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Abstract: Spondylolisthesis refers to the displacement of a vertebral body relative to the vertrabra
below it, which can cause radicular symptoms, back pain or leg pain. It usually occurs in the lower
lumbar spine, especially in women over the age of 60. The prevalence of spondylolisthesis is expected
to rise as the global population ages, requiring prudent action to promptly identify it in clinical
settings. The goal of this study was to develop a computer-aided diagnostic (CADx) algorithm,
LumbarNet, and to evaluate the efficiency of this model in automatically detecting spondylolisthesis
from lumbar X-ray images. Built upon U-Net, feature fusion module (FFM) and collaborating with
(i) a P-grade, (ii) a piecewise slope detection (PSD) scheme, and (iii) a dynamic shift (DS), LumbarNet
was able to analyze complex structural patterns on lumbar X-ray images, including true lateral,
flexion, and extension lateral views. Our results showed that the model achieved a mean intersection
over union (mIOU) value of 0.88 in vertebral region segmentation and an accuracy of 88.83% in
vertebral slip detection. We conclude that LumbarNet outperformed U-Net, a commonly used method
in medical image segmentation, and could serve as a reliable method to identify spondylolisthesis.

Keywords: deep learning; LumbarNet; lumbar spine; spondylolisthesis; U-Net

1. Introduction

The human spine supports the central axis of the body and comprises seven cervical,
twelve thoracic, five lumbar, five sacral, and four coccygeal vertebrae. The lateral side
of the spine presents a double S-bend, which forms a physiological curvature along the
neck, chest, abdomen and pelvis to provide flexibility during movement [1,2]. Spinal
degenerative diseases often appear at the lower parts of the lumbar (L4-S1) and cervical
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spine (C4-C7) since they are subject to the highest dynamic and static forces [2,3]. Spinal
deformities due to spinal degeneration can compress or pull on the nerve roots, resulting
in radicular symptoms, back pain or leg pain.

Spondylolisthesis is the displacement of a vertebral body relative to the vertebra below
it [4–6]. Anterolisthesis and retrolisthesis refer to the forward and backward displacement,
respectively, relative to the vertebra below [6,7]. Approximately 50%–81% of spondy-
lolisthesis cases result from lumbar spondylolysis [4]. Spondylolisthesis has a variety of
etiologies, such as hereditary factors, disc degeneration, and frequent engagement in activi-
ties involving repetitive lumbar hyperflexion and high rotation loads. Groups at high risk
of developing spondylolisthesis include manual workers, weightlifters, gymnasts, dancers
and football players [5,7]. Retrolisthesis has historically been considered an incidental
finding that does not result in clinically significant symptoms. However, more recent
studies have shown that its prevalence was in fact higher than otherwise suggested [8]. It
can be observed in people with degenerative spinal conditions, post-spinal trauma, lumbar
disc herniation or adjacent segment disease. The rate of retrolisthesis as detected from
extension radiographs can reach up to 30% among people with chronic low back pain.

While computed tomography (CT), magnetic resonance imaging (MRI), and bone
scans are useful for identifying the lesion site [5], physicians generally recommend lateral
lumbar plain film radiographs in conjunction with flexion and extension views to assess
spondylolisthesis and the degree of spinal instability. These specific radiographic views
offer quick results, are inexpensive, and can be easily obtained in a clinic or primary
hospital. The Wiltse–Winter classification distinguishes spondylolisthesis into six types
by etiology (dysplastic, isthmic, degenerative, traumatic, pathologic, iatrogenic), with
the most common being isthmic, degenerative, and dysplastic [5,7]. Spondylolisthesis,
especially the dysplastic and degenerative types, can result in spinal canal stenosis, low
back pain or leg pain, and neural compression symptoms [7,9]. To distinguish between
true spondylolisthesis and pseudospondylolisthesis (the degenerative type), Bryk and
Rosenkranz proposed the spinous process sign on X-ray images: in spondylolisthesis, the
dorsal aspect of the spinous process reveals a step-off above the level of the vertebral slip;
whereas, this sign presents below the level of vertebral slip in pseudospondylolisthesis [10].

Moreover, the Meyerding classification with five variants is widely used in clinical
practice and research owing to its simplicity and ease of application [7,11]. The degree
of slippage is classified into five grades by evaluating the extent to which the superior
vertebra is displaced relative to the inferior vertebra. Specifically, the ratio of the bare
displacement value of the upper vertebra (A) to its width (B) is calculated to obtain a
P-grade (as illustrated in Figure 1). Table 1 outlines the relationship between the P-grade
and the degree of vertebral slippage. With 50% as the threshold, a P-grade that is either less
or more than 50% corresponds to mild or severe slippage, respectively. Of note, a P-grade
greater than 100% represents a complete vertebral slippage, the most serious presentation
of the condition [12].

