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Abstract
While declines in inhibitory control, the capacity to suppress unwanted neurocognitive processes, represent a hallmark of
healthy aging, whether this function is susceptible to training-induced plasticity in older populations remains largely
unresolved. We addressed this question with a randomized controlled trial investigating the changes in behavior and
electrical neuroimaging activity induced by a 3-week adaptive gamified Go/NoGo inhibitory control training (ICT).
Performance improvements were accompanied by the development of more impulsive response strategies, but did not
generalize to impulsivity traits nor quality of life. As compared with a 2-back working-memory training, the ICT in the
older adults resulted in a purely quantitative reduction in the strength of the activity in a medial and ventrolateral
prefrontal network over the 400 ms P3 inhibition-related event-related potentials component. However, as compared with
young adults, the ICT induced distinct configurational modifications in older adults’ 200 ms N2 conflict monitoring
medial–frontal functional network. Hence, while older populations show preserved capacities for training-induced
plasticity in executive control, aging interacts with the underlying plastic brain mechanisms. Training improves the
efficiency of the inhibition process in older adults, but its effects differ from those in young adults at the level of the coping
with inhibition demands.
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Introduction
Inhibitory control (IC) refers to the capacity to inhibit motor
or cognitive processes. This executive component is notably
involved in suppressing impulsive or habitual responses, as typ-
ically required for successful goal-directed behaviors (e.g., Logan
et al. 1997). Because IC relies largely on ventrolateral prefrontal—
striatal brain structures that rapidly deteriorate with aging (Aron
et al. 2014), declines in IC performance can already be observed
in 60–70 years old populations (e.g., Nielson et al. 2002).

Training IC by the repeated practice of inhibition tasks has
thus been advanced as a potential approach to compensate the
executive deficits associated with healthy aging (e.g., Anguera

et al. 2013; Heinzel et al. 2014). Yet, whether IC is actually sus-
ceptible to improvement with training in older adults remains
largely unresolved. Moreover, the neural mechanisms support-
ing IC plasticity in older populations, and how they differ from
those in young populations is also underexplored.

Less than five studies investigated the brain functional or
structural correlates of plasticity induced by inhibitory con-
trol training (ICT) in older adults. They observed improvements
at the trained inhibition tasks (Mozolic et al. 2010; Ji et al.
2016; Kühn et al. 2017), associated with increases in right infe-
rior frontal gyrus (rIFG) activity at rest (Mozolic et al. 2010),
inhibition-related left ventrolateral prefrontal cortex activity
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(Hartmann et al. 2019), and rIFG cortical thickness (Kühn et al.
2017; Nguyen et al. 2019 for a review). Although scarce, these
results suggest different effects of ICT in older and young pop-
ulations, the latter typically showing decreases in rIFG activity
with training (Manuel et al. 2013; Chavan et al. 2015; Hartmann
et al. 2016).

In the present study, we investigated the spatio-temporal
brain mechanisms underlying training-induced changes in IC
in older adults. We also analyzed how these plastic changes
differ from those in young populations. We trained young
(18–40 years old) and older (60–75 years old) healthy participants
for 3 weeks on a Go/NoGo task (one group of 29 older participants
and one group of 32 young) and on a control 2-back task (one
group of 28 older participants). The training tasks were gamified
and completed from home to increase the engagement and
the adherence to the intervention (Mishra et al. 2016). They
included autoadaptive difficulty levels to maintain the tasks
challenging and to control that changes in difficulty did not
confound between-groups and between-sessions comparisons.

The effects of the training were examined with behavioral
measures and event-related potentials (ERP) recorded before
and after the intervention during a Go/NoGo task similar to
the trained task. To test the generalization of the effect of the
ICT, we recorded participants’ self-reported quality of life (QoL)
and impulsivity before and after the training interventions. A
key aim of cognitive training intervention in older population
is indeed to help recovering the deficits influencing QoL and
we thus focused on this real-life oriented endpoint (Beckert
et al. 2012; Rabelo Pereira et al. 2015), together with a lower-level
personality impulsivity trait also putatively influenced by IC
performance (Roberts et al. 2011).

We analyzed ERPs in the so-called “electrical neuroimaging”
framework, an approach combining data-driven, time-frame-
wise robust statistical analyses of global descriptors of the scalp
field potentials distribution (i.e., the global field power, GFP, and
the topography of the ERPs) and source estimations analyses.
This approach enables deeper neurophysiological interpreta-
tions than local analyses of single electrodes’ amplitude of ERP
components: Since differences in ERP topographies necessarily
follow from changes in the configuration of the underlying
neural generators (Lehmann, 1987), and GFP modulations follow
from changes in the response strength of the generators (Murray
et al. 2008; Michel and Murray 2012; Tzovara et al. 2012), the
pattern of modulations in these two metrics can be interpreted
mechanistically. A change in GFP without change in topography
indicates a purely quantitative variation in the response gain of
identical configurations of brain sources. Such strength-based
plastic mechanisms as typically associated with changes in pro-
cessing efficiency. In contrast, a change in ERP topography (with
or without GFP modulations) indicates qualitative modulations
of the generators’ configuration. Such network-based plastic
mechanisms typically index the development of new response
strategy or compensatory activity (Kelly and Garavan 2005).

As a second step, distributed source estimations are com-
puted and statistically analyzed with the same designs as the
ERPs to localize in the brain the origin of the effects observed at
the scalp level (Grave De Peralta Menendez et al. 2004).

We first examined the effect of the ICT in older adults based
on the interaction term of a 2∗2 mixed design with Session (pre-;
post-training) as within-subject factor and Training (Go/NoGo
training; control 2-back training) as between-subject factor
applied to the performance and to electrical neuroimaging
activity during the inhibition trials of a Go/NoGo task. Using a

2-back task training as an active control allowed to rule out
that the observed effects were due to retest, participating in an
intervention, practicing an executive task, or being repeatedly
exposed to the trained stimuli.

We predicted that as compared with the active control group,
the Go/NoGo training group would show larger improvements
in inhibition performance. Functionally, this group may either
(1) show larger improvement in the efficiency of the underly-
ing brain networks and thus quantitative decreases in brain
electrical activity indexed by decreases in the GFP without con-
comitant topographic modulations or (2) develop compensatory
strategy by recruiting additional areas, which would be indexed
by topographic modulations. These changes should manifest
during the two key IC processing phases: the 250–350 period of
the N2 component indexing conflict monitoring (Nieuwenhuis
et al. 2003; Donkers and Van Boxtel 2004; Schmajuk et al. 2006;
Enriquez-Geppert et al. 2010; Gajewski and Falkenstein 2013)
and the 350–500 ms period of the P3 inhibition implementation
component (Smith et al. 2008; Albert et al. 2013; Gajewski and
Falkenstein 2013). We finally expected these ERP modulations
to be respectively driven by changes in anterior cingulate, pre-
supplementary motor area (pre-SMA), and bilateral ventrolateral
prefrontal cortex (VLPFC) activity (Spierer et al. 2013 for review).
The “improved efficiency” model (1) would predict a decrease in
activity in these areas, whereas the “compensatory model” (2)
would predict an increase in activity in these areas.

Regarding generalization patterns, we predicted an absence
of transfer to QoL and impulsivity traits, given that very limited
transfers of ICT or of other types of executive training have been
observed (e.g., Simonet et al. 2019); recent meta-analyses indeed
indicate that training generalization, if any, only manifests in
very close tasks (e.g., Sala and Gobet 2019).

