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Abstract
Radiomics is a process of extraction and analysis of quantitative features from diagnostic images. Liquid biopsy is a test done on a
sample of blood to look for cancer cells or for pieces of tumourigenic DNA circulating in the blood. Radiomics and liquid biopsy
have great potential in oncology, since both are minimally invasive, easy to perform, and can be repeated in patient follow-up
visits, enabling the extraction of valuable information regarding tumour type, aggressiveness, progression, and response to
treatment. Both methods are in their infancy, with major evidence of application in lung and gastrointestinal cancer, while still
undergoing evaluation in other cancer types. In this paper, the main oncologic applications of radiomics and liquid biopsy are
reviewed, and a synergistic approach incorporating both tests for cancer diagnosis and follow-up is discussed within the context
of systems medicine.
Teaching Points
• Radiomics is a process of extraction and analysis of quantitative features from diagnostic images.
• Most clinical applications of radiomics are in the field of oncologic imaging.
• Radiomics applies to all imaging modalities.
• A cluster of radiomic features is a Bradiomic signature^.
• Machine learning may improve the efficacy of radiomics analysis.
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Introduction

In the last few years, the term Bradiomics^ has emerged in the
imaging community as a novel field of research, defined by
Lambin et al. as a Bhigh-throughput extraction of image fea-
tures from radiographic images^ [1].

Radiomics is the discipline that deals with the extraction
and analysis of quantitative features from diagnostic images
[2]. The basis of radiomics is that such extracted features are

the phenotype, the image quantitative expression of patho-
physiological processes that can also be expressed by other
Bomics^ including genomics, transcriptomics, metabolomics,
and proteomics [3, 4].

Examples of features that can be extracted by radiomics
analysis include shape/size-based, histogram-based, filtering-
based, and texture analysis [5].

Texture analysis represents a highly promising feature ex-
traction method that is largely based on the so calledHaralick
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method [6]. An example of texture analysis in MRI of locally
advanced rectal cancer is shown in Fig. 1.

Radiomics is therefore a process of extracting features from
diagnostic images, as in other Bomics^ fields, but where the
final product is a quantitative feature/parameter, measurable
and minable. The concept of quantitative features is combined
with that of Bimaging biomarkers^, defined in the white paper
from the European Society of Radiology as Bcharacteristics
that are objectively measured as indicators of normal biolog-
ical processes, pathological changes, or pharmaceutical re-
sponses to a therapeutic intervention^ [7].

Thus, through a conceptual combination of the two defini-
tions, which can be subject to interpretation, radiomics is a
process that enables the extraction of imaging biomarkers
from medical images.

Radiomics are features that can be extracted only by com-
puter algorithms, and cannot be derived by human visual as-
sessment. This is the main Badvantage^ of quantitative analy-
sis. However, extensive development and clinical validation
of radiomic features is needed, and to date, the singular vali-
dated method of interpretation in clinical practice, with all the
limitations and advantages of the human brain, is still the
visual assessment. The high inter-reader agreement among
radiologists in image interpretation supports the reliability of
qualitative assessment, and may therefore represent a standard

of reference for the development and validation of quantitative
analysis integrating other Bomics^ and clinical data [8].

Numerous scientific advances have been made in the field
of radiomics, and a literature review of the term Bradiomic^ (at
the time of this review preparation) shows that over the 6-year
period from 2012 to 2018, the number of publications includ-
ing such a term has grown exponentially (Fig. 2).

Radiomics applications in oncology

To date, the vast majority of papers published about radiomics
refer to oncologic applications.

Aerts et al. performed CT radiomics analysis of tumour
phenotypes in 1019 patients with lung and head and neck
cancers, and found 440 features (among image intensity,
shape, and texture) with a potential prognostic value that
may have an impact in clinical practice [3].

One important group of features that can be extracted by
the radiomic process is tumour heterogeneity, quantifiable by
texture analysis. In a study by Leijnaar et al., radiomics anal-
ysis of positron emission tomography-computed tomography
(PET/CT) data in patients with lung cancer who underwent
repeated scans enabled the extraction of multiple texture fea-
tures that showed high test–retest (71%) and inter-observer

1) Segmenta�on

2) Features
extrac�on

3) Texture analysis report

Autocorrela�on 960 Maximum probability 0.01

Cluster prominence 311282.70 Sum average 60.01

Cluster Shade 1012.60 Sum Entropy 4.08

Contrast 51.24 Sum os Square Variance 82.21

Correla�on 0.70 Sum Variance 293.27

Difference Entropy 2.66 Kurtosis 3.76

Difference Variance 22.01 Skweness 0.16

Dissimilarity 5.34 Pixel Intensity Means 147.06

Energy 0.00 Pixel Intensity Std. 30.82

Entropy 5.63 Pixel Intensity Median 145

Homogeneity 0.18 Pixel Intensity P25 129.75

Informa�on measure of 
Correla�on 1

-0.40 Pixel Intensity P75 164

Informa�on measure of 
Correla�on 1

0.97 D2D 1.42

Fig. 1 Example of texture analysis in MRI of rectal cancer performed
with QUIBIM software (QUIBIM S.L., Valencia, Spain). The region of
interest for the texture is defined by manual segmentation (1). The texture
model is extracted by the software through a grey-level co-occurrence

