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Abstract: Soil salinity and sodicity are among the main problems for optimum crop production in areas
where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and
Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline
soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential
of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase
growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with
electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15,
were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2.
Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological,
and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase
in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control.
In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%,
and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment.
Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC
under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC
could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize
under saline–sodic soil conditions constituting the novelty of this work.

Keywords: compost; salt stress; sodicity; degradation; maize yield; Ca-fortified compost

1. Introduction

Soil salinization and sodication have been regarded as leading abiotic ecological constraints
limiting the sustainable production of crops. These constraints have been extensively disseminated
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throughout the world, affecting about 20% of the total, and 33% of irrigated agricultural land [1].
In Pakistan, nearly 26% of the agricultural land in irrigated areas have been affected by salt stress;
out of which about 56% are saline–sodic [2]. Under arid to semi-arid climatic conditions, salinization
is caused by an increased accumulation of soluble salts in soil solution due to low rainfall and high
temperatures [3].

Soil degradation through salinization and sodication is of prodigious apprehension severely
affecting various domains of agriculture [4]. In arid or semi-arid climates, extreme evaporation results
in the accumulation of salts in the upper soil layer, due to capillary action. This situation in surface soils
severely affects soil structure and its hydraulic conductivity [3]. High amounts of exchangeable sodium
and higher values of pH decrease soil water permeability which decreases water holding capacity
of the soil and ultimately leads to a decrease in crop yields. Salt injuriousness and deprivation of
essential plant nutrients are the two foremost causes for low production of crops under saline–sodic soil
conditions [5]. Therefore, it is essential to determine economical, efficient, and sustainable management
practices in order to lessen root zone salt damage caused by Na+ build up under saline–sodic soil
conditions [6].

Various management practices have been tested to recover such types of salt-exaggerated soils;
these include the development of salt resistant/tolerant varieties through breeding strategies [7] and the
application of Ca-based chemical amendments especially gypsum, calcium chloride, etc. [8]. The former
breeding approach is expensive and time-consuming, and even salt resistant/tolerant varieties require
proper management practices for obtaining optimum crop yield under salt-exaggerated soil conditions.
The latter approach directly supplies Ca2+ and seems applicable, depending upon the chemical being
used (e.g., calcium chloride (CaCl2·2H2O) and gypsum (CaSO4·2H2O)). Ca-sources are known as
soil modifiers as these restrict Na+ build up in the rhizosphere which severely affects plant growth
and production under saline–sodic soils [9,10]. Earlier, Ghafoor et al. [11] found that application of
Ca2+ sources are required for the recovery of saline–sodic soils in Pakistan. Recently an increased
accumulation of Ca2+ ions in plant cells has been observed due to the application of Ca-based materials
which help plants to cope with Na+-mediated stress under salt affected soil conditions [12,13]. Therefore,
Ca-sources could be used to alleviate the deleterious impacts of soil salinity and sodicity for optimum
production of various crop plants.

Nevertheless, while Ca-based amendments have the ability to recover the structure of soil,
there have been some issues with the use of these amendments. For example, these amendments do
not contribute towards microbial respiration or enzyme activities in soil; more salts are being added
in soil solution with a temporary impact on soil properties under saline–sodic conditions. Moreover,
with the application of Ca-based amendments, a large amount of good quality irrigation water is
required which is deficient under arid to semi-arid soil conditions in order to solubilize the amendment
itself and for the leaching of salts, which limits the practical application of such soil ameliorants.

In this regard, various organic approaches such as the use of mulch, manures (farmyard manure
and green manure), and composts have been explored for their efficacy under saline–sodic soil
conditions [14,15]. In spite of their efficacy in improving soil physicochemical (water holding capacity,
cation exchange capacity, and plant nutrition elements) and biological properties (organic carbon,
soil enzyme activities), these amendments have very little influence on the alleviation of soil salinity
and sodicity stress when applied alone [16,17].

Therefore, it is imperative to use both Ca-based chemical and organic amendments in order to
alleviate salt stress along with an improvement in soil quality and productivity under saline–sodic soil
conditions which would ultimately lead to the improved growth and productivity of crops. Based
on this hypothesis, the present study was conducted to find out the impact of compost, Ca-based
fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) on the growth, and physiological
and biochemical parameters of maize under saline–sodic soil conditions. To the best of our knowledge,
none of the studies has reported the effect of Ca-fortified compost (Ca-FC) on growth and productivity
of maize under saline–sodic soil conditions.
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2. Results