Table 1. Classification of the vertebral slippage degree.

P-Grade (A/B) % Description

Grade 1 0–25% Low gradeGrade 2 26–50%
Grade 3 51–75% High gradeGrade 4 76–100%
Grade 5 Complete dislocation of vertebral body (>100%) Spondyloptosis

The latest statistics from the AO (Arbeitsgemeinschaft für Osteosynthesefragen) Foun-
dation revealed that the annual global incidence of degenerative spinal diseases and spondy-
lolisthesis were 3.63% and 0.53%, respectively [13]. With an aging global population, spinal
diseases are becoming increasingly prevalent, and are thus expected to place a greater
strain on economies and healthcare systems. In particular, with the lack of resources and
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medical staff, physicians will be faced with an increased workload regarding the diagnosis
or prognosis of spinal diseases such as spinal deformities [14–16], spondylolisthesis [17,18],
spinal stenosis [19,20], herniated intervertebral disc (HIVD) [21–23], etc. While several
therapeutics are available for spondylolisthesis, surgery remains the mainstay of treat-
ment in patients where conservative management options have failed. However, it is
still unclear whether the optimal surgical treatment is the use of decompression alone, or
decompression in combination with either non-instrumented or instrumented fusion [24].
In particular, for people with co-existing spinal disorders, a comprehensive diagnosis and
selection of favorable treatment represent challenges for physicians. Therefore, accurate
and automatic solutions in detecting or formulating treatment plans for spinal diseases,
including spondylolisthesis, are required.

Image segmentation is used to divide a digital image into multiple elements or regions
and is widely applied in various fields, especially in medicine. The rapid development
of machine learning in general and deep neural network in particular have accelerated
advances in automated image recognition, with convolutional neural networks (CNNs)
yielding considerable improvements in semantic segmentation [25–28]. Segmentation tech-
niques are fundamental to object identification in medical images, such as those obtained
using X-ray, MRI, and CT scan [21]. The main task of semantic segmentation is to iden-
tify the class labels in a pixel-by-pixel manner given the context of an image [25,29]. In
medicine, this technique has typically been applied to images of cancer cells, muscle tissue,
the aortic wall, and the skeletal system [30]. The implementation of deep-learning-based
image segmentation, detection, and classification in lumbar spine radiographs, however,
has been relatively scarce, due to the marked contrast of X-ray images and complexity of
spinal structures [31].

Formulated to detect the vertebrae, the active shape model (ASM) segments X-ray
images of the vertebrae by using edge polygon approximation [32]. Although the ASM
exhibited favorable efficiency in experiments, its execution time and applicability in clinical
settings remained areas of concern. Therefore, the authors proposed a parallel hybrid
implementation, in which vertebral features are extracted with multiple graphics or central
processing units (GPU or CPU) running in parallel to enhance performance.

S1

L1

L2

L3

L4

L5

AB

S1

Figure 1. Lumbar spondylolisthesis. L: lumbar vertebra, S: sacral vertebra, A: slip distance between
two vertebrae, B: width of the superior vertebra.



J. Clin. Med. 2022, 11, 5450 4 of 17

Ronneberger et al. formulated U-Net, an end-to-end training network that contains an
encoder–decoder network structure bearing a symmetrical U-shaped structure that uses
paired primitives and markers during training. The model was then trained by U-Net to
process a cellular image to output a binary map. U-Net is characterized by its superior
training performance on data sets covering a small set of examples, achieving an accuracy
of up to 92% in an experiment with medical images (512× 512 in resolution) when executed
using GPU acceleration [33].

Konya et al. trained a model on 730 X-ray images of the lateral lumbar spine by using
deep neural networks. Their workflow, from start to finish, comprised data retrieval and
preparation, model training and output, and analysis [34]. Various methods, including
U-Net [33], Mask R-CNN [35,36], PSPNet [37], DeepLabV3 [38], and YOLACT [39], were im-
plemented. Four indexes of accuracy were adopted, namely pixel accuracy average, mean
intersection over union (IOU) average, mean accuracy average, and frequency weighted
IOU average. Both U-Net and YOLACT exhibited favorable segmentation performance.
The results demonstrated that these methods could support decision-making in future
processing pipelines.