We then tested the hypothesis that aging would interact with
the effects of the ICT. The baseline differences in IC performance
and in functional IC organization between young and older pop-
ulations should indeed result in qualitatively different effects of
the training; prefrontal structural deteriorations may indeed not
only modify older adults’ capacity for plastic reorganizations,
but also result in the engagement of compensatory functional
activity not present in young adults. Hence, different networks
being initially engaged by the two groups in the tasks, they
should show different patterns of modifications with training
(Park and Bischof 2013 for discussion).

We tested this hypothesis based on the interaction term of a
2∗2 Session by Age (young; older adults) mixed design, applied
to the same dependent variables as for the first contrast.

We predicted that the older group would show larger
improvements than the young group at the Go/NoGo task
because their initial deficit would leave more room for
improvement (slower response times; e.g., Nielson et al. 2002;
Vallesi et al. 2011; Heilbronner and Münte 2013; Hong et al.
2014; and more inhibition failures; e.g., Nielson et al. 2002;
Langenecker and Nielson 2003). At the electrophysiological
level, we predicted different network configuration changes
between the two groups, that should manifest as topographic
ERP modulations during the N2/P3 ERP components, driven by
a larger decrease in activity in the areas typically exhibiting
additional compensatory functional activity in the older adults,
that is, the anterior cingulate and pre-SMA/bilateral VLPFC
(Cabeza et al. 2002; Nyberg et al. 2003; Cappell et al. 2010; Mozolic
et al. 2010; Hsieh and Fang 2012; Anguera et al. 2013; Heinzel et al.
2014; Coxon et al. 2016). This decrease would possibly index a
return to a network configuration more similar to that of the
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Table 1 Demographic data and neuropsychological tests results

Mean ± SD Young Go/NoGo training (n = 32) Older Go/NoGo training (n = 29) Older 2-back training (n = 28)

Age 23.73 ± 3.29 66.72 ± 4.05 67.45 ± 3.93
Gender ratio (M/F) 0.47 0.39 0.38
FAB (/18) - 17.07 ± 0.88 17.24 ± 1.06
MoCA (/30) - 27.72 ± 1.62 27.31 ± 1.61

young-like physiological state. As for the first contrast, we also
posited that the training may reinforce compensatory strategies
in the older group, which would manifest as an increase in the
activity in these areas over the same time period (Sebastian et al.
2013; Reuter-Lorenz and Park 2014).

Regarding putative difference in generalization patterns
between the two groups, directional predictions are difficult
to formulate. There is indeed very few literature on how
generalization interacts with aging. We however expected an
absence of generalization between the two groups (e.g., Sala
and Gobet 2019).

Materials and Methods
Participants

The participants were recruited via advertisement at the Uni-
versity of Fribourg and at organizations working with older
adults. Participants were compensated for their participation
with the tablet used for the intervention. All experimental pro-
tocols were approved by our local ethics committee, protocol
#2017-01889. The experimental sessions were undertaken with
the understanding and written consent of each participant.

Inclusion criteria were: signed informed consent; right-
handedness; 18–40 years old for the Young group; and 60–
75 years old for the older group. Exclusion criteria were: history
of diagnosed neurological or psychiatric disorders, and for the
older group only: the Montreal Cognitive Assessment (MoCA;
Nasreddine et al. 2005) score below 26/30 and the Frontal
Assessment Battery (FAB; Dubois et al. 2000) score below 15/18 to
rule out any abnormal neurocognitive impairment (see Table 1
for detailed information).

Our sample size was determined a priori with a power cal-
culation based on previous studies by our group on IC training
and plasticity, which suggest that medium effect sizes could be
expected on the key behavioral and functional measures in the
present study (Manuel et al. 2010; Enge et al. 2014; Chavan et al.
2015; Hartmann et al. 2016; Kühn et al. 2017). For rmANOVA,
targeting a within-between two by two interaction as in the
present study, a power of 0.8, and a medium effect size f = 0.2
(0.05 α threshold), G-Power indicates that a total sample size of
sample of n = 26 is necessary (Erdfelder et al. 2009). Yet, because
we focused on an older adult population potentially showing
different effect of training than the young population on which
most of previous ICT studies were conducted, and that effect size
may have been overinflated in previous literature, we planned a
sample size of approximately 30 per group.

A total of 91 participants were finally recruited for the study:
Two older participants were excluded due to a failed MOCA
and one for consent withdrawal. This left 32 young and 29
older participants for the Go/NoGo intervention groups, and
28 older participants for the 2-back intervention group. Of note,
the young group mean age was in the lower range of the 18–40

year age-related inclusion criteria planned for this group
because the recruitment on the University campus was success-
ful and we did not have to recruit a larger (and possibly older)
population.

Experimental Procedure

Data were collected during two sessions in the EEG laboratory
of the Neurology Unit of the University of Fribourg and during
the intervention by an automatic upload from the tablets to our
server.

Older participants were randomly assigned to either the
experimental Go/NoGo training or to the control 2-back training.
A different laboratory member conducted the pre- and the post-
training session, allowing to blind the experimenter of the post-
training session to the training group of the participant and thus
to control that experimenters’ expectations on the effect of the
training did not confound our results.

During the first session, participants were first instructed to
read the informed consent form and to sign it if they agreed
to participate. The French version of the FAB and MoCA ques-
tionnaires were then administered to older participants. All
participants then filled a custom General Health Questionnaire
(GHQ) to screen for the inclusion/exclusion criteria, a custom
QoL questionnaire, and the French-translated version of the
Barratt Impulsiveness Scale (BIS-11; Patton et al. 1995).

Then, the experimenter installed the EEG system, and par-
ticipants completed a Go/NoGo task (6 blocks of 60 trials), a two-
back task and a Flanker task. Ten minutes breaks were proposed
between each task. When finished, the EEG was removed, and
the participants were instructed on the home-based training
intervention and given the tablet with the application. Of note
the experimenter explaining the training task was informed
about the condition assignment only after the end of the pre-
training session, just before instructing the participant about
the training tasks. Another experimenter blind to the condition
assignment was in charge of the post-training recording. At
the end of the pretraining session, participants received both
written and oral instructions on their training task. They were
informed that they had to practice the task they were assigned
to, but they were unaware of the existence of another group
performing a different task.

For the Go/NoGo training, participants were instructed to
drag and drop the food item as fast as possible only when it
belonged to a target category. For the 2-back training, partic-
ipants were instructed to drag and drop the item only if the
penultimate item belonged to the same category (see the Task
section for details). All participants were instructed that the goal
was to reach the highest score they could at each block.

After the 3 weeks of training intervention (5 days with 20 min
training per week), participants came back to the lab. They filled
three questionnaires: a custom debriefing questionnaire, and
the same BIS-11 and QoL questionnaire. Next, they completed



812 Cerebral Cortex, 2021, Vol. 31, No. 2

the same EEG Go/NoGo task as before the training, but with a
new randomized block order.

Questionnaires

The participants in the older and/or young adult group com-
pleted or were administered the following questionnaires: (1)
MOCA: a one-page 30-point test measuring general cognitive
functions with tests of visuospatial abilities, language, atten-
tion, short-term memory, and temporal orientation; (2) the FAB:
a short test of frontal efficiency assessing conceptualization,
mental flexibility, motor programming, sensitivity to interfer-
ence, IC, and environmental autonomy; (3) the BIS-11: 30 items
on a 1-to-4 scale on the frequency of impulsive behavior; (4) the
GHQ: a custom-made questionnaire on sleep and food, caffeine,
cigarettes and alcohol consumption at the day of the session,
self-report of height and weight, current or past health problems
(surgery, medications, visual and auditory acuity, etc.), and preg-
nancy; (5) the QoL: 10 items on a 1-to-10 scale on participants’
perceived capacity to concentrate and inhibit, self-control, and
every-day life satisfaction (e.g., “On a scale between 1 (‘Not at all’)
to 10 (‘Completely’): Are you satisfied with your ability to con-
centrate? ”); and (6) a Debriefing questionnaire: six questions on
the everyday life use of digital technology and feeling/perception
of the intervention.