2.1. Plant Growth Parameters

A statistically significant increase in plant growth parameters like plant height, shoot fresh and dry
weight, root length, root fresh and dry weight, stem diameter, number of leaves per plant, and leaf area
(Figure 1A–F, Table 1) was observed with the application of Ca-fortified compost (Ca-FC) under normal
as well as under saline–sodic soil conditions as compared to the control and individual application of
compost or Ca-based fertilizer industry waste (Ca-FW). The maximum shoot fresh weight was observed
with the application of Ca-FC under normal as well as saline–sodic soil conditions as compared to the
control and individual application of compost or Ca-FW (Figure 1). Further, individual application of
compost yielded a better outcome compared to the control treatment, as an increase of 58.81%, 45.71%,
and 36.68% in shoot fresh weight was recorded at electrical conductivity (EC) levels of 1.6, 5, and 10 dS
m−1, respectively. Individual application of Ca-FW resulted in a 28.22%, 24%, and 23.33% increase in
shoot fresh weight at EC levels of 1.6, 5, and 10 dS m−1, respectively. Similarly, application of Ca-FC
caused the maximum increase in shoot dry weight up to 180.80%, 139.75%, and 104.13% at EC levels
of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. It was followed by the
individual application of compost which increased shoot dry weight by 95.32%, 88.95%, and 41.98%
and Ca-FW by 70.50%, 66.16%, and 24.22% at EC levels of 1.6, 5, and 10 dS m−1, respectively as
compared to the control treatment.
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Figure 1. Effect of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost
(Ca-FC) on growth parameters of maize (Zea mays L.) under saline–sodic soil conditions. (Note:
EC = electrical conductivity. Quantities sharing similar letters are statistically different from each other
at p ≤ 0.05).
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Table 1. Effect of compost, Ca-FW, and Ca-FC on growth and yield parameters of maize (Zea mays L.) under saline–sodic soil conditions.

Treatments Stem Diameter (cm) No. of Leaves (plant−1) Leaf Area (cm2)

EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1 EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1 EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1

Control 9.67 ± 0.33efg 8.33 ± 0.33gh 7.33 ± 0.33h 8.00 ± 0.58de 7.00 ± 0.58ef 6.33 ± 0.33f 343.59 ± 1.32f 302.14 ± 1.05h 267.72 ± 1.59i
Compost 12.00 ± 0.58c 11.00 ± 0.00cde 10.00 ± 0.58def 10.67 ± 0.33ab 9.33 ± 0.33bcd 8.00 ± 1.15de 426.13 ± 3.69c 396.52 ± 4.63d 347.80 ± 2.11f
Ca-FW 11.33 ± 0.33cd 10.33 ± 0.33def 9.00 ± 0.58fg 10.33 ± 0.33ab 9.67 ± 0.33bc 8.67 ± 0.88cd 420.60 ± 3.82c 386.98 ± 4.03e 328.33 ± 2.98g
Ca-FC 14.67 ± 0.33a 13.67 ± 0.88ab 12.33 ± 0.33bc 11.67 ± 0.33a 10.67 ± 0.33ab 10.00 ± 0.58bc 508.04 ± 1.30a 450.91 ± 3.28b 404.83 ± 3.74d

Cob Size (cm) Cob Fresh Weight (g) Cob Dry Weight (g)

Control 11.33 ± 0.33fg 9.00 ± 0.58hi 7.67 ± 0.33i 150.00 ± 1.15e 127.67 ± 1.45f 106.67 ± 3.33g 85.00 ± 2.89d 66.00 ± 2.31e 49.33 ± 1.45f
Compost 16.67 ± 0.88cd 13.00 ± 0.58ef 11.33 ± 0.88fg 220.00 ± 5.77bc 193.33 ± 2.40d 180.67 ± 2.96d 115.00 ± 2.89b 76.00 ± 4.16d 66.00 ± 3.06e
Ca-FW 15.67 ± 0.33d 13.33 ± 0.88e 10.67 ± 0.67gh 208.33 ± 8.33c 180.67 ± 2.33d 156.33 ± 4.48e 103.33 ± 3.33c 65.33 ± 2.91e 53.00 ± 1.53f
Ca-FC 24.33 ± 0.33a 19.67 ± 0.88b 18.00 ± 0.58bc 255.00 ± 2.89a 231.67 ± 6.01b 213.33 ± 8.82c 142.67 ± 3.93a 110.00 ± 5.77bc 85.00 ± 2.89d

Note: Ca-FW = calcium based fertilizer industry waste; Ca-FC = calcium-fortified compost; EC = electrical conductivity. Quantities sharing similar letters are statistically different from
each other at p ≤ 0.05.
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Regarding plant height, the application of Ca-FC caused a significant increase in plant height (i.e.,
63.33%, 58.5%, and 53.66% at EC levels of 1.6, 5, and 10 dS m−1, respectively) as compared to the control
treatment. It was followed by the individual application of compost and Ca-FW. An increase of 51%,
39%, and 25.33% in plant height compared to the control treatment, was recorded with the individual
application of compost at EC levels of 1.6, 5, and 10 dS m−1, respectively. Similarly, application of
Ca-FW alone increased plant height up to 50%, 45.83%, and 35.66% at EC levels of 1.6, 5, and 10 dS
m−1, respectively as compared to the control treatment.

