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Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification
occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum
phosphate above the normal range since several observational studies in both general population and early-stage CKD patients
have identified the relationship between high-normal serumphosphate and adverse cardiovascular outcomes. Consumption of food
high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated
with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis.The decline in renal function and dietary
phosphate load can increase circulating fibroblast growth factor-23 (FGF-23) which may have a direct impact on cardiomyocytes.
Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart
failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis
and vascular smooth muscle cells (VSMCs) causing transformation to osteogenic phenotype. Excess of calcium and phosphate in
the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs). In CKD, these CPPs
contain less calcification inhibitors, induce inflammation, and promote VSMC calcification.

1. Introduction

The discovery of phosphorus occurred by accident in 1669
when a German alchemist named Hennig Brand boiled
down 60 buckets of urine in search of the “philosopher’s
stone,” a compound that would turn ordinary metals into
gold. The discovered compound glowed in the dark in pale-
green color, self-ignited and blew up into flame. He named
the compound “phosphorus,” which was taken from the
Greek word meaning “bearer of light” [1]. Due to the high
reactivity, phosphorus is never found as free element. White
phosphorus has been used in manufacturing bombs and red
phosphorus is used to make the strike plate of match boxes.
The common use of phosphorus in the form of phosphoric
acid nowadays is in the fertilizer industry.

Phosphorus is essential for life and exists in the body
as phosphate. Phosphates are components of RNA, DNA,
adenosine triphosphate (ATP), cell membrane, and bone. An
average adult contains approximately 700 gram of phospho-
rus which is the result of an intake and excretion of 1-2 grams

per day. Phosphate is excreted mostly in the urine. Only 0.1%
of body phosphate circulates in the blood.

Despite its importance, the accumulation of phosphate
can produce deleterious effects. Such example can be seen
in end-stage renal disease patients when widespread vascular
and soft tissue calcifications occur as a result of chronic
phosphate accumulation. In early stages of chronic kid-
ney disease (CKD), serum phosphate is normally main-
tained within the normal range owing to the compen-
satory increase in fibroblast growth factor-23 (FGF-23) and
parathyroid hormone up until the estimated glomerular
filtration rate (eGFR) reaching 30mL/min/1.73m2. Beyond
this point hyperphosphatemia begins to develop [2, 3]
(Figure 1). However, the accumulation of phosphate occurs
long before the rise in serum phosphate above the upper
normal limit since several observational studies in both
general population and early-stage CKD patients have iden-
tified the relationship between high-normal serum phos-
phate and adverse cardiovascular outcomes. The following
review will focus on the role of phosphate accumulation in
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Figure 1: Prevalence of hyperphosphatemia according to kidney
function. 𝑃 values represent the significance of trend. Reuse with
permission from Chartsrisak et al. [3].
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Figure 2: Serumphosphate according to kidney function. Vertical line
represents the change in slope.Modified from Chartsrisak et al. [3].

cardiovascular disease (CVD) beyond CKD and vascular
calcification.

2. Serum Phosphate and Outcomes

In CKD, the gradual increase in serum phosphate can be
observed since the beginning of stage 3 [2] (Figure 2). Several
studies in early-stage CKD patients have identified the rela-
tionship between increased serum phosphate but still within
the normal range with adverse cardiovascular and renal

outcomes and overall survival [5–8].The reported thresholds
of serum phosphate in nondialysis CKD stages 2–5 patients
that have been shown to predict adverse outcomes ranged
between 3.5 and 4.6mg/dL (Table 1). These data suggest
that phosphate accumulation occurs since early stages of
CKD prior to the development of hyperphosphatemia. More
interestingly, the relationship between high-normal serum
phosphate and adverse outcomes extends beyond CKD pop-
ulation. Among population with preserved renal function
(normally defined as eGFR >= 60mL/min/1.73m2), the
increase in serum phosphate not only displays a relationship
with makers of atherosclerosis, for example, vascular and
valvular calcifications, but also predicts atherosclerotic and
nonatherosclerotic cardiovascular events and mortality [9–
19]. The reported thresholds of serum phosphate for adverse
outcomes were lower than CKD population and ranged
between 2.5 and 3.8mg/dL (Table 1). Since two major factors
that determine serum phosphate level are dietary phosphate
and urinary excretion, it is likely that high dietary phosphate
is one of the mediators of such relationship.