With regard to the measurement of critical values of the lumbar vertebrae, Cho et
al. developed a machine learning- and computer vision-based method to quantify the
extent of lumbar lordosis (LL) from radiological images. A total of 780 lateral X-ray images
were used for training, testing, and data augmentation to improve contrast, and intensity
normalization was performed to synthetically generate 12,580 images for training. Their
U-Net segmentation achieved a dice score of 0.821 and a mean absolute error for LL of
8.055◦ [40].

One limitation of the U-Net architecture is that it does not bear any fully connected
layers. Furthermore, only the verification part of each convolution is used, which allows
the segmentation map to contain each pixel of the input image in its full context. In
addition, U-Net acts similar to masking two groups of segmented regions, with one being
the foreground and the other being the background. To improve the accuracy of semantic
segmentation, SegNet with a pixel-wise classification layer was proposed, which showed
favorable efficiency since it saves the max-pooling indexes of feature maps in its decoder
network. However, both efficiency and accuracy are key in semantic segmentation, and
necessitate improvement in pixel-wise segmentation [41]. The feature fusion architecture
was first used in a feature fusion single-shot multibox detector (FSSD). The feature fusion
module (FFM) generates detailed feature maps in the object detection part [42]. A bilateral
segmentation network bearing a two-path architecture composed of a spatial path and a
context path, was constructed by Chen et al. [43], and Yu et al. [44], in which the spatial path
could preserve the spatial information of original images. The network reached 105 frames
per second (FPS) in the Cityscapes data set, which contained images with a resolution of
1024 × 2048. Specifically, we followed the description outlined by Yu et al. and termed our
two blocks “multiply” and “add”. The “multiply” block was used to re-weight a feature
map based on a feature-fusing map, while the “add” block added two feature tensors. This
design is very similar to those used in most current and standard self-attention modules.
Drawing on these works, we formulated a deep learning method that combines U-Net,
FFM, and various image processing techniques to detect any abnormal slippages in lumbar
X-ray images performed in the true lateral, flexion and extension lateral positions. To the
best of our knowledge, this study is the first to construct a fully convolutional network for
detecting spondylolisthesis from lumbar X-ray images. In particular, we determined the
threshold values (K values) that signify the presence of vertebral slippage and evaluated
the accuracy of our model. Based on U-Net and image measurement analysis, we hope
to provide an automatic detection method of spondylolisthesis in X-ray images with high
accuracy and low false-negative rate, and that this model will serve as a potential solution
for healthcare systems in the near future.

Our study makes several primary contributions:
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• This is the first study to address the problem of identifying lumbar slippage in true
lateral, flexion and extension lateral views of X-ray images.

• LumbarNet presents a novel design for the detection of spondylolisthesis by using
piecewise slope detection (PSD), dynamic shifting (DS), and the hybrid judgement of
P-grade and PSD value to enhance slippage identification in the lumbar spine.

• Our method is robust against the presence of lumbar sacralization and reaches a high
accuracy accordingly.

2. Materials and Methods
2.1. LumbarNet for Segmenting Vertebral Regions from X-ray Images

To detect lumbar slippage, all lumbar vertebrae and the sacral region must first
be accurately segmented on X-ray images. In traditional image processing, either the
binarization method with a determined threshold or an automatic binary method, such as
Otsu, is used. However, the ROIs obtained using the former method are greatly influenced
by the distribution of grayscale values in the foreground and background. Due to the
various contrasts of X-ray images, we formulated LumbarNet, a deep convolutional neural
network, instead of using traditional computer vision methods.

LumbarNet can be distinguished from U-Net by its “feature fusion module (FFM)”.
U-Net, used in medical image segmentation, consists of two convolutional networks paths,
a contraction and an expansion path, alternatively known as the encoder and decoder,
respectively. The contraction path functions to extract features from the input image, and
the expansion path samples the extracted features and generates the segmented images.
However, U-Net, triggered by binary-cross entropy loss, generally cannot produce stable
segmentation results if the quality and characteristics of a testing sample are not consistent
with those of the training data set. To improve the encoder’s efficiency, we added the
feature fusion module (FFM) to the encoder path. The FFM consists of convolutional layers
with a stride function, batch normalization and rectified linear unit (ReLU) activation
functions, average pooling layers, add operators, and a multiply operator. It was designed
to reorganize the latent feature extracted by the encoding path, so that a more represen-
tative feature for lumbar segmentation could be obtained. Figure 2 details the schema of
LumbarNet, including the encoder types, decoder type, and FFM.

The input layer of LumbarNet has a size of 512 × 512 × 3. LumbarNet comprises
two main paths: a spatial and a downsampling path. The spatial path, preserving the
spatial information and generating high-resolution features, contains three layers. Each
convolutional layer has stride = 2, followed by batch normalization and Rectified Linear
Unit (ReLU). It encodes most of the rich and detailed messages in the low levels, while the
robust features extracted from the downsampling path are in the high levels.