In the same way, the individual application of compost increased root length up to 79.31%, 64.75%,
and 38.27% at EC levels of 1.6, 5, and 10 dS m−1, respectively in comparison with the control treatment.
Root length increased up to 51%, 48.57%, and 32.95% at EC levels of 1.6, 5, and 10 dS m−1, respectively
as compared to the control treatment when Ca-FW was applied separately. However, the application of
Ca-FC caused the maximum increase in root length by 105.74%, 86.82%, and 62.73% at EC levels of 1.6,
5, and 10 dS m−1, respectively as compared to the control treatment. Similarly, application of Ca-FC
maximally enhanced the root fresh weight up to 175.30%, 98.67%, and 77.89% at EC levels of 1.6, 5, and
10 dS m−1, respectively in comparison with the control treatment. Root fresh weight was increased up
to 120.14%, 66.2%, and 51.21% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the
control when compost was applied alone. A similar trend was observed in the case of root dry weight.

In the case of stem diameter, application of compost or Ca-FW alone showed a small increase at
EC levels of 1.6, 5, and 10 dS m−1 compared to the control (Table 1). The maximum increase in stem
diameter was observed with the application of Ca-FC (i.e., 68.21%, 64.10%, and 51.70% at EC levels
of 1.6, 5, and 10 dS m−1, respectively) as compared to the control treatment. Likewise, application of
Ca-FC showed the maximum increase in the number of plant leaves by 57.97%, 52.42%, and 45.87%
over the control treatment at EC levels of 1.6, 5, and 10 dS m−1, respectively. Moreover, application of
Ca-FC caused the maximum and statistically significant improvement in leaf area by 51.21%, 49.23%,
and 47.86% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment.

2.2. Yield Parameters and Protein Contents

Like the growth parameters, yield parameters such as cob size, cob fresh weight, cob dry weight,
and 1000-grains weight was significantly reduced under saline-sodic soil conditions without any
treatment (Tables 1 and 2). The maximum and statistically significant increase was noted with the
application of Ca-FC under normal as well as saline–sodic soil conditions. The application of Ca-FC
increased cob size by 134.68%, 118.55%, and 114.73% at EC levels of 1.6, 5, and 10 dS m−1, respectively
as compared to the control treatment. A minor increase in cob size was observed by the individual
application of compost and Ca-FW at EC levels of 1.6, 5, and 10 dS m−1. In the case of cob fresh
weight, individual application of compost increased 69.37%, 51.42%, and 46.66% at EC levels of 1.6, 5,
and 10 dS m−1, respectively as compared to the control treatment. However, the maximum cob fresh
weight was observed by the application of Ca-FC with an increase of 99.99%, 81.46%, and 70% in cob
fresh weight at EC levels of 1.6, 5, and 10 dS m−1, respectively compared to the control treatment.
Likewise, application of Ca-FC markedly increased cob dry weight by 72.30%, 67.84%, and 66.66% at
EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Furthermore,
application of compost alone slightly increased 1000-grains weight by 16.25%, 15.30%, and 13.76% at
EC levels of 1.6, 5, and 10 dS m−1, respectively than the control treatment, while the application of
Ca-FW showed the maximum increase in 1000-grains weight by 29.01%, 22.58%, and 20.63% at EC
levels of 1.6, 5, and 10 dS m−1, respectively. Data regarding protein contents indicated that application
of Ca-FC caused the maximum increase up to 173.33%, 162.22%, and 155.15% at EC levels of 1.6, 5, and
10 dS m−1, respectively more than the control treatment (Table 2).
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Table 2. Effect of compost, Ca-FW, and Ca-FC on 1000-grains weight, osmotic potential, and protein contents of maize (Zea mays L.) under saline–sodic soil conditions.

Treatments 1000-Grains Weight (g) Osmotic Potential (osmol/kg) Protein (%)

EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1 EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1 EC 1.6 dS m−1 EC 5 dS m−1 EC 10 dS m−1

Control 258.82 ± 4.35f 249.46 ± 0.53g 229.62 ± 0.47i 0.37 ± 0.01de 0.33 ± 0.02fg 0.23 ± 0.02i 9.56 ± 0.10h 6.98 ± 0.46i 4.66 ± 0.70j
Compost 300.88 ± 0.73b 283.80 ± 1.08d 264.77 ± 1.13e 0.45 ± 0.01b 0.40 ± 0.01cd 0.31 ± 0.01gh 18.10 ± 0.05cd 16.25 ± 0.19e 14.10 ± 0.15f
Ca-FW 290.63 ± 1.33c 266.23 ± 0.87e 243.67 ± 1.32h 0.44 ± 0.01bc 0.38 ± 0.01de 0.29 ± 0.01h 16.69 ± 0.63de 14.20 ± 0.24f 12.00 ± 0.91g
Ca-FC 333.91 ± 1.87a 300.94 ± 0.81b 281.47 ± 0.94d 0.51 ± 0.01a 0.44 ± 0.01b 0.36 ± 0.01ef 25.31 ± 0.66a 22.60 ± 0.68b 19.19 ± 0.16c