Stimuli

The stimuli in the training task and in the pre- and post-training
EEG tasks were pictures selected from the Food-Pics database
(Blechert et al. 2014) and divided into 10 categories: meat, sand-
wiches, chocolate, bread, fruits, vegetables, chocolate cake, fruit,
cake, and cheese.

Pre- and Post-training Session

We used the E-Prime 3.0 software (Psychology Software Tools,
Inc.) for stimulus presentation and response recording.

Go/NoGo Task
Participants were instructed to respond as fast as possible to
a specific category of stimuli (Go) by pressing a button on a
response box with their right index finger, while withholding
their responses to another category of stimuli (NoGo). A total of 6
blocks of 60 trials were completed by each participant, separated
by 2 min breaks. Each block consisted of 36 Go and 24 NoGo trials
presented randomly. The Go and NoGo categories were pseudo-
randomly chosen across participants, so that the same NoGo
and Go categories were never used twice and the order of the
Go and NoGo used across blocks were different from the two
sessions of the participant.

Before the beginning of each block, participants were pre-
sented with spoken and written instructions about the Go and
NoGo stimuli category. During the blocks, the median response
time (RT) was continuously adjusted as the median of the pre-
vious correct Go trials to compute a response time threshold
(RTT). Accordingly, the initial RTT value corresponded to the
RT of the first correct Go trial and then dynamically changed
depending on the participant’s performance at each trial of the
block (median of RTs for correct Go). The RTT was then used
to provide feedback on response speed to the Go trials. This
procedure enabled to maintain the same level of time pressure

across participants and blocks, that is, independently of any ini-
tial interindividual differences in Go/NoGo performance and of
change in performance with the intervention (for corresponding
procedures, see e.g., Manuel et al. 2010; De Pretto et al. 2019). The
feedback on RT thus increased the tendency to respond when
a stimulus was presented, and in turn the need for inhibition
during NoGo trials.

Each experimental trial consisted in the sequential presen-
tation of (Fig. 1):

• a black fixation cross on a gray screen with a random dura-
tion between 1000 and 2000 ms,

• a red or green circle (randomly between 1000 and 2000 ms),
• the stimulus (500 ms) with a response window terminating

as soon as the participant responded, but with a minimal-
maximal duration of 250–1500 ms,

• a feedback on the performance (350 ms) that could be either:
a green check mark after fast Hit trials (response after a Go
stimulus, RT < RTT) or correct rejections (CR, no response
after a NoGo stimulus), an orange feedback “Too late!” after
hits with a RT > RTT, or a red cross after misses (no response
after a Go stimulus) or false alarms (FA; response after a NoGo
trial).

The participants were instructed that a stimulus preceded by
a green cue had a high chance of being a Go trial and the opposite
if preceded by a red cue. After a green cue, Go trials had a 70%
chance of appearing, and a 30% chance to appear after a red cue.
This parameter was implemented for gamification purposes and
was not considered in the present analyses. We still verified that
the mixing of both cue types in our analyses had no impact on
the results (see Supplementary Material).

We also recorded our participants’ performance during a
2-back and a Flanker task before and after the training (see
Supplementary Material). The data from the Flanker task could
not be used because due to a technical problem we could not
collect enough data to run reliable analyses. The data of the
2-back task will be the focus of a future study.

Intervention

The experimental Go/NoGo and the control 2-back interventions
were implemented as android applications developed on the
2018 version of Unity (Unity3d.com 2015). The two software are
available upon request to the authors.

Participants had to play four training sessions of 3 blocks
(1′45 each) per day, 5 days a week, for 3 weeks (total of 60∗5′15
practice time). In each block, participants were presented with
food pictures and instructed to drag the targeted items toward
the bottom of the screen. All experimental parameters (timing,
pictures, stimuli categorization, probability of targeted item, and
RTT rule) were the same as in the pre-/post-training tasks. Cues
on the probability of the forthcoming item type were given as
green, orange, or red cue before every stimulus. Go items were
likely to be presented after green cues (70%); less likely after
orange cues (50%); and unlikely after red cues (30%).

We designed the intervention tasks following well-estab-
lished video-game design principles to create a satisfying expe-
rience, reinforcing intrinsic motivation, and in turn engagement
and adherence (Hunicke et al. 2004; Schell 2008). To this aim,
we included a risk–reward system in which participants had
to validate a jackpot after successive correct responses to win
points. The more correct responses they accumulated in a row,
the larger the jackpot got. However, after an error, the jackpot
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Figure 1. Timing of the Go/NoGo task.

reset to zero, and the participant lost all uncashed points. In
the application starting screen, we included a progression his-
togram displaying the evolution of the participants’ response
time, accuracy, and score at each training day. For young partic-
ipants, a peer-ranking system and a score goal was introduced
and displayed after every session.

To reinforce the motivation to improve performance, feed-
backs were given on the participant’s performance based on
their score after every session: the higher was their score, the
happier was the character in the dialog box. In addition, before
starting a block, an advice was given on response strategy based
on their previous speed/accuracy response pattern (“Try to be
quicker!,” “Too many mistakes!” , “Pay attention to the jack-
pot,” “Congratulations, continue like that”). This procedure was
implemented to minimize potential drifts toward more cautious
or more impulsive response mode with training. We then pro-
vided a reminder on the task instruction and of the target “Go”
category. Visual and auditory arts were used to improve the
immersion, the experience of the participants and to support
the positive and negative feedback on performance.

Behavioral Data Recording and Pre-processing

Behavioral Dependent Variables
We recorded the RT to the Go stimuli (correct responses, or
“Hit” trials), as well as the rate of commission errors (incorrect
responses to NoGo stimuli, or “false alarms,”FA), and of omission
errors (no response to Go stimuli, or “Miss”).

The performance was assessed based on the mean RT of Hit
trials and on the mean FA rate.

Behavioral Data Pre-processing
For the data collected during the pre- and post-training sessions,
we first excluded hit and FA trials with a RT below 100 ms,
since these responses were forcibly unrelated to the presented
stimulus. Then, we removed blocks with response pattern
indexing a disengagement from the task or misunderstanding
of the instructions (such as above chance error rates, etc.) or
performance outside participant’s “normal” pattern. Exclusion

criterion were thus defined on principled grounds or based on
distributions parameters as follows:

• Blocks with FA rate above 0.7; miss rate above 0.2; FA rate
above the participant’s intrasession median + 0.2; miss rate
above the participant’s intrasession median + 0.1.

If more than half of the blocks in a given participant’s experi-
mental session were excluded, the participant’s whole data were
removed for that task.

Finally, hit trials with RT outside the 2.5∗standard deviation
upper and lower thresholds around the mean were excluded for
each participant and each session.

For data collected during the intervention, only hit and FA
trials with a RT below 100 ms were excluded before running the
analyses.

Statistical Approaches
For all our behavioral analyses, we set our statistical threshold at
alpha = 0.05 and used Holm-Bonferroni corrections for multiple
tests when necessary. We also choose to report the following
standardized effect sizes: r for t-tests and correlations, and ηG

2

for mixed ANOVAs. 2∗2 interactions were further explored using
pre- versus post-training dependent sample t-tests.

Given the limitation of the frequentist approach to provide
support for the null hypothesis, we further investigated the
nonsignificant 2∗2 interactions with Bayes factors (BF) analyses
using the R package BF (Morey et al. 2018) with default param-
eters (i.e., r scale fixed effects = 0.5; r scale random effects = 1;
number of iterations = 10 000). The probability of the data sup-
porting an absence of interaction (H0) is computed by dividing
the BF of the interaction model against the BF of the full model
without interaction, resulting in a BF01, where BF01 > 3 (i.e.,
H0 three times more likely than H1) is set as the significant
threshold (Dienes 2011).