FFM fuses these two feature paths at different levels. Firstly, the outputs of the spatial
and the downsampling paths are concatenated through the features from different levels.
Then, the scales of the features retain the balance by using the batch normalization. Next, a
global pool is used for the concatenated features to form a feature tensor, and the weight
is computed by a sigmoid function. This weight tensor can re-weight the features by
multiplying the concatenated features and adding to the feature selection.

The same number of channels in the encoder and decoder is maintained by adding
skip connections between the corresponding blocks in the downsampling and upsampling
paths. The skip connections are used explicitly to copy features from the earlier layers to the
subsequent layers. Nodes from the shallow layer and deep layer are concatenated through
these skip connections. The deeper layer is then treated as a wider layer and is connected to
the next layer. We used a dropout layer between these two convolutional layers to prevent
overfitting and co-adaptation of the features. There are a total of 29 convolutional layers in
the network. In the final layer, a 1 × 1 convolution, five-dimensional space, and a sigmoid
activation function are used to output the probability map of the semantic segmentation,
bearing the same size as the original 512 × 512 input. The detailed network structure with
the parameter settings is illustrated in Figure 3.
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Figure 2. Architecture of LumbarNet.

LumbarNet uses a pixel-wise softmax function to calculate the loss function, and the
cross entropy loss is defined as follows:

E = −
n

∑
i=1

w(x)logp(x). (1)

By classifying each pixel as an end-to-end image for learning and output, the inference
and image processing operations of LumbarNet are executed according to the following
procedure to confirm whether a patient has spondylolisthesis or not.
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Figure 3. LumbarNet uses an end-to-end architecture for object semantic segmentation. It takes
a three-channel input image at a resolution of 512 × 512 and produces an output containing five
channels.

2.2. Detection of Lumbar Spondylolisthesis

The original image was resized to 512 × 512 pixels. Next, LumbarNet was used to
generate the output image. Nearest-neighbor interpolation was then applied to scale the
segmented image to its original size. The segmented image has three labels, namely the
background, vertebral regions, and the sacrum. Thereafter, ROIs on the labeled image could
be extracted using the contour finding method. Through the use of eight connected compo-
nents, each vertebral and sacrum region can be detected. Finally, the fitted quadrilateral of
the vertebral region is calculated using a pole.

2.2.1. P-Grade

There are five lumbar vertebrae in total. The quadrilateral of each vertebra Li has
four extreme points, where i ∈ {1, 2, 3, 4, 5}. The upper-left, upper-right, lower-right, and
lower-left points of a lumbar vertebra Li are pLi,1 , pLi,2 , pLi,3 , pLi,4 , respectively. The sequence
of the four points of each vertebra runs counterclockwise from the upper-left point. In
addition, the top plate of the sacrum is represented by two points, namely the left psacral1
and right psacral2 points, as illustrated in Figure 4.

After these feature points are detected, a P-grade for the difference between the left
and right vertebral segments is calculated, with a value >20% indicating abnormality. The
process of determining abnormality from one X-ray image is illustrated in Figure 5.



J. Clin. Med. 2022, 11, 5450 8 of 17

PL1,1 PL1,2

L1
PL1,3

PL1,4

L2

L3

L4

L5

Psacral,1

Psacral,2

Original image AI inference and image 
Processed  result

Feature points for each 
vertebrae

Figure 4. Original image (left), processed image (middle) with different colors to distinguish verte-
brae from L1 to S1, and calculated feature points of each vertebra and sacrum (right).
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PGrade >k1? PSD >k2? 

Slippage  Non-Slippage  

N 

Y 
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Figure 5. Process of detecting abnormal vertebral slippage in X-ray images by using P-grade.

Each P-grade corresponding to the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 levels is
calculated, and the algorithm checks whether it is greater than K1, as indicated in the
following equations:

fpgrade(m, n) = pgrade(i, j) > K1, (2)

pgrade(i, j) =
D(Pi,proj, Pj,2)√
‖Pj,1 − Pj,2‖2

, (3)

D(Pi,proj, Pj,2) =
√
‖Pi,proj − pj,2‖2 (4)

where fpgrade is the shift value of the lower plate of the i-th lumbar vertebra relative to the
upper plate of the j-th lumbar vertebra. Both i and j are indexes of the proximal vertebral
regions, specifically i ∈ {L1, L2, L3, L4, L5} and j ∈ {L2, L3, L4, L5, S1}. Subsequently, the
algorithm determines the projected point pproj between the point pi,3 and line Lj, the end
points of which are pj,1 and pj,2. Thereafter, the distance Dpi,3,Lj between the projected point
and upper right point, pj,2, of the j-th lumbar vertebra is computed. In addition, fpgrade is
computed by dividing D(Pi,proj, Pj,2) by the upper-plate length of the j-th lumbar vertebra,
as illustrated in Figure 6. The projected point is either within or beyond the segmented line,
which marks the upper plate of the j-th lumbar vertebra.
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Figure 6. Five lumbar vertebrae with four points and the sacrum with two points. The projected
point may lie either within or beyond the segmented line.