Note: Ca-FW = calcium based fertilizer industry waste; Ca-FC = calcium-fortified compost; EC = electrical conductivity. Quantities sharing similar letters are statistically different from
each other at p ≤ 0.05.
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2.3. Physiological Parameters

Data regarding physiological parameters (Figure 2A–F) indicate that individual application of
compost caused a slight increase in photosynthetic rate by 19%, 11%, and 6% at EC levels of 1.6, 5,
and 10 dS m−1, respectively, compared to the control treatment. However, the application of Ca-FC
caused the maximum increase in photosynthetic rate by 67%, 43%, and 35% at EC levels of 1.6, 5,
and 10 dS m−1, respectively as compared to the control treatment. Similarly, the maximum increase in
stomatal conductance was recorded with the application of Ca-FC (i.e., 56.16%, 42.39%, and 34.11% at
EC levels of 1.6, 5, and 10 dS m−1, respectively in comparison to the control treatment. In the same
way, application of Ca-FC caused the maximum increase in evaporation rate up to 138.03%, 129.16%,
and 116.78% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment.
A similar trend was observed in the case of transpiration rate. Likewise, the maximum increase in
internal CO2 concentration was observed with the application of Ca-FC by 42.145, 35.68%, and 32.62%
at EC levels of 1.6, 5, and 10 dS m−1, respectively compared to the control treatment.
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Figure 2. Effect of compost, Ca-FW, and Ca-FC on physiological parameters of maize (Zea mays L.) 
under saline–sodic soil conditions. (Note: Ca-FW = calcium based fertilizer industry waste; Ca-FC = 
calcium-fortified compost; EC = electrical conductivity. Quantities sharing similar letters are 
statistically different from each other at p ≤ 0.05. Pn = photosynthetic rate; E = transpiration rate; gs = 
stomatal conductance; Ci = internal CO2 concentration; SPAD = Soil Plant Analysis Development 
chlorophyll meter). 

2.3.1. Water Relations 

Considerable reductions in maize water relations in terms of relative water contents, relative 
membrane permeability, electrolyte leakage, and osmotic potential were observed under saline–sodic 
soil conditions. In the case of relative water contents (RWC), application of Ca-FW alone caused the 
minimum increase at EC levels of 1.6, 5, and 10 dS m−1, respectively. Nonetheless, application of Ca-
FC caused the maximum increase in RWC by 18.21%, 13.27%, and 12.12% at EC levels of 1.6, 5, and 
10 dS m−1, respectively as compared to the control treatment (Figure 3B). Likewise, the maximum 
increase in relative membrane permeability was observed with the application of Ca-FC up to 
132.54%, 93.75%, and 87.37% compared to the control at EC levels of 1.6, 5, and 10 dS m−1, respectively 
(Figure 3C). A similar trend was observed with the application of Ca-FC in the case of osmotic 

Figure 2. Effect of compost, Ca-FW, and Ca-FC on physiological parameters of maize (Zea mays
L.) under saline–sodic soil conditions. (Note: Ca-FW = calcium based fertilizer industry waste;
Ca-FC = calcium-fortified compost; EC = electrical conductivity. Quantities sharing similar letters
are statistically different from each other at p ≤ 0.05. Pn = photosynthetic rate; E = transpiration rate;
gs = stomatal conductance; Ci = internal CO2 concentration; SPAD = Soil Plant Analysis Development
chlorophyll meter).

The maximum chlorophyll contents were recorded with the application of Ca-FC by a 64.22%,
45.32%, and 39.77% increase over the control at EC levels of 1.6, 5, and 10 dS m−1, respectively.