Behavioral Data Analyses
If not otherwise specified, analyses were computed using the
basic R functions. The 2∗2 ANOVAs and their effect sizes were
computed using the “ez” R-package (Lawrence 2016).
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Table 2 Average number of trials and rejected epochs

Mean ± SD Young Go/NoGo training Older Go/NoGo training Older 2-back training

CR trials 99.8 ± 22.1 106.4 ± 17.9 110.3 ± 16.1
Rejected CR epochs 2.8 ± 7.6 1.7 ± 4.5 3.3 ± 6.8

Sanity Checks

As a sanity check for the effect of task practice, we expected the
participants’ performance in the training task to improve during
the training. This was tested by applying a linear model of the
two mean RT hit and mean FA rate Go/NoGo dependent variables
on the factor training days (day 1–15), computed separately
for the young and older group. Additionally, the differences
between the young and older models were assessed using the
interaction term of a group (older vs. young) × days general-
ized linear model (GLM) and reported in the Supplementary
Material.

As a sanity check for the sensitivity of our task to aging,
we examined if the older group indeed showed lower perfor-
mance than the young group at the pretraining Go/NoGo using
independent sample t-tests.

As criteria to ensure a loading of our Go/NoGo tasks on IC,
mean RT Hits around 400 ms and FA rates around 10–15% were
expected to ensure response prepotency and the involvement
of inhibition. These values are based on previous studies with
similar tasks and on the reasoning that they index speeded
response and a difficult inhibition (e.g., Hartmann et al. 2016,
2019; De Pretto et al. 2019).

We first tested whether ICT in older adults would improve
IC by focusing on the interaction term of a 2∗2 mixed design
with session (pre-; post-training) as within-subject factor and
training (Go/NoGo training; control 2-back training) as between-
subject factor applied to each of the behavioral dependent
variables (Hypothesis 1: The effect of the Go/NoGo versus 2-back
training in older adults.).

The generalization patterns of the Go/NoGo training was
assessed by applying the 2∗2 session by training mixed design
on our questionnaires on impulsivity and QoL to test for the
transfer of the effects of training on these constructs.

Then, we tested whether age interacted with ICT by focusing
on the interaction term of a 2∗2 session by age (young; older
adults) mixed design, again applied to each of the behavioral
dependent variables (Hypothesis 2: The effect of the Go/NoGo
training in the older versus young adults.).

The effect of age on the generalization patterns of the
Go/NoGo training was assessed by applying the 2∗2 session
by age mixed design on our questionnaires on impulsivity and
QoL to test for the effect of age on the transfer of the effects of
training on these constructs.

EEG Data Recording and Pre-processing

EEG Data Recording
The 64-channel electroencephalogram was recorded at a
sampling rate of 1024 Hz with a Biosemi ActiveTwo system
referenced to the common mode sense-driven right leg (CMS-
DRL) ground placed on each side of the POz electrode. This
circuitry consists of a feedback loop driving the average potential
across the montage as close as possible to the amplifier zero (cf.
the Biosemi website for a diagram). For the ERP analyses, offline

analyses were performed with the MATLAB-based EEGLab
toolbox (Delorme and Makeig 2004) and the Cartool software
(Brunet et al. 2011). Statistical analyses were performed with
the free toolboxes RAGU (Koenig et al. 2011) and STEN (http://
doi.org/10.5281/zenodo.1164038).

ERP Pre-processing
We first referenced the raw data to Cz electrode and applied
band-pass filtering between 0.5 and 40 Hz. Then, sinusoidal
artifacts (e.g., AC power line fluctuations) and nonstationary
signals were removed on the continuous data with the EEGLab
plugin CleanLine at 50 and 100 Hz (https://www.nitrc.org/proje
cts/cleanline) and artifact subspace reconstruction, respectively
(ASR, with settings recommended in Mullen et al. 2015; Chang
et al. 2018).

Then, EEG epochs were segmented 100 ms pre- to 700 ms
post-stimulus onset and baseline corrected on the whole epochs
to correct for any remaining signal drifts. The signal was then
further tested for artifacts by excluding epochs with timeframe
(TF) to TF jumps of more than 30 μV in at least one electrode. We
also excluded epochs with at least one TF with a voltage larger
than 80 μV in at least one electrode (Table 2). All data excluded in
the behavioral data preprocessing (see section above) were also
excluded for the EEG analyses, except the Hit trials above the 2.5
SD threshold.

Epochs were then averaged for each participant for the CR
trials of the Go/NoGo task. Once averaged, the ERPs were reref-
erenced to the common average reference.

Finally, we visually identified bad channel(s) in the averaged
ERPs and interpolated them using multiquadric interpolation
relying on radial basis functions (see Jäger et al. 2016; Jäger
and Buhmann 2018). An average of 1.4 electrodes (SD = 1.5) was
interpolated for the young group, 1.3 (SD = 1.5) for the older GNG
training group, and 1.5 (SD = 1.5) for the older 2-back training
group.

ERP Statistical Analyses

General Event-Related Potentials Analytical Strategy
We conducted global analyses of the ERP focusing on the power
and spatial distribution (i.e., the topography) of the whole elec-
tric field at the scalp. As compared with classical analyses of
local electrode amplitude and latency, global analyses of the
field potentials have the advantage of being independent on
the choice of the reference electrode. In addition, they enable
to differentiate effects due to modulations in the strength of the
responses of statistically indistinguishable brain generators (i.e.,
modulations in GFP but not topography) from alterations in the
configuration of these generators (i.e., modulations of the topog-
raphy of the electric field at the scalp; see e.g., Michel and Murray
2012; Tzovara et al. 2012 for extensive details on this approach).
Since a change in voltage amplitude can either follow from
changes in the strength and/or in the topography of the field
potential, local analyses can indeed not disentangle between the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa259#supplementary-data
http
://doi.org/10.5281/zenodo.1164038
://doi.org/10.5281/zenodo.1164038
https://www.nitrc.org/projects/cleanline
https://www.nitrc.org/projects/cleanline


Aging Modulates Prefrontal Plasticity Induced by Executive Control Training Najberg et al. 815

two different underlying neurophysiological mechanisms, and
thus have a limited interpretability.

Locking of the ERP to N2 Component Onset
Because of the typical delay in the early ERP components
induced by aging, we had to realign temporally the onset of
our later N2 and P3 component of interest between the two
group to allow for their comparison with the age × session
contrast. To this aim, we locked the ERP of the two groups
to the onset of the N2 before the statistical ERP analyses: For
each condition, we identified the TF used to lock the averaged
ERPs using a topographic temporal segmentation approach
(Supplementary Fig. 1). We submitted the group-averaged ERP
data of the young and the older adults to hierarchical clustering
based on an atomize and agglomerate analysis to identify the
latencies of the N2 and P3 components (Murray et al. 2008;
Brunet et al. 2011). This approach is based on evidence that
the ERP map topographies do not vary randomly in time, but
remains quasi-stable over 20–100 ms functional microstates—
that is, the ERP components, before rapidly switching to other
stable periods (Lehmann and Skrandies 1980; Pascual-Marqui
et al. 1995; Cacioppo et al. 2014). As in previous literature
with the same analysis (e.g., Laganaro et al. 2012; Fargier and
Laganaro 2016; Maitre et al. 2017), the optimal number of
clusters that explained the best the grand-average data sets
across conditions was identified using a modified version of the
cross-validation criterion combining a cross-validation criterion
and the Krzanovski-Lai criterion (Tibshirani and Walther 2005;
see also Murray et al. 2008). This analysis enabled identifying
the N2 and P3 ERP components’ onsets in our data in a
data-driven manner for all conditions, further enabling the
component-locking.