2.2.2. Piecewise Slope Detection (PSD)

As mentioned, each lumbar vertebra has four extreme points, pLi,1 , pLi,2 , pLi,3 , and
pLi,4 . The vertical shift angle is measured and used to directly detect the variation in angle
between the proximal lumbar region and its gap. The angle θ is calculated using the cosine
theorem for the gap between the upper and lower points and the corresponding vertical
line. Because slippage of the lumbar vertebrae is present in anterolisthesis and retrolisthesis,
both the left and right sides of the lumbar vertebrae are considered in the calculation of
the degree. Specifically, the angles θα and θβ correspond to the left and right sides of each
vertebra, respectively. The subscripts α and β correspond to the difference in the slope for
the left and right vertebral segments, respectively. The PSD method detects slippage using
the following equations:

fslippage(m, n) = |θi,j − θi,j+1| > K2, (5)

θ(i,j) = cos−1
~U · ~V

‖U‖ × ‖V‖ , (6)

where i ∈
{

α, β
}

, j ∈
{

1,2,...,10
}

, and (m, n) are for the proximal vertebrae from L1 to S1
and are in adjacent paired regions. If (m, n) is equal to (L1, L2), then slippage might be
present between the first and second lumbar vertebrae for any j = 1, 2, and 3. If (m, n) is
equal to (L5, S1), then slippage might be present between the fifth lumbar vertebra and
sacrum for any j = 9 and 10. Each θ is computed using Equation (6), where U is a vector for
two consecutive points on a segment and V represents the vertical points. Each point and
segment of the first and second lumbar vertebrae are detailed in Figure 7.
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𝜃𝛼,1 𝑝𝐿1,1, 𝑝𝐿1,4

𝜃𝛼,2 𝑝𝐿1,4, 𝑝𝐿2,1

𝜃𝛼,3 𝑝𝐿2,1, 𝑝𝐿2,4

𝜃𝛽,1 𝑝𝐿1,2, 𝑝𝐿1,3

𝜃𝛽,2 𝑝𝐿1,3, 𝑝𝐿2,2

𝜃𝛽,3 𝑝𝐿2,2, 𝑝𝐿2,3

𝒍𝒆𝒇𝒕 𝒔𝒊𝒅𝒆 𝒓𝒊𝒈𝒉𝒕 𝒔𝒊𝒅𝒆

Figure 7. Descriptions of each angle in the PSD methodology. There are four extreme points of
each lumbar vertebra, pLi,1, pLi,2, pLi,3, and pLi,4, which correspond to the upper-left, upper-right,
lower-right, and lower-left points, respectively, of a lumbar vertebra i. Each vertebral region can
be calculated from the left- and right-sided angles between the proximal line segments. θα and θβ

represent the left and right side, respectively.

2.2.3. Dynamic Shift (DS) Detection

DS detection is applied to two X-ray images in the flexion and extension positions
to calculate the shift in the proximal lumbar region when the patient leans forward and
backward, respectively. The procedure for DS detection is illustrated in Figure 8.

Input two 
lumbar X-Ray 

images

Emphasize 
image

Resized  
image

Inference 
LumbarNet

Resized  
image (original 

resolution)

Detect 
lumbar 
features 

Calculate 
dynamic 

shifted (DS)

value >k3?

Non-Slippage 

Slippage 

N

Y

Figure 8. Process of detecting abnormal vertebral slippage in flexion and extension X-ray images by
using dynamic shift detection.

Similarly, Equation (4) is used to calculate the shift in the proximal lumbar region and
fds is used to check whether the shift distance is greater than K3. The formula is as follows:

fds(i, j) = |D(Pi,proj, Pj,2)− D
′
(P
′
i,proj, P

′
j,2)| > K3, (7)

where D(Pi,proj, Pj,2) and D
′
(P
′
i,proj, P

′
j,2) are the shift distances when leaning forward and

backward, respectively, each determined from separate X-ray images as illustrated in
Figure 9. The index i ∈

{
L1, L2, L3, L4, L5

}
, and the index j ∈

{
L2, L3, L4, L5, S1

}
. If only

one X-ray image of the patient is available, the P-grade and PSD methods are executed.
However, if the patient has more than two X-ray images, the P-grade, PSD, and DS methods
are executed, in this order, to identify spondylolisthesis.