Water Relations

Considerable reductions in maize water relations in terms of relative water contents, relative
membrane permeability, electrolyte leakage, and osmotic potential were observed under saline–sodic
soil conditions. In the case of relative water contents (RWC), application of Ca-FW alone caused the
minimum increase at EC levels of 1.6, 5, and 10 dS m−1, respectively. Nonetheless, application of Ca-FC
caused the maximum increase in RWC by 18.21%, 13.27%, and 12.12% at EC levels of 1.6, 5, and 10 dS
m−1, respectively as compared to the control treatment (Figure 3B). Likewise, the maximum increase in
relative membrane permeability was observed with the application of Ca-FC up to 132.54%, 93.75%,
and 87.37% compared to the control at EC levels of 1.6, 5, and 10 dS m−1, respectively (Figure 3C).
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A similar trend was observed with the application of Ca-FC in the case of osmotic potential under
normal as well as saline–sodic soil conditions (Table 2). Furthermore, application of Ca-FC considerably
decreased electrolyte leakage by 45%, 43%, and 36% at EC levels of 1.6, 5, and 10 dS m−1, respectively
in comparison to the control treatment (Figure 3A).
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Figure 3. Effect of compost, Ca-FW, and Ca-FC on physiological parameters of maize (Zea mays L.) 
under saline–sodic soil conditions. (Note: Ca-FW = calcium based fertilizer industry waste; Ca-FC = 
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membrane permeability. Quantities sharing similar letters are statistically different from each other 
at p ≤ 0.05). 
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Figure 3. Effect of compost, Ca-FW, and Ca-FC on physiological parameters of maize (Zea mays
L.) under saline–sodic soil conditions. (Note: Ca-FW = calcium based fertilizer industry waste;
Ca-FC = calcium-fortified compost; EL = electrolyte leakage; RWC = relative water contents;
RMP = relative membrane permeability. Quantities sharing similar letters are statistically different
from each other at p ≤ 0.05).
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Figure 4. Effect of compost, Ca-FW, and Ca-FC on nutrients homeostasis of maize (Zea mays
L.) under saline–sodic soil conditions. (Note: Ca-FW = calcium based fertilizer industry waste;
Ca-FC = calcium-fortified compost. Quantities sharing similar letters are statistically different from
each other at p ≤ 0.05.
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Conversely, it was found that the Na+/K+ ratio in root significantly decreased by 85.19%, 75.76%,
and 69.23% by Ca-FC treatment over the control at EC levels of 1.6, 5, and 10 dS m−1, respectively
(Figure 4E). Similarly, the maximum decrease (i.e., 85.1%, 71.79%, and 70.37%) in the Na+/K+ ratio of
shoot was observed with the application of Ca-FC at EC levels of 1.6, 5, and 10 dS m−1, respectively
as compared to control treatment (Figure 4D). Similarly, application of Ca-FC caused a maximum
decrease in Na+/K+ ratio (i.e., 74.36%, 60.26%, and 50.55%) in grains compared to the control at EC
levels of 1.6, 5, and 10 dS m−1, respectively (Figure 4F).

3. Discussion

Soil salinization is a notorious, rather classical, but sometimes emergent, issue for agricultural
production. In arid and semi-arid regions of the world, most of the soils are salt-affected with low
agricultural potential [18]. In order to exploit salt-exaggerated soils, various strategies such as the
use of good quality water, good drainage, suitable cultural practices, and the addition of appropriate
soil ameliorants have been found suitable [6,11]. Various researchers have found that use of soil
amendments such as gypsum containing Ca2+ can compete with Na+ on the exchangeable sites
and ultimately ameliorate the impact of salinity and sodicity. In this regard, the present study was
conducted using Ca sourced from a Ca-based fertilizer industry waste (Ca-FW) and mixing it with
organic wastes and composting both for seven days.

Salt stress interrupts the growth of plants via osmotic stress, specific ion toxicity, and nutritional
imbalance [1]. In the present study, all the examined growth parameters were significantly reduced
under saline–sodic soil conditions (Figure 1, Tables 1–3). Through the application of organic (compost)
and inorganic (i.e., Ca-based fertilizer industry waste (Ca-FW)) amendments, a positive effect on growth
parameters under normal as well as saline–sodic soil conditions were observed. More specifically,
the observed growth and yield parameters like plant height, shoot dry weight, root dry weight,
cob dry weight, and 1000-grains weight were significantly improved by the application of Ca-fortified
compost (Ca-FC) at all EC levels (i.e., 1.6, 5, and 10 dS m−1) in comparison to the control treatment.
Earlier, it was determined that water holding capacity, cation exchange capacity, macronutrients as
well as micronutrients availability, and soil physical attributes were improved with the addition of
organic amendments such as compost under normal as well as saline–sodic soil conditions [19–21].
Improvement in soil physicochemical properties through organic material addition might enhance the
physiological functions of the plant and ultimately the growth and yield parameters noted during this
study [17,22,23]. It may also be due to the role of organic amendments in improving soil biological
activities which are directly involved in nutrient uptake and ultimately improved growth and yield
parameters [15,22]. Earlier, it was determined that the application of organic amendments under
normal as well as under salt stress conditions, significantly improved soil microbial activity. The
improvement in soil microbial activity enhances soil nutrients mineralization and ultimately improves
nutrient availability and their uptake in crop plants [24,25].

Table 3. The chemical analysis of normal compost and Ca-FC.

Parameters Composted Organic
Fertilizer

Ca-Based Fertilizer
Industry Waste (Ca-FW)

Ca-Fortified Compost
(Ca-FC) (50:50 w/w)

Carbon (g kg−1) 203 ± 16.6 † - 104.5 ± 9.2
Nitrogen (g kg−1) 15.8 ± 1.2 24 (%) 108 ± 4.3
Total P (g kg−1) 2.89 ± 0.9 - 1.76.0 ± 0.2

Olson P (mg kg−1) 247 ± 12 - 138 ± 8.7
Ca (g kg−1) 0.046 ± 0.002 10 (%) 48.3 ± 3.4

C:N 16.24 ± 1.2 - 14.05 ± 0.6
C:P 70.24 ± 5.9 - 9.19 ± 0.18
pH 6.43 ± 0.24 8.02 6.79 ± 0.13

Note = † shows the standard error of means (SEM) where n = 3.
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In the current study, physiological parameters like chlorophyll contents, relative water contents,
relative membrane permeability, photosynthetic rate, transpiration rate, evaporation rate, etc. were
increased with the application of Ca-FC under normal and saline–sodic soils. Under salinity stress,
chlorophyll contents as well as the photosynthetic capacity of crop plants decreased [26,27]. It also
was revealed that a decline in mesophyll conductance to carbon dioxide (CO2) occurs under salt
stress [28]. In the present study, application of compost, Ca-FW, and Ca-FC significantly improved the
chlorophyll contents under salt stress which might be due to the increased availability of nutrients
with the application of compost (Figure 2).