Global ERP Analyses
Modulations of the strength of the electric field at the scalp
were analyzed using the GFP index (Lehmann and Skrandies
1980; Koenig and Melie-García 2010; Koenig et al. 2011). GFP
is calculated as the spatial standard deviation of the electric
field (i.e., the root-mean-square of the difference between two
normalized vectors computed across the entire electrode set).
Larger GFP amplitudes indicate stronger electric fields which
can arise either from increase in the synchronization or in
the extent of the neural sources underlying the scalp-recorded
activity (Michel and Murray 2012).

Modulations of the topography of the electric field at the
scalp were analyzed using the global map dissimilarity (GMD)
index (Lehmann and Skrandies 1980). GMD indexes differences
in the configuration between two electric fields and is calculated
as the root-mean-square of the difference between the poten-
tials measured at each electrode for the different experimental
conditions normalized by instantaneous GFP. Because changes
in topography forcibly follow from changes in the configuration
of the underlying active sources (Lehmann and Skrandies 1980),
topographic modulations reveal when distinct brain networks
are activated across experimental conditions.

Since the GFP is insensitive to spatial (i.e., topographic)
change in the potential distribution, and that GMD is calculated
on GFP-normalized data, the GFP and GMD are orthogonal
measures and can thus be interpreted separately.

GFP and GMD were compared across experimental condi-
tions at each time frame using nonparametric randomization
statistics (Monte-Carlo bootstrapping): the differences in GFP

and GMD between the experimental conditions were compared
with a distribution of the differences derived from permuting
5000 times the conditions’ label of the data for each partici-
pant (i.e., to which experimental condition they corresponded;
Murray et al. 2008; Koenig et al. 2011; Tzovara et al. 2012).
The probability of obtaining a GMD and delta GFP values from
the permutations higher than the measured value was then
determined. The threshold for statistical significance was set at
P < 0.05, and to correct for multiple comparison and temporal
autocorrelation we set a minimal duration threshold for a signif-
icant effect to be considered. This minimal duration threshold
was determined as the shortest duration of consecutive signifi-
cant time-points that can be expected under the null-hypothesis
(shuffled data) with a probability of 0.05 (Nichols and Holmes
2002; Koenig and Melie-García 2010; Koenig et al. 2011).

The ERP analyses were used to identify the periods of interest
(POI) defined by sustained significant age × session and train-
ing × session interactions. Analyses at the source level were then
computed during these POIs.

Electrical Source Estimations
Brain sources of ERP modulations were estimated using a
distributed linear inverse solution model (a minimum norm
inverse solution) combined with the local autoregressive average
(LAURA) regularization approach, which describes the spatial
gradient across neighboring solution points (Menendez et al.
2001; Grave De Peralta Menendez et al. 2004). LAURA enables
investigating multiple simultaneously active sources and selects
the configuration of active brain networks that better mimics
biophysical behavior of neural fields. LAURA uses a realistic
head model, and the solution space included 3005 nodes,
selected from a grid equally distributed within the gray matter
of the Montreal Neurological Institute’s average brain. The head
model and lead field matrix were generated with the spherical
model with anatomical constraints (SMAC; Spinelli et al. 2000).
As an output, LAURA provides current density measures; their
scalar values were evaluated at each node. Assessments of the
localization accuracy of this inverse solution by fundamental
and clinical research indicate that the estimations and
the results of their statistical analyses can be confidently
interpreted at the resolution of the grid size (here 6 mm; e.g.,
Menendez et al. 2001; Michel et al. 2004; Gonzalez Andino,
Michel, et al. 2005a; Gonzalez Andino, Murray, et al. 2005b).
To correct for multiple testing and spatial autocorrelation, we
applied a spatial-extent correction (Ke) of ≥15 contiguous nodes
with a P-value < 0.05. This spatial criterion was determined
using the AlphaSim program (available at http://afni.nimh.nih.
gov) and assuming a spatial smoothing of 6 mm FWHM. This
program applies a cluster randomization approach. The 10 000
Monte-Carlo permutations performed on our lead field matrix
revealed a false positive probability of <0.005 for a cluster greater
than 15 nodes.

The ERPs were averaged for the POIs determined by the ERP
analyses, their sources calculated and then submitted to the
same two mixed age × session and training × session ANOVAs
as for the ERP analyses, again focusing on the interaction terms.

Results
Data Loss and Block Exclusion at Pre- and Post-training
Sessions

An average of 0.2% of trials were excluded after removing hit
and FA trials with RTs below 100 ms. One block was excluded

http://afni.nimh.nih.gov
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Table 3 Number of excluded blocks

Excluded block count (%) Young Go/NoGo training Older Go/NoGo training Older 2-back training

17 (4.4%) 11 (3.2%) 7 (2.1%)

Table 4 Linear regression of In-game performance

Young Go/NoGo
training (n = 32)

Older Go/NoGo
training (n = 29)

RT hit (ms) b0 = 453.4 b0 = 640.09
b1 = −3.69 b1 = −4.81
P < 0.001 P < 0.001
r = −0.278 r = −0.305

FA rate (%) b0 = 15.14 b0 = 7.58
b1 = 0.75 b1 = 0.73
P < 0.001 P < 0.001
r = 0.243 r = 0.319

Notes: b0 = intercept, b1 = slope, P = P-value of the slope, r = linear correlation of
the slope.

from the EEG data because of corrupted data files. The counts
of excluded blocks based on the outlier response thresholds are
reported in Table 3.

Sanity Checks

Performance Improvement During Training
Detailed results are reported in Table 4 and Figure 2. There was
a decrease in RT in both groups, as indexed by significant
negative linear regressions for both the young (b1 = −3.69,
t(477) = −6.32, P < 0.001, r = −0.278) and older participants
(b1 = −4.81, t(431) = −6.32, P < 0.001, r = −0.305).

There was an increase in FA rate in both groups, as indexed
by significant positive linear regressions in both the young
(b1 = 0.75, t(477) = 5.48, P < 0.001, r = 0.243) and older participants
(b1 = 0.73, t(431) = 6.98, P < 0.001, r = 0.319).

The results of the comparison between the young and older
fit, and of the change in 2-back performance in the older 2-back
training group are reported in the Supplementary Materials.

Sensitivity of the Executive Tasks to Aging
The Go/NoGo task was sensitive to the effect of aging: we repli-
cated the typical slowing of response speed during executive
tasks observed in older adult populations. For the RT, older
adults were slower than young adults at the pretraining session
(t(49) = −8.37, P < 0.001, r = 0.77). For the FA rate, we did not
find any difference between the young and older participants
(t(59) = 1.22, P = 0.23, r = 0.16).

Compliance to Instructions
We controlled that the participants followed the instruction to
respond as fast as possible and that the task loaded as expected
on the motor inhibition executive component with the following
analyses: At the Go/NoGo task baseline, older and young adults
had respectively an average of 439 and 389 ms RT on hit tri-
als, and 12.3 and 14.8% of FA rate (Tables 6 and 8). Please see
Supplementary Materials for further control analyses.

Contrast 1: The Effect of the Go/NoGo Versus 2-back
Training in Older Adults;

Session (Pre-; Post-training) by Training (Go/NoGo
Training; Control 2-back Training) interaction

Questionnaires
The 2-back training resulted in larger improvement in QoL
than the Go/NoGo training, although the effect size was small
(F(1,54) = 5.62, P = 0.021, ηG

2 = 0.014; Table 5).