The K values (K1, K2, K3) were determined from 394 cases through the following steps:
Firstly, two spinal surgeons reviewed these cases and recorded whether they found signs of
spondylolisthesis on the X-ray images. Then, we obtained the values by using P-grade, PSD
and Dynamic Shift algorithm. Finally, we calculated the golden values, named K1, K2, K3
representing P-grade, PSD, Dynamic Shift, respectively. Using the golden values as criteria,
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we could acquire the best accuracy. Coding, known as Macro in Microsoft Excel, was used
to calculate the golden values (K1, K2, K3). We also wrote the formula on Microsoft Excel to
calculate the accuracy, sensitivity, and 95% confidence interval.

𝒍𝒆𝒂𝒏 𝒇𝒐𝒓𝒘𝒂𝒓𝒅 𝒍𝒆𝒂𝒏 𝒃𝒂𝒄𝒌𝒘𝒂𝒓𝒅

𝑃𝑖,3

𝑃𝑗,2𝑃𝑗,1

𝑃𝑖,𝑝𝑟𝑜𝑗 𝑃𝑖,3, 𝐿𝑗

𝐷(𝑃𝑖,𝑝𝑟𝑜𝑗, 𝑃𝑗,2)

𝑃𝑗,1
′

𝑃𝑖,𝑝𝑟𝑜𝑗
′ 𝑃𝑖,3

′ , 𝐿𝑗
′

𝐷′(𝑃𝑖,𝑝𝑟𝑜𝑗
′ , 𝑃𝑗,2

′ )

𝑃𝑗,2
′

𝑃𝑖,3
′

Figure 9. Dynamic shift for slippage detection.

3. Results
3.1. Data Set

Lumbar X-ray images were captured with a Radnext 50 X-ray machine, Hitachi Global,
Tokyo, Japan. Patients were required to either stand erect or lean forward and back-
ward. After a full IRB approval was granted (TMU-Joint Institutional Review Board No.
N201807084), 706 X-ray images of patients with low back pain were collected at Taipei
Medical University Hospital. While the images were taken under the same settings (in-
cluding the same X-ray energy), the digital images differed greatly in terms of contrast
and grayscale range. The vertebral and sacral regions in these images were then manually
labeled. The extent of slippage in each X-ray image was scored by two orthopedists.

Overall, we obtained 312 X-ray images of lumbar vertebrae with abnormalities, among
which 250 images formed our training subset and the remaining 62 images formed our
testing subset. All patients’ personal information were removed. We expanded our data set
through data augmentation using transformations such as rotation, changes in contrast,
and flipping. The images ranged widely in resolution from 494 to 2456 pixels in width and
from 888 to 3408 pixels in height.

In the training model, the learning rate was 1× 10−4, the Adam optimizer was used,
the training period was 200 epochs, and the loss function was calculated as per Equation (1).
The training accuracy was determined for each epoch, and the loss function is illustrated in
Figure 10. Training and evaluation took 16 h and 30 ms, respectively, using a computer with
an NVIDIA GTX 1080 Ti GPU. The accuracy reached 99.49% during the training phase. We
then verified whether the learned geometric region intersected the artificially labeled ROIs
by applying the learned model to the testing set to calculate mean intersection over union
(mIOU). A true positive was indicated by a rectangular IOU probability value greater than
0.5. Ultimately, the mIOU of U-Net was 0.8 and the mIOU values for L1, L2, L3, L4, L5, and
the sacral regions were 0.76, 0.89, 0.83, 0.75, 0.76 and 0.83, respectively. For LumbarNet, the
mIOU was 0.88 and the mIOU values for L1, L2, L3, L4, L5, and the sacral regions were 0.852,
0.889, 0.889, 0.889, 0.889 and 0.889, respectively (Table 2). Comparison of the performance
between LumbarNet and U-Net, shown in Table 2, is an ablation study for verifying the
effectiveness of our feature fusion module (FFM). In addition, because we only adopted
cross-entropy loss in our design, no ablation study for loss terms was required.
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(b): loss function(a): accuracy

Figure 10. Training history of LumbarNet.