It is well documented that the uptake of essential nutrients like potassium, calcium, and nitrogen
decreases due to increased sodium (Na+) concentration in soil solution [5] under saline conditions.
However, compost application significantly decreased Na+ and increased K+ uptake in the present
study. Nevertheless, in the current study, maximum sodium concentration in root, shoot, and grains
was observed in the control treatment and minimum sodium concentration in root, shoot, and grains
was observed with the application of Ca-FC at all EC levels. Earlier, compost and Ca-products have
been found to be more effective in mitigating the adverse effects of Na+ in plants [11]. Moreover,
the application of composted municipal solid waste (MSW) helped in the release of Ca2+ from the
applied Ca-based amendments such as gypsum [17]. Therefore, application of Ca-FW and Ca-FC as
tested in the present study might have served as available Ca sources. The Ca released during the
composting of organic amendments combined with Ca-FW would ultimately result in the flocculation
of Na+ present.

In the present study, the maximum K+ uptake in maize shoot was recorded with the application
of Ca-FC under normal as well as saline–sodic soil conditions. Earlier, it was observed that K+ uptake
enhanced in shoot under salinity stress by applying organic amendments like compost [29] which
might be due to the stimulatory effect of organic materials on the cation exchange capacity (CEC)
of soil. In a precise manner, application of organic amendments (e.g., compost or poultry manure)
increases the CEC of the soil, thereby limiting the entry of Na+ to the exchangeable site and ultimately
leading to a better uptake of both soluble and exchangeable K+ [15,16,22]. Moreover, application
of compost increases nutrients availability especially K+, Mg2+, and Ca2+ via maintaining a better
nutrient equilibrium with the soil solution.

The increase in N, P, and K uptake noted in the present study might be due to the indirect
improvement of soil physicochemical properties. Earlier, it was found that long term application
of Ca-amendments plays an important role in improving soil organic carbon (SOC) stocks [30,31].
Moreover, mineral availability in the form of Ca-amendments has been found to be a key regulator
of soil carbon [32–34]. Improvement in SOC contents has a direct effect on soil physicochemical
properties and ultimately an increased supply of macro- and micronutrients to crop plants [21].
Other researchers have also noted an increase in soil organic carbon contents with the application of
Ca-amendments [31,35]. In case of the application of organic amendments, these have been found to
increase the aggregate stability of the soil which ultimately results in higher storage of soil organic
carbon, a positive effect on soil physiochemical properties, and ultimately better nutrient availability
and uptake [31,36].

In the present study, Na+/K+ ratio in the root, shoot, and grains was significantly decreased
with the application of Ca-FC under normal as well as saline–sodic soil conditions which might be
due to the limited entry of Na+ into the plant (Figure 2). Earlier, it was suggested that application
of organic amendments (farmyard manure and green manure) might be used as chelating agents
for decontamination of lethal salts especially Na+ and Cl− ions [17,22]. The organic amendments
and gypsum were found to increase the growth and productivity of various crops (e.g., rice, wheat,
sugarcane, cotton, and tomatoes [9,11,17,22]). As earlier mentioned, the improved availability of Ca2+

and other nutrients with the application of Ca-FC might have helped with the improved growth
and productivity of maize in the present study. Recently, the combined application of green waste
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compost, sedge peat, and furfural residue (1:1:1 on volume basis) significantly reduced Na+ content
and improved CEC and availability of nutrient uptake (NPK) contents [6,15].

Hu and Schmidhalter [37] observed reduced availability of macronutrients especially NPK under
saline stress conditions. In the current study, maximum phosphorus uptake in maize shoot was observed
with the application of Ca-FC (Figure 1). Application of compost has been reported to lower pH which
enhances the availability of essential plant nutrients under saline stress conditions [38]. Moreover,
the application of compost has been directly involved in the provision of plant nutrients [20,21]. Various
researchers around the world have found that the application of organic amendments significantly
improve the physicochemical properties of the soil which ultimately improves the availability of
various nutrients [9,17,21].

The present study describes the response of compost, Ca-FW, and Ca-FC to maize crop growth,
development, and nutrients homeostasis under saline–sodic soil conditions. Overall this study implies
that the application of Ca-FC significantly enhanced growth, physiology, grain quality, and NPK uptake
of maize by restoring the negative impacts caused by salt-stress.