Behavior
The full results of the session (pre; post-training) × training
(Go/NoGo; control 2-back) design are reported in Table 6 and
Figure 3. We describe in the results below only the interaction
term of interest.

For the RT, there was no session by training interaction. BF
analyses support this absence of interaction (BF01 = 3.12).

For the FA rate, there was a session by training interac-
tion driven by a moderately larger increase in FA rate in the
Go/NoGo than the 2-back training group (F(1,55) = 8.96, P = 0.004,
ηG

2 = 0.02).
Given the pattern of decrease in RT and increase in FA

rate revealed by the main effects of sessions, we investigated
whether a speed accuracy trade-off took place by comput-
ing the correlation between the decrease in RT between
the pre- and post-training session and the increase in FA
rate (Supplementary Fig. 3). We found a significant negative
linear correlation for both the older group with Go/NoGo
training (r(27) = −0.45, P = 0.015) and with the 2-back training
(r(26) = −0.45, P = 0.015). The more the RT decreased with training,
the more the inhibition error rate increased.

Electrical Neuroimaging
Results are reported in Figure 4.

There was a GFP session by training type interaction during
the P3 component (390–440 ms), without concomitant topo-
graphic modulation. Visual inspection of the ERP topography
over this period indicates that this effect as mostly driven by
a change in the GFP of the Go/NoGo training group.

Source estimations analyses localized this interaction in the
right parahippocampal gyrus, right presupplementary motor
area (pre-SMA), left superior frontal gyrus, and left IFG.

In the parahippocampal gyrus, the interaction was driven by
a decrease in activity in the Go/NoGo training group and an
increase in activity in the 2-back training group (ηG

2 = 0.033).
In the right pre-SMA, the interaction was driven by a decrease
in activity in the Go/NoGo training group and an increase in
activity in the 2-back training group (ηG

2 = 0.063). In the left
superior frontal gyrus, the interaction was driven by a decreased
activity in the Go/NoGo training group and an increase in activity
in the 2-back training group (ηG

2 = 0.06). In the left IFG, the
interaction was driven by a decrease in activity in the Go/NoGo
training group without change in the 2-back training group
(ηG

2 = 0.031).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa259#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa259#supplementary-data
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Figure 2. Change in behavioral performance over the 15 days of intervention for the two age groups (A. Young; B. Older). The group mean is in bold, and the individual
data points in gray. One young participant did not complete his last day of training and one older participant did not complete his last 2 days of training.

Table 5 Effect of the Go/NoGo versus 2-back training on the older group impulsivity (BIS-11) and QoL

Older Go/NoGo training (n = 29) Older 2-back training (n = 28)

Mean ± SD pre-
post-t-test

Pre-training Post-training Pre-training Post-training Training
main effect

Session
main effect

Training × Session
interaction

BIS-11 2.01 ± 0.24 1.98 ± 0.28 2.02 ± 0.22 1.99 ± 0.23 P = 0.894 P = 0.351 P = 0.998
P = 1 P = 1 ηG

2 = 0.000 ηG
2 = 0.004 ηG

2 = 0.000
r = 0.06 r = 0.06

QoL 7.92 ± 0.75 7.74 ± 0.69 7.56 ± 1.05∗ 7.76 ± 0.88 P = 0.471 P = 0.737 P = 0.021
P = 0.73 P = 0.73 ηG

2 = 0.008 ηG
2 = 0.000 ηG

2 = 0.014
r = 0.12 r = 0.11

Note: ∗One participant from the 2-back intervention did not complete the QoL questionnaire (n = 27 for this contrast).

Contrast 2: The Effect of the Go/NoGo Training in the
Older Versus Young Adults;

Session (Pre-; Post-training) by Age (Young; Older
Adults) interaction

Questionnaires
The Go/NoGo training had an opposite effect in the young and
older groups. It was associated with an increase in the Barratt
impulsivity measure in the Young group, but with a decrease in
the older group, although the interaction effect size was small
(F(1,59) = 5.04, P = 0.028, ηG

2 = 0.01; Table 7).

Behavior
The results are reported in Table 8 and Figure 5.

For the RT, there was no session by age interaction, with the
BF analysis indicating a 1.25 likelihood of the null as compared
with the alternative hypothesis (BF01 = 1.25).

For the FA rate, there was no session by age interaction,
with evidence for an absence of interaction at the BF analysis
(BF01 = 3.32).

Given the pattern of decrease in RT and increase in FA
rate revealed by the main effects of sessions, we investigated
whether a speed accuracy trade-off took place by correlating the
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Figure 3. Behavioral performance during the pre- and post-training Go/NoGo task. The response time on hit trials and the false alarm rate of the older adults in the

Go/NoGo and the 2-back training group are represented. Individual data points, means (bold circle), medians, first and third quartiles (horizontal bars), and the 1.5
interquartiles range (whiskers) are represented. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Table 6 Go/NoGo task behavioral performance (Training x Session)

Older Go/NoGo training (n = 29) Older 2-back training (n = 28)

Mean ± SD pre-
post-t-test

Pre-training Post-training Pre-training Post-training Training
main effect

Session
main effect

Training × session
interaction

RT hit (ms) 467.3 ± 42.2 410.6 ± 50.8 486.9 ± 55 432.7 ± 49.6 P = 0.099 P < 0.001 P = 0.767
P < 0.001 P < 0.001 ηG

2 = 0.044 ηG
2 = 0.245 ηG

2 = 0.000
r = 0.89 r = 0.86 BF01 = 3.12

FA rate (%) 12.5 ± 7.2 22.2 ± 12.5 12.1 ± 8.1 16.5 ± 9.7 P = 0.204 P < 0.001 P = 0.004
P < 0.001 P < 0.001 ηG

2 = 0.026 ηG
2 = 0.122 ηG

2 = 0.02
r = 0.77 r = 0.69

Table 7 Effect of the training on the older versus the young group impulsivity and QoL

Young Go/NoGo training (n = 32) Older Go/NoGo training (n = 29)

Mean ± SD pre-
post-t-test

Pre-training Post-training Pre-training Post-training Age main
effect

Session
main effect

Age × Session
interaction

BIS-11 2.04 ± 0.29 2.12 ± 0.29 2.01 ± 0.24 1.98 ± 0.28 P = 0.22 P = 0.285 P = 0.028
P = 0.54 P = 0.68 ηG

2 = 0.022 ηG
2 = 0.002 ηG

2 = 0.01
r = 0.06 r = 0.06

QoL 7.26 ± 0.9 6.98 ± 0.93 7.92 ± 0.75 7.74 ± 0.69 P = 0.001 P = 0.006 P = 0.498
P = 0.45 P = 0.45 ηG

2 = 0.161 ηG
2 = 0.019 ηG

2 = 0.001
r = 0.15 r = 0.12

decrease in RT between the pre- and post-training session to the
increase in FA rate. We found a significant negative correlation
for both the young (r(30) = −0.69, P < 0.001) and older group
with Go/NoGo training (r(27) = −0.45, P = 0.015). The more the RT
decreased post-training, the more error participants committed
in both groups.

Electrical Neuroimaging
Results are reported in Figure 6.

After locking the ERPs on N2’s onset (see Supplementary Fig. 1
for groups’ onset), we observed a sustained topographic session
by age group interaction during the N2 and early P3 components
(10–170 ms post-N2). Visual inspection of the ERP topography
over this period indicated that the interaction was mostly
driven by a change in topography in both the young and older
population.

Source estimation localized this interaction in the bilateral
SMA, left inferior parietal lobe (IPL), and rIFG. In the SMA, the
interaction was driven by an increased activity in the young
group and a decreased activity in the older group (ηG

2 = 0.042). In
the left IPL, the interaction was driven by a decreased activity in
the older group without change in the young group (ηG

2 = 0.021).
In the rIFG, the interaction was driven by an increased activity
in the young group and a decreased activity in the older group
(ηG

2 = 0.064).