Table 2. mIOU Comparison of U-Net and LumbarNet.

mIOU0.5 L1 L2 L3 L4 L5 Sacrum Average

U-Net 0.76 0.89 0.83 0.75 0.76 0.83 0.8
LumbarNet 0.852 0.889 0.889 0.889 0.889 0.889 0.88

3.2. Analytical Experiments
3.2.1. K1 Experiments for P-Grade

The relationship between the bare displacement value A of the lower vertebra and the
width B of the upper vertebra is calculated as follows:

P grade = A/B× 100 (8)

The extent of vertebral slippage between the projected point and the upper-right point
(pj,2) of the j-th lumbar vertebra was calculated. The shifted identification algorithm was
applied to 394 cases for training, and a threshold value of K1 = 10 was suggested during
training. The accuracy, sensitivity, specificity, false-positive rate, and false-negative rate
were 88.05% (95% CI, 80%–91%), 89.44% (95% CI, 79%–94%), 84.92% (95% CI, 81%–86%),
7.32% (95% CI, 4%–6%) and 4.63% (95% CI, 4%–15%), respectively (illustrated in Table 3).

Table 3. Accuracy, sensitivity, specificity, false-positive rate, and false-negative rate for spondylolis-
thesis detection.

P-Grade PSD P-Grade + PSD DS
(K1 = 10) (K2 = 37) (K1 = 10 + K2 = 50) (K3 = 0.14)

Accuracy 88.05% 81.22% 88.83% 81.42%
(95% CI, 80%–91%) (95% CI, 75%–90%) (95% CI, 84%–91%) (95% CI, 80%–82%)

Sensitivity 89.44% 85.82% 91.24% 82.50%
(95% CI, 79%–94%) (95% CI, 81%–92%) (95% CI, 85%–93%) (95% CI, 79%–83%)

Specificity 84.92% 71.43% 83.33% 80.31%
(95% CI, 81%–86%) (95% CI, 61%–90%) (95% CI, 81%–84%) (95% CI, 79%–81%)

False positive 4.63% 9.14% 5.08% 7.67%
(95% CI, 4%–6%) (95% CI, 4%–12%) (95% CI, 4%–6%) (95% CI, 9%–10%)

False negative 7.32% 9.64% 6.09% 8.91%
(95% CI, 4%–15%) (95% CI, 5%–13%) (95% CI, 5%–11%) (95% CI, 8%–10%)

3.2.2. K2 Experiments for PSD

The K value in the vertebral anomaly test algorithm was tested according to the
samples and the better value of K was analyzed. In general, a larger K value indicates a
greater “allowable displacement” between the upper and lower vertebrae. The K value
was tested in 100 test points in sequence, and the model performance was determined in
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terms of the precision and false-positive rate. The test points were obtained from all images,
and the model results were tested against the judgment of orthopedists with regard to the
location of vertebral slippage. A higher and lower K value correspond to a smaller and
larger allowance, respectively, with respect to the accuracy and false-positive rate. A K
value of 37 was selected as the parameter of subsequent slip abnormality detection. The
accuracy, sensitivity, specificity, false-positive rate, and false-negative rate were 81.22%
(95% CI, 75%–90%), 85.82% (95% CI, 81%–92%), 71.43% (95% CI, 61%–90%), 9.14% (95% CI,
4%–12%) and 9.64% (95% CI, 5%–13%), respectively (illustrated in Table 3).

3.2.3. K3 Experiments for DS

The DS method was applied to X-ray images of the patients leaning forward and
backward. If the difference between the shift distances for the forward and backward
motions was greater than K3, spondylolisthesis was indicated. The final value of K3 was
0.14. Our trained model exhibited an accuracy, sensitivity, specificity, false-positive rate
and false-negative rate of 81.42% (95% CI, 80%–82%), 82.5% (95% CI, 79%–83%), 80.31%
(95% CI, 79%–81%), 9.67% (95% CI, 9%–10%) and 8.91% (95% CI, 8%–10%), respectively
(illustrated in Table 3).

The thresholds of K values are indicated in Figure 11. Furthermore, the combination
of P-grade (K1 = 10) and PSD (K2 = 50) methods yielded the optimal results (Table 3),
as indicated by an accuracy of 88.83% (95% CI, 84%–91%), sensitivity of 91.24% (95% CI,
85%–93%), specificity of 83.33% (95% CI, 81%–84%), false-positive rate of 5.08% (95% CI,
4%–6%), and false-negative rate of 6.09% (95% CI, 5%–11%).

Figure 11. Accuracy of the algorithm in different conditions: P-grade, Piecewise slope detection
(PSD), Dynamic shift (DS).