4. Materials and Methods

4.1. Preparation of Calcium-Fortified Compost

Animal manure was collected from the Directorate of Farms, University of Agriculture Faisalabad,
Pakistan for compost preparation. Ca-based fertilizer industry waste (Ca-FW) was collected from the
calcium ammonium nitrate fertilizer production industry (Pak Arab Fatima Fertilizers, Ltd. Multan,
Pakistan) and it contained about 10% Ca and 24% nitrogen. Calcium-fortified compost (Ca-FC) was
prepared by incubating calcium (Ca)-based fertilizer industry waste (Ca-FW) in the animal manure at
the rate of 50:50 (w/w) with 0.1% molasses. The material was thoroughly mixed and composted by
continuously running a locally fabricated composter (500 kg capacity) for seven days [19–21]. Simple
compost with 0.1% molasses was also prepared in a similar way without Ca-FW. The chemical analysis
results of normal compost and Ca-FC regarding various nutrient parameters were done through
the standard procedure given by Nelson and Sommers [39] and Ryan et al. [40] and the results are
presented in Table 3. Calcium contents in the digested sample of compost and Ca-FC were determined
through an atomic absorption spectrophotometer (Hitachi Zeeman, Japan) equipped with a graphite
furnace with a Ca-cathode lamp.

4.2. Pot Experiment

A pot experiment was conducted in the greenhouse of the Institute of Soil and Environmental
Sciences (ISES) at the University of Agriculture, Faisalabad (UAF), Pakistan using a maize variety
(Malka 2015) kindly provided by Maize Research Section, Ayub Agricultural Research Institute
Faisalabad, Pakistan as a test crop. The soil was taken from the research area of ISES, UAF, air dried,
ground, and sieved (2 mm). Each pot (25 cm in diameter and 23 cm high) was filled with 8 kg of
soil. The soil was analyzed for various physicochemical properties following the methods described
by Ryan et al. [40]. The soil analysis showed that the textural class of the soil was sandy clay loam
(sand = 50%, silt = 35%, clay = 15%) with a saturation percentage of 32% and ECe = 1.637 dS m−1.
The soil was slightly alkaline in nature having pH = 7.33, soluble CO3

2- = 0.88 mmolc L−1 and soluble
HCO3

2- = 0 mmolc L−1, CEC = 11.8 cmolc kg−1, and organic matter = 0.72%.
In the present study, there were two factors: electrical conductivity with three levels (1.6, 5,

and 10 dS m−1) and treatment at four levels (control, compost, Ca-FW, and Ca-FC). The saline–sodic
soil was made by adding a mixture of salts in soil. There were three levels of electrical conductivity
(EC)—1.6 dS m−1 (original/ normal soil EC), 5 and 10 dS m−1 (saline–sodic)—and sodium adsorption
ratio (SAR) was fixed at 15 under both EC levels. For each replication of twelve treatments,
the saline–sodic soil was developed separately. To prepare saline–sodic soil, about 0.66, 2.16, 0.72,
and 0.23 g of NaCl, Na2SO4, CaCl2, and MgSO4, respectively were homogeneously mixed in 32 kg
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of soil to develop an EC level of 5 dS m−1 and SAR of 15. In order to develop an EC level 10 dS m−1

and SAR of 15, about 1.18, 5.94, 3.6, and 1.3 g of NaCl, Na2SO4, CaCl2, and MgSO4, respectively were
homogeneously mixed in 32 kg of soil. Compost, Ca-FW, and Ca-FC were applied at the rate of 1% w/w.
Overall, there were 36 pots arranged in a completely randomized design (CRD) with three replications.
In each treatment, the recommended rate of chemical fertilizer (NPK = 120:80:60 kg ha−1) was applied.
Three seeds per pot were sown, and after germination one plant per pot was maintained through
thinning. Recommended agronomic practices like thinning, hoeing, etc. were followed.

4.3. Data Collection

4.3.1. Physiological Parameters

Infrared gas analyzer (IRGA) was used to measure photosynthetic rate, stomatal conductance,
transpiration rate, evaporation rate, and internal CO2 concentrations. Two leaves of a single plant from
each pot were selected to record the data regarding the above-mentioned parameters. Chlorophyll
contents were measured as SPAD (Soil Plant Analysis Development) value from the third upper leaf
using chlorophyll meter SPAD-502 [41]. Relative water content (RWC), relative membrane permeability
(RMP), and electrolyte leakage (EL) were measured by using entirely stretched flag leaves.

In order to measure relative water content (RWC), leaves were placed in a refrigerator for 24 h at
4 ◦C after cutting and sealing in a plastic bag and fresh weight was measured. Fully turgid weight
was measured after soaking leaves in distilled water, while dry weight was measured after drying
leaves in an oven at 72 ◦C for 24 h. The following equation was used to calculate RWC as defined by
Teulat et al. [42].