Discussion
We identified the behavioral and brain functional plastic modi-
fications induced by a 3-week home-based gamified ICT (ICT vs.
a 2-back working memory training) in a group of older adults.
As a second step, we revealed how aging interacted with the
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Table 8 Go/NoGo task behavioral performance (Age by Session)

Young Go/NoGo training (n = 32) Older Go/NoGo training (n = 29)

Mean ± SD pre-
post-t-test

Pre-training Post-training Pre-training Post-training Age main
effect

Session
main effect

Age × session
interaction

RT hit (ms) 388.9 ± 29 345.1 ± 32.4 467.3 ± 42.2 410.6 ± 50.8 P < 0.001 P < 0.001 P = 0.09
P < 0.001 P < 0.001 ηG

2 = 0.47 ηG
2 = 0.3 ηG

2 = 0.01
r = 0.84 r = 0.89 BF01 = 1.25

FA rate (%) 14.8 ± 7.7 25.8 ± 11.7 12.5 ± 7.2 22.1 ± 12.5 P = 0.205 P < 0.001 P = 0.593
P < 0.001 P < 0.001 ηG

2 = 0.022 ηG
2 = 0.214 ηG

2 = 0.001
r = 0.75 r = 0.77 BF01 = 3.32

ICT by comparing its effects with those observed in a group
of young adults participating in the same inhibition training
intervention.

We found that older populations show a preserved capacity
for functional modification and behavioral change with ICT.
However, while as compared with a 2-back working-memory
training the ICT in the older adult induced purely quantitative
reductions of prefrontal activity during the P3 inhibition-related
ERP component, as compared with young adults the ICT induced
distinct configurational modifications in older adults medial–
frontal N2 conflict monitoring activity.

Inhibitory Control Training Alters Performance and
Modifies Response Strategies in Older as in Young
Populations

As expected, and replicating previous literature, we observed a
globally lower performance in the older than young adult group
in the IC tasks used for the training and the assessment of
its effect (Nielson et al. 2002; Vallesi et al. 2011; Heilbronner
and Münte 2013; Hong et al. 2014). These results confirm that
our intervention adequately targeted the inhibition processes
typically declining with aging.

The lower performance in the older group was characterized
by slower RT with similar FA rate both at the pre- and post-
training sessions. Interestingly, the training resulted in a corre-
sponding decrease in response time with an increase in false
alarm rates in the young and older adults training groups (non-
significant interaction factor for both RT and FA rate), meaning
that despite a difference in baseline performance, they had
a similar performance improvement in both quantitative and
qualitative terms. We interpret this as an evidence that, despite
the age-related cognitive deterioration, a relevant potential for
functional improvement is still preserved in older people, which
is also in line with our findings of a preserved electrophysi-
ological plasticity in this population. These changes in speed
and accuracy correlated with each other, indicative of a trade-
off toward more impulsive response strategies. Although the
autoadaptive response-time threshold may have contributed to
this shift by maintaining a constant pressure on response speed,
it does not account for the whole pattern of performance change
because accuracy was also emphasized via performance-based
feedbacks. This assumption is further supported by our finding
for smaller effect sizes of the increase in FA rate than those of the
decrease in RT, suggesting that the training still improved perfor-
mance. Indeed, according to the race model, a larger increase in
response speed than in accuracy necessarily indicates that the
speed of inhibition also increases (Logan et al. 2014; Verbruggen

and Logan 2015; see Manuel et al. 2010; Benikos et al. 2013;
Chavan et al. 2015; Hartmann et al. 2016 for similar behav-
ioral patterns with Go/NoGo training). Importantly, changes in
response strategy and performance improvement are not mutu-
ally exclusive, and likely both took place in the present study.
While changes in response strategy with ICT were not hypothe-
sized in the present study, they might be considered as potential
hypotheses in future investigation and even targeted and pro-
moted by emphasizing response speed or accuracy depending
on the specific aim of the intervention.

Regarding more specifically the comparison between the 2-
back versus ICT older adult group, we found that while the
reductions in response time were comparable between the two
groups, the ICT group showed a larger increase in false alarms
rates. We interpret this pattern as a larger shift to impulsive
response mode in the ICT group because they showed both more
FA and shorter RT in the post-training session.

When comparing changes in inhibition performance between
the two age groups, we found that the ICT had equivalent
behavioral effect despite initially slower response speed in the
older adult group, with this pattern manifesting both in the
gamified Go/NoGo training task and the Go/NoGo task given at
pre- and post-training. These findings suggest that the capacity
to improve performance with ICT is possibly modified but
certainly not reduced by the prefrontal structural deterioration
or the compensatory functional reorganization associated with
healthy aging.

The questionnaires on impulsivity and QoL finally revealed
that the ICT did not influence IC capacities beyond the trained
tasks. Indeed, while we observed a session by age interaction for
the impulsivity trait and a session by training interaction for the
QoL, the effect sizes were so small that the interactions cannot,
in our views, be considered as meaningful. This is in line with
current evidence for highly specific effect of executive training
(Sala and Gobet 2019). We cannot exclude, however, that a lack of
sensitivity of our measure accounted for our null results. Future
investigation may focus on well validated measure of real-life
influence of low-level motor IC processes, though such metrics
seem difficult to establish (Eisenberg et al. 2019).

In Older Adults, Inhibitory Control Training Improves
Central and Lateral Prefrontal Inhibition Processes

When comparing in older adults the effects of the ICT to those
of a control 2-back working memory training, we found that it
modulated the GFP of the P3 ERP component without influenc-
ing its topography. This pattern thus indicates that ICT influ-
ences response gain of the involved IC network, but not its
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Figure 4. Electrical neuroimaging results: Training by Session interaction. (A)
Exemplar group-average ERPs for correct NoGo trials in the older adults Go/NoGo
and 2-back training groups for the pre- and post-training sessions. (B and C)
Results of the GFP (B) and of the GMD topographic (C) training by session

interaction revealed a sustained significant GFP but not topographic interaction
during the P3 ERP component. The topographies of the ERP averaged over the
period of GFP modulation are represented nasion upward for the four experi-
mental conditions. (D) Source estimation analyses over the period of interest

defined in the analyses in the sensor space. The plots represent the means
(bold circle), medians, first and third quartiles (horizontal bars), and minimal–
maximal values (whiskers) of the current densities at the clusters’ local maxima
(i.e., the solution points with the lowest P-value) showing the training by session

interaction. SMA: supplementary motor area; PMC: premotor cortex; IFG: inferior
frontal gyrus; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

configuration. Mechanistically, ICT in older adults thus results
in a purely quantitative change in the activity of the inhibition
networks. Such reduction in activity with training have been
repeatedly observed with ICT and are thought to result from

a neural sharpening process improving efficiency (e.g., Manuel
et al. 2013; Chavan et al. 2015; Hartmann et al. 2016; Simonet
et al. 2019 for corresponding effects).

The latency of the effect at 400 ms during the P3 component
first indicates that the ICT modulated the implementation of
the motor suppression command (Smith et al. 2008; Albert et al.
2013; Gajewski and Falkenstein 2013). Consistent with this inter-
pretation and with previous localizations of the P3 generators,
the statistical analyses of the source estimations over this period
revealed a decrease in activity within the right preSMA/PMC, left
superior and inferior frontal gyri, and right parahippocampal
gyri modulation in the older adults with ICT.