3. Dietary Phosphate

The study that included both healthy and CKD subjects
revealed a circadian rhythm of serum phosphate after inges-
tion of phosphate-rich meal (Figure 3) [4]. Serum phosphate
is lowest in the morning and highest at 4 pm and midnight.
Consumption of 1500mg/day (normal phosphate diet) and
especially 2500mg/day of phosphate (high phosphate diet)
resulted in a higher fasting and peak serum phosphate
compared to consumption of 1000mg/day of phosphate plus
lanthanum carbonate (low phosphate diet). This circadian
rhythm also presents in CKD patients but is much less
pronounced. Another study in both healthy humans and
rats with varying degree of kidney function revealed similar
findings. A more rapid elevation of serum phosphate was
observed in humans and rats with higher levels of kidney
function [20].These data confirmed that high phosphate diet
results in a substantial increase in both fasting and post-
prandial serum phosphate. Therefore, a habitual intake of
high dietary phosphate is likely to chronically elevate serum
phosphate, eventually resulting in unfavorable outcomes
mentioned above. The study that examined a relationship
between increased serum and dietary phosphate with bio-
chemical markers of aging revealed significant associations
with telomere length, DNAmethylation content, and chrono-
logical age [21]. In this study, dietary derived phosphate
was closely related to the amount of red meat consumption.
Moreover, the relationship between serum phosphate (within
the normal range) and dietary phosphate with left ventricular
mass was observed in early stages of CKD patients as well
as in individuals with preserved renal function [22, 23]. In
a large cohort of healthy subjects with no known CVD,
dietary phosphate intake >1 gram/day was significantly asso-
ciated with greater left ventricular mass after adjustment for
confounders. Acute dietary phosphate load in healthy adult
subjects can impair endothelial-dependent flow-mediated
dilatation which may predispose to future atherosclerotic
CVD [24, 25]. The associations between increased serum
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Table 1: Thresholds of serum phosphate for cardiovascular events and mortality in early-stage CKD and general populations.

Studies (year) Populations Number Serum phosphate
(mg/dL) Outcomes

Kestenbaum et al. (2005) Women: Cr ≥ 1.2mg/dL
Men: Cr ≥ 1.5mg/dL 3490 >=3.5 All-cause mortality

Bellasi et al. (2011) CKD stages 3–5 1716 >=4.3 Combined ESRD and
all-cause mortality

Chartsrisak et al. (2013) CKD stages 2–4 466 >4.2 Combined ESRD and
all-cause mortality

McGovern et al. (2013) CKD stages 3–5 13292 >=4.6 Combined CV events
and all-cause mortality

McGovern et al. (2013) CKD stages 1-2 20356 >=3.86 Combined CV events
and all-cause mortality

McGovern et al. (2013) eGFR >= 90, no
proteinuria 24184 >=3.86 Combined CV events

and all-cause mortality

Tonelli et al. (2005) Previous acute MI, eGFR
>= 60mL/min 4127 >=2.5 All-cause mortality

>=2.5 Combined fatal and
non-fatal CV events

Dhingra et al. (2007) eGFR >= 60mL/min 3676 >=3.2 Incident CVD

Foley et al. (2008) 97% has eGFR >=
60mL/min 13822 >=3.8 All-cause mortality

Larsson et al. (2010) Men, eGFR >=
60mL/min 2176 >=2.8 All-cause mortality

Chang and Grams (2014) 95% has eGFR >=
60mL/min 12984 >3.5 All-cause mortality

>3.5 CV mortality
CKD = chronic kidney disease; ESRD = end-stage renal disease; CV = cardiovascular; CVD = cardiovascular disease; eGFR = estimated glomerular filtration
rate; MI = myocardial infarction.

Normal
High

Low

1200 1600 2000 2400 0400 08000800
Time of day

3

3.5

4

4.5

5

Se
ru

m
 p

ho
sp

ha
te

 (m
g/

dL
)

(a)

3

3.5

4

4.5

5

Se
ru

m
 p

ho
sp

ha
te

 (m
g/

dL
)

1200 1600 2000 2400 0400 08000800
Time of day

Normal
High

Low
(b)

Figure 3: Serum phosphate concentrations throughout the day in healthy controls (a) and CKD patients (b). High phosphate = 2500mg/day;
normal phosphate = 1500mg/day; low phosphate = 1000mg/day plus lanthanum carbonate. Adapted from Ix et al. [4]. Reuse under the copy-
right license of free access article from American Society of Nutrition. https://nutrition.org/publications/guidelines-and-policies/license/.

phosphate and increased consumption of dietary phosphate
additives with carotid intima-media thickness also exist [26,
27] In addition, dietary phosphate load can also increase
FGF-23 concentration and the increase in FGF-23 has been
linked to cardiac hypertrophy and adverse cardiovascular
outcomes [28–30].

4. Fibroblast Growth Factor-23

FGF-23 is produced by osteoblasts and osteocytes in the bone
under physiological condition. In the kidney, FGF-23 binds
to FGF receptor in the proximal tubule in the presence of
coreceptor klotho resulting an inhibition of proximal tubular