RWC (%) =
Fresh wieght−Dry weight

Turgid weight−Dry weight
× 100 (1)

For computing electrolyte leakage (EL), even leaf discs were placed in test tubes and 50 mL
distilled water was added to each tube. Later, each test tube was shaken for 4 h at room temperature
and electrical conductivity (EC1) of the solution was measured by an EC meter. Then, the test tubes
with samples were autoclaved and after cooling, a second reading of electrical conductivity (EC2) was
measured. Electrolyte leakage was calculated using the following formula [43]:

EL (%) =
EC1

EC2
× 100 (2)

To quantify relative membrane permeability (RMP), leaves were cut and shifted into test tubes
with 20 mL distilled water. The test tubes were vortexed for 10 s and EC0 was measured using an EC
meter. Another EC meter reading (EC1) was taken after the test tubes were subsequently vortexed for
24 h at 4 ◦C. The samples in the test tubes were autoclaved at 121 ◦C for 20 min and EC meter reading
(EC2) was measured. The following formula was used to calculate RMP [44]:

RMP (%) =
EC1 − EC0

EC2 − EC0
× 100 (3)

In order to quantify osmotic potential, flag leaves were placed in the freezer for 1–2 days. After
freezing, leaves were folded, kept in a 1.5 mL Eppendorf tube, and pinched with a needle so that leaf
sap could be taken. Leaf sap was taken with a pipette and stored in another Eppendorf tube (0.5 mL).
After that, readings of these samples regarding osmotic potential were recorded with the help of a
cryoscopic osmometer [45].

4.3.2. Plant Growth and Yield Parameters

The plants were harvested 120 days after sowing and the data of plant height and fresh weight of
root and shoot were measured using a meter rod and digital weighing balance. Cobs were detached
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manually, and their fresh weight was measured. The size of each cob as cob length was measured with
the help of a meter rod after harvesting. Then, these samples were washed with deionized water and
exposed to air under the shade. Samples were placed in forced air driven oven (Tokyo Rikakikai, Eyela
WFO-600 ND, Tokyo, Japan) at 80 ◦C for 48 h until constant weight was achieved to quantify root dry
weight (RDW), shoot dry weight (SDW), and cob dry weight. After drying, grains were detached from
cobs and 1000-grains weight was measured using the digital weighing balance. Length and width
of leaves were recorded with the help of measuring tape and then leaf area (cm2) was measured by
multiplying both length and width. Stem girth/diameter (cm) of plants from each pot was measured
with the help of Vernier caliper at time of harvesting.

4.3.3. Chemical Parameters

Different chemical parameters of plants such as nitrogen, phosphorus, potassium, and sodium were
analyzed after wet digestion. Shoot, root, and grain samples were air-dried and then oven-dried at 65 ◦C
and ground by a mechanical grinder to prepare the samples for chemical analysis. The Wolf [46] method
was used for digestion in which the plant samples (0.5 g) were placed in digestion tubes and allowed
to stand overnight after the addition of sulfuric acid (10 mL). On the next day, hydrogen peroxide (2
mL) was added and the digestion tubes were placed on a hot plate maintaining a temperature up to
300–350 ◦C. Hydrogen peroxide (2 mL) was added again and again until the black color disappeared,
and a colorless solution was obtained. The samples in the digestion tubes were cooled down at room
temperature and distilled water was added until the total volume was 50 mL. The sample dilutions
were filtered through Whatman 42 paper and the filtrate was stored in plastic bottles before they were
analyzed. Potassium and sodium were determined using a flame photometer, nitrogen by determined
with the Kjeldahl apparatus, and phosphorus was measured by a spectrophotometer [47]. Then the
uptake of nitrogen, phosphorus, and potassium was calculated using the following formula:

NPK uptake in shoots (mg pot−1) =
NPK concentration in shoots (%) × Dry matter (mg pot−1

)
100

(4)

Then, the Na+/K+ ratio in root, shoot, and grains was also calculated.

4.3.4. Biochemical Analysis

Crude protein contents in grains were determined by the multiplication of nitrogen contents
obtained through Kjeldahl’s method in grains with a 6.25 factor [48].

4.3.5. Statistical Analysis

Using the analysis of variance (ANOVA) technique, the collected data were analyzed at p ≤ 0.05
under a completely randomized design (CRD) with the help of Statistics 8.1 software and means
were compared by using Tukey’s Honest Significant Difference (HSD) test [49]. All the graphs in the
manuscript were drawn on Origin Pro version 9.1 computer based-software.

5. Conclusions

It is summarized that application of Ca-FC significantly enhanced the growth, yield, physiology,
and nutrient uptake in maize under normal and saline–sodic soil conditions as compared to the
control and individual application of compost or Ca-based fertilizer industry waste (Ca-FW). Similarly,
Ca-fortified compost (Ca-FC) significantly enhanced NPK uptake and reduced Na+/K+ ratio in the root,
shoot, and grains of maize under normal as well as saline–sodic soil conditions as compared to the
control and individual application of compost or Ca-FW. The approach is promising in ameliorating
saline–sodic soils and enhancing maize productivity; however, multi-site field trials need to be
performed to warrant successful performance in the field.
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