4. Discussion

To the best of our knowledge, there has not been any algorithm designed for the
detection of spondylolisthesis in lumbar X-ray images via the use of P-grade, PSD and DS.
Our method was developed to detect exactly where the spondylolisthesis would occur, and
to assess the relative displacement of two adjacent vertebrae. Hence, motivated by clinical
requirements, we consider our method to be highly specialized for spondylolisthesis
detection. This provides the reasoning for why we compared our LumbarNet with U-
Net only.

Our results are similar to those of previous studies applying machine learning to detect
spinal pathologies. Specifically, the faster adversarial recognition (FAR) network of Zhao
et al. for grading spondylolisthesis exhibited high accuracy (0.9883± 0.0094 in training,
0.8933± 0.0276 in testing) when used for the detection of vertebral abnormalities in the
absence of landmarks [45]. Furthermore, Ansari et al. reported a high accuracy of 92.05% for
their generalized regression network, which outperformed a neural network and support
vector machine (SVM); their method was used to classify suspected spinal pathologies into
healthy spine, disk hernia, and spondylolisthesis [46]. In addition, Karabulut et al. reported
a high accuracy of 89.73% for their synthetic minority oversampling technique (SMOTE),
which was used for automatic classification and to assist in delivering the appropriate
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management for patients [47]. Finally, Akben et al. reported a success rate of 84.5% for
their naive Bayes classifier when used with a combination of three or more attributes. They
also revealed a 96.13% accuracy rate for their method in the detection of spondylolisthesis;
however, this rate was considered to be misleading due to asymmetry in the size of their
samples [48]. Nonetheless, our accuracy rates are lower than those reported by Unal et al.
By combining a fuzzy C-means (FCM) algorithm with a naive Bayes classifier or SVM, they
achieved high accuracy rates of 97.42% and 96.45%, which were substantially higher than
the 82% to 85% rates achieved using the SVM [49,50].

Our study had several limitations. First, while two orthopedists independently re-
viewed and confirmed spondylolisthesis in the X-ray images, the effects of interobserver
and intraobserver variability were not evaluated. Second, our model did not specify
the etiology and the slippage grade of spondylolisthesis since our goal was to propose
a computer-aided diagnostic algorithm for automatically detecting vertebral slippage in
X-ray images. Furthermore, the spinal anatomy is highly complex with multiple inter-
connected and overlapping structures, especially in the X-ray images of patients with
spinal degenerative diseases. For instance, the presence of osteoporosis will affect the
results of segmentation owing to the poor image quality (as illustrated in Figure 12a). In
addition, it is more difficult to identify the fifth lumbar vertebra (L5) and the first sacrum
(S1) compared with the other lumbar vertebrae owing to its superimposition with the
pelvis or the presence of lumbar sacralization, a variant of L5 and S1 (as illustrated in
Figure 12b). In addition, vertebral osteophytes (bone spurs) will introduce errors into the
quadrilateral fitting since they do not represent the true corners of vertebrae (as illustrated
in Figure 12c). If the corners cannot be correctly detected, all assessments will surely fail.
Therefore, lesion identification is more challenging in the X-ray images of patients with
co-existing osteoporosis, degenerative spine disease, or lumbar sacralization.

(c)(a) (b)

Figure 12. Errors in processing due to (a) osteoporosis makes poor image quality, (b) superimposition
between the pelvis and vertebrae, and (c) vertebral spurs.

Although these factors compromised the performance of our model, we believe the
overall results warrant adequate consideration (illustrated in Figure 13). Thus, we hope our
algorithm will be applied and further developed to detect, not only spondylolisthesis, but
also other spinal diseases. In regions with limited resources and a shortage of healthcare
professionals, this model can serve as a potential solution in detecting spondylolisthesis
from easily obtained X-ray images.



J. Clin. Med. 2022, 11, 5450 15 of 17

(a)
(b) (c)

Figure 13. Performance of LumbarNet in the detection of lumbar spondylolisthesis: (a) No Spondy-
lolisthesis, (b) Spondylolisthesis at L3-L4, (c) Spondylolisthesis at L4-L5.

5. Conclusions

To the best of our knowledge, LumbarNet is the first algorithm to employ P-grade,
PSD, and DS to detect spondylolisthesis in true lateral, flexion and extension lateral views
of lumbar X-ray images. Our model achieved an mIOU of up to 0.88 in determining
the affected vertebral region. The ROI was then obtained to determine the end points,
and slippage in the lumbar vertebrae was detected using the P-grade and PSD methods,
achieving an accuracy rate of 88.83%. We believe that in the near future, our model can be
applied as a potential solution for healthcare systems and further developed to detect a
wider range of spinal disorders.
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