https://nutrition.org/publications/guidelines-and-policies/license/
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phosphate reabsorption and a suppression of 1,25-dihydroxy
vitamin D synthesis [31]. In CKD, FGF-23 levels increase
since stage 2 and continue to rise as CKD progresses. In CKD
stages 5-5D, FGF-23 levels are normally several hundred folds
above the normal range [2, 32]. In healthy subjects, FGF-
23 increases after hours of dietary phosphate load; however,
a 4-hour intravenous infusion of phosphate does not alter
FGF-23 level at 6 hours, whereas chronic phosphate infusion
results in an increase in FGF-23 at 24 hours [28–30, 33, 34].
These data suggest a rather indirect influence of phosphate on
FGF-23 secretion. The situation may be somewhat different
in CKD when these patients are predisposed to phosphate
accumulation due to reduced renal function. To date, the
exact relationship between phosphate and FGF-23 in CKD
remains unclear. In epidemiological studies, both eGFR and
serum phosphate correlate closely with FGF-23 levels [35,
36]. Similar to healthy subjects, dietary phosphate load in
subjects with impaired renal function results in an increase
in circulating FGF-23 [37]. However, both experimental
and epidemiological studies have confirmed the increase in
circulating FGF-23 since CKD stage 2 prior to any significant
accumulation of phosphate. This early increase in FGF-23
drives a dip in serum phosphate from baseline as a result
of heightened urinary phosphate excretion (Figure 2) [2, 38].
These evidences indicate that, initially, the stimuli for FGF-23
secretion is the decline in eGFR followed by the accumulation
of phosphate in the later period.

Several studies in populations with preserved renal func-
tion and early CKD have linked FGF-23 to left ventricular
hypertrophy and decreased left ventricular ejection fraction
[39–42]. Increased circulating FGF-23 has also been shown
to predict incident and worsening heart failure, atrial fibrilla-
tion, cardiovascular events, and mortality [40, 43–55]. One
of the important evidences that connects high circulating
FGF-23 to abnormal cardiac structure and function is the
direct effect of FGF-23 on cardiomyocytes. Pathological level
of FGF-23 can induce cardiomyocyte hypertrophy through its
binding to FGF receptor-4 in a klotho-independent manner
[56, 57]. Further evidence also indicates that the stressed
myocardium under pressure or volume overload can also
produce FGF-23 resulting in a marked increase in FGF-23
level [58]. These data suggest that the stimuli for FGF-23
secretion include not only diminished renal function and
phosphate load but also myocardium under stress. The latter
explains the rather consistent relationship between increased
FGF-23 levels with cardiac hypertrophy and heart failure in
the population with preserved renal function. Furthermore,
the antagonistic effect of FGF-23 on 1,25-dihydroxyvitaminD
can also trigger renin-angiotensin-aldosterone system result-
ing in an increase in sodium reabsorption [54, 59]. Recent
evidence also suggests that FGF-23 is a negative regulator of
erythropoiesis and may promote inflammation [60–62].

5. Extracellular Phosphate and Cytotoxicity

Increased extracellular phosphate can induce vascular
smooth muscle cell (VSMC) transformation to osteogenic
phenotype [63]. These osteogenic VSMCs can release matrix
vesicles in a similar fashion to osteoblasts but with less

calcification inhibitor, matrix-gla protein. Dying VSMCs
also form apoptotic body. Both matrix vesicles and apoptotic
bodies have the ability to concentrate and crystalize calcium
and phosphate in the preparation for mineralization [64].
In addition to the effect on VSMCs, increased extracellular
phosphate can also induce endothelial cell apoptosis [65].
Recent knowledge on extracellular phosphate and cytotoxi-
city is derived from works related to the formation of pro-
tein-mineral complex or calciprotein particles (CPPs).
First, fetuin-A, a naturally occurring calcification inhibitor,
binds and sequesters calcium and phosphate forming
primary CPPs. Primary CPPs then undergo topological
rearrangement to form a more stable structure referred to
as secondary CPPs. These CPPs exist as colloids and do not
precipitate spontaneously [66]. Serum CPP levels increase
as kidney function declines and correlate independently
with serum phosphate. CPPs can be detected since early
stages of CKD when baseline serum phosphate is still within
the normal range [67, 68]. At first, CPPs were believed
to play a protective role in sequestering and inhibiting
calcium-phosphate crystal growth. However, several obser-
vational studies have identified the relationship between
increased circulating CPPs, especially secondary CPPs,
with inflammation, coronary artery calcification, aortic
stiffness, and mortality [68, 69]. It is possible that CPPs are
bioactive ligand that can induce cellular toxicity. Indeed, in
vitro studies have shown that secondary CPPs (not primary
CPPs) can induce inflammation and promote osteogenic
differentiation of VSMCs [70, 71]. The recent study has also
identified the difference between CPPs from healthy subjects
and CPPs from CKD patients. Secondary CPPs from CKD
patients have lower levels of calcification inhibitors, fetuin-A,
and Gla-rich protein, with increased mineral maturation.
These secondary CPPs are readily taken up by VSMCs and
induce vascular calcification [72].

In conclusion, phosphate accumulation produces detri-
mental effects on cardiovascular system resulting in poor
patient outcomes. The accumulation of phosphate occurs
long before the rise in serum phosphate above the nor-
mal range. High phosphate diet can increase serum phos-
phate and FGF-23. FGF-23 has a direct effect on cardiac
myocytes causing myocardial hypertrophy. Increased extra-
cellular phosphate is toxic to endothelial cells, promotes the
formation of CPPs, and induces VSMC transformation to
osteogenic phenotype.
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