriptomic and proteomic  
variation, potentially with single cell resolution, in the repair 
Schwann cell response between motor and sensory nerves, 
and between myelinated and unmyelinated fibres, in addition 
to the effect of different anatomical locations, including root, 
various different peripheral nerves and end organ associated 
Schwann cells. This may also start to shed some light upon 
the reason why the many subtypes of inherited or acquired 
neuropathy present with involvement of specific and unique  
patterns of affected nerves, limbs or modalities.

Another part of the Schwann cell injury response that 
may show promise for development of future therapies for 
neuropathy is manipulation of Schwann cell myelinophagy. 
Many acquired and inherited neuropathies are characterised 
by primary demyelination, and in the Trembler J and C22 
mice that model inherited demyelinating neuropathies due to 
Pmp22 point mutation and overexpression, there is evidence 
that modulating the level of autophagy in Schwann cells 
alters pathogenesis [228, 229].

While future cell and gene therapies may show early 
promise for encouraging axon regeneration after traumatic 
neuropathy, the next significant challenge will be extending 
these types of treatments to other acquired (inflammatory 
and vasculitis) and inherited neuropathies, where there can 
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be substantial secondary axon loss. Any treatment designed 
to promote axon regeneration will still need to be used in 
combination with disease modifying treatments, such as the 
use of immunosuppressive agents in acquired neuropathies 
and potentially the future use of new genetic therapies for 
inherited neuropathies.
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