These areas have been involved in IC in young adults
(preSMA; Rubia et al. 2001; Mostofsky et al. 2003; Li et al.
2006; Simmonds et al. 2008; Xue et al. 2008; Swick et al. 2011)
and/or have been shown to increase in activity with aging (Park
and Reuter-Lorenz 2009); they are thus thought to reflect a
compensation for the age-related deficits via “neurocognitive
scaffolding” mechanisms (Park and Reuter-Lorenz 2009; see also
Turner and Spreng 2012 for data on larger preSMA activity in
older adults during conflict processing and IC).

We thus interpret our findings as revealing both an improve-
ment in the functioning of the areas primarily involved in IC,
and a reduction in compensatory activity with training. Given
the proposed link between these functional changes with per-
formance improvements and shifts in response strategy, they
putatively support a better coping with task demands (e.g.,
Anguera et al. 2013; Heinzel et al. 2014).

As Compared with Young Adults, Older Adults’ Medial
Prefrontal Conflict Monitoring Shows a Different
Susceptibility to Inhibitory Control Training

The difference in the effect of the ICT between the young and the
older adults manifested as a topographic ERP interaction during
the N2 and early P3 component, indicating that the training-
induced distinct changes in the configuration of the inhibition
networks between the young and older populations. Hence,
aging does not simply influence the amplitude of the training-
induced plastic changes, but also the underlying mechanism.
This finding is compatible with previous evidence for an influ-
ence of baseline functional organization on executive control
plasticity (Cabeza et al. 2002; Cappell et al. 2010; Hsieh and Fang
2012; Sebastian et al. 2013; Reuter-Lorenz and Park 2014; Coxon
et al. 2016). Given the age-related structural deterioration of pre-
frontal cortices and the engagement of compensatory functional
activity in the older population, functional remodeling induced
by the ICT did not take place in the same way nor on the same
networks in young and older adults. We advance that these fac-
tors account for the observed difference in the network reconfig-
uration. However, the neurophysiological mechanisms driving
by these different functional changes remain to be determined
by studies combining microstructural and functional measures.

Our findings for plastic changes during the N2 and early
P3 indicate that aging modifies the sensitivity to ICT of the
conflict monitoring and initiation of the inhibition command
(Nieuwenhuis et al. 2003; Donkers and Van Boxtel 2004;
Schmajuk et al. 2006; Enriquez-Geppert et al. 2010; Gajewski and
Falkenstein 2013). Importantly, the N2 also indexes preparatory
processes occurring before the actual control of the motor
response, such as bottom-up attention of the detection of
response conflict (Albert et al. 2013). As mentioned above, the
period of the early P3 entails the implementation of the motor



Aging Modulates Prefrontal Plasticity Induced by Executive Control Training Najberg et al. 821

Figure 5. Behavioral performance during the pre- and post-training Go/NoGo task. The response time on hit trials and the false alarm rate of the young and older
adults with Go/NoGo training are represented. Individual data points, means (bold circle), medians, first and third quartiles (horizontal bars), and the 1.5 interquartiles
range (whiskers) are represented. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

inhibition process (Smith et al. 2008; Albert et al. 2013; Gajewski
and Falkenstein 2013). Interestingly, this result echoes findings
from a previous paper of our group in which we observed, after
a short 40 min ICT, a decreased activity in the SMA and an
increased activity in the left VLPFC in the older adults compared
with young adults during the N2 and P3 ERP components,
respectively (Hartmann et al. 2019).

Furthermore, the location of the interactions in the SMA,
rIFG, and left IPL is in line with previous literature showing
localization of the sources of the N2 and P3 components in
medial and ventrolateral prefrontal cortices (Hartmann et al.
2019). As also mentioned, activity in the preSMA and SMA has
been associated with the preparation and the implementation
of the motor suppression (Rubia et al. 2001; Mostofsky et al. 2003;
Floden and Stuss 2006; Li et al. 2006; Simmonds et al. 2008; Xue
et al. 2008; Chen et al. 2009; Swick et al. 2011), and correlates with
inhibition performance (Li et al. 2006). Given the medial position
of this cluster, our source localization algorithm may not have
differentiated whether it was more lateralized toward one of the
hemispheres. Given the typical control of motor activity by con-
tralateral motor area, we suppose the left pre-SMA activity may
have been predominantly modified by the training (Li et al. 2006).
The rIFG constitutes the key node of motor response inhibition
(Bernal and Altman 2009; Aron et al. 2014), and its microstructure
is influenced by ICT in older adults (Kühn et al. 2017). As for the
IPL, it is involved in sensorimotor integration, and contributes
to the conscious perception of motor intention (Fridman et al.
2011; Desmurget and Sirigu 2012). Accordingly, the left lateral-
ization of this effect likely follow from the involvement of the
contralateral right hand during the task; the training may have
modified differently stored movement representations and/or
how they are used, which is compatible with our hypothesis for
an differential effect of the training on processing phases related
to how younger and older participants cope with task demands.

Our observation for increased activity in the young and
decreased in the older adults suggests that training may have
developed different coping strategies in these two groups; we
speculate that in the older adults group, the training reduced the
compensatory strategies engaged to better cope with the task’s
demands (Turner and Spreng 2012 for a meta-analysis), whereas
the increase in activity in the young adults might reflect that

they recruited additional resources to cope with the increase in
task difficulty during the training.

Conclusion and Future Directions
Our collective findings finally indicate that while the ICT
induces equivalent behavioral changes in older and young
adults, the modulation of the IC neural processes associated
with these alterations in performance differs qualitatively
between the two groups. Hence, while the potential for
functional improvement is preserved in older adults, predictions
on the functional effect of executive control training in this
population could not be readily derived from models developed
in young populations. Our results also underline the state-
dependency of training-induced plasticity in executive control,
which strongly depends on baseline brain state.

In this regard, the training difficulty levels should be carefully
chosen in ICT programs. Likewise, systematic investigation on
the effect of adaptive algorithm for response time threshold,
and of the type of feedback provided on accuracy, would be
useful to optimize cognitive control intervention in older adults.
Whether a given training intervention improve performance
and/or influence response strategy indeed possibly depends on
difficulty levels and on the aspect of the task emphasized by the
instruction and in-task feedbacks.

To conclude, we would note that the home-based gamified
intervention was well received in both young and older
populations. Three weeks of training were achieved with
almost no dropouts, supporting previous claims that gamifi-
cation contributes to compliance to computerized cognitive
interventions (Mishra et al. 2016). Moreover, the intervention
successfully induced functional neuroplastic and behavioral
improvements. This also demonstrate possible applicability of
this method in cognitive rehabilitative settings, where it would
represent a valuable approach to provide an effective, easy to
implement, well accepted, home-based treatment for various
target populations.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa259#supplementary-data
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Figure 6. Electrical neuroimaging results: Age by Session interaction. A. Exemplar
group-average stimulus-locked ERPs for correct NoGo trials in the two age groups
with Go/NoGo training for the pre- and post-training sessions. The template

topographic maps of the temporal segmentation analysis used to define the
periods of the N2 and P3 components are represented nasion upward. B and C.
Results of the GFP (B) and of the GMD topographic (C) Age by session interaction
revealed a sustained significant topographic but not GFP interaction during

the N2 ERP component. The topographies of the ERP averaged over the period
of the topographic modulation are represented nasion upward for the four
experimental conditions. (D) Source estimation analyses over the period of

interest defined in the analyses in the sensor space. The plots represent the
means (bold circle), medians, first and third quartiles (horizontal bars), and
minimal–maximal values (whiskers) of the current densities at the clusters’ local
maxima (i.e., the solution points with the lowest P-value) showing the age by

session interaction. SMA: supplementary motor area; IPL: inferior posterior lobe;
IFG: inferior frontal gyrus; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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