matrix analysis (2) that enables the extraction of a set of features that are
shown in a structured report (3). The same region of interest can be used
to extract other features based on intensity histogram, shape, and so on.
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(91%) reliability in terms of their intra-class correlation coef-
ficients, which indicates that variations in heterogeneity could
be used for treatment monitoring and outcome prediction [9].

Radiomics also has the potential to provide an
individualised quantitative measurement of tissue reaction to
radiation therapy in terms of tumour response to treatment and
radiation therapy-related toxicity. Cunliffe et al. examined CT
scans of 106 patients who received radiation therapy for
esophageal cancer, and analysed the changes in 20 texture
features between pre- and post-therapy scans, which revealed
a quantitative change in the features with increased radiation
dose [10]. In radiation oncology, the term radiomics has been
associated with the term Bdosiomics^, which refers to dose
shape features used to predict xerostomia in patients undergo-
ing radiation therapy for treatment of oral cavity cancer [11].

Radiomic prediction of tumour response can also be used in
the case of chemotherapy. In a study by Coroller et al. in lung
cancer patients, 15 radiomic features were extracted, seven of
which were found to be predictive of pathologic gross residual
disease, and one of pathologic complete response [12].

Evaluating tumour heterogeneity is also of value in the
prediction of tumour metastasis. A study by Coroller et al. in
98 patients with lung cancer found 635 radiomic features in
patients' CT scans, among which 35 were found to predict
distant metastases, while seven were useful in predicting sur-
vival [13].

Despite the great potential of radiomics analysis in various
oncologic applications, there is a significant issue with vari-
ability in feature extraction among imaging modalities. The
quantified features are subject to measurable variation—for

example, Mackin et al. showed inter-scanner variability in
radiomic features calculated for non-small cell lung cancer
(NSCLC) tumours from 20 patients [14]. Zhao et al. per-
formed a similar analysis of the CT scans of 32 patient with
lung cancer obtained with repeat CTscans reconstructed at six
identical imaging settings, and extracted 89 radiomic features
from tumour size, shape, margin spiculation and sharpness,
and density distribution without spatial information. They
found large differences in the values of radiomic features
when computed on repeat CT scans reconstructed using
smooth and sharp algorithms [15].

The issue of repeatability and reproducibility of texture
features was also discussed by Summers [16] and Berenguer
et al. [17]. Summers reviewed factors affecting variability in
texture features, such as data acquired with scanners from
different institutions or manufacturers, the presence of intra-
venous contrast, low radiation dose (noisy images can have a
different texture), object motion, and the use of different re-
construction methods (iterative vs filtered backprojection).
Berenguer et al. performed a study on two phantoms to iden-
tify reproducible and non-redundant radiomic features for
computed tomography, through an intra-CT analysis, modify-
ing tube voltage, milliamperage, field of view, section thick-
ness, pitch value, reconstruction kernel, and axial versus spiral
acquisition, and an inter-CT analysis, comparing five scan-
ners. Radiomic features extracted were shape, intensity, and
texture. The authors found that only 71 of the 177 radiomic
features extracted from CT images and tested were reproduc-
ible, which were represented by only 10 radiomic features
because of redundant information.
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Fig. 2 Publications including the
terms Bradiomic^ and Bliquid
biopsy^ (source PubMed.gov).
The number of publications in
2018 has tripled for radiomics
(actual number at March 2018 is
106) and doubled for liquid
biopsy, reflecting the growth
trend over the years
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Radiomics is not limited to intra-modality analysis, but can
be performed in a multi-mode environment. An interesting
paradigm is illustrated in a study by Vallières et al., who de-
veloped a radiomic model from FDG-PET and MRI texture
features for the early evaluation of lung metastasis risk in soft-
tissue sarcomas. The authors extracted nine non-texture and
41 texture features from fused FDG-PET and MRI scans and
found that the best performance in predicting lung metastases
was obtained by the combination of four texture features ex-
tracted from FDG-PET/T1 and FDG-PET/T2 FS scans [18].

The potential for clustering of radiomic features gives rise
to the concept of radiomic signature, which is a set of features
that can identify a type of tumour. In a study involving 129
patients with non-small cell lung cancer, Zhu et al. extracted
485 features, and identified five features to develop a unique
signature for discriminating lung adenocarcinoma from squa-
mous cell carcinoma. The signature was therefore used as a
marker of histologic type [19]. The same research team used a
radiomic signature in 487 patients with lung cancer to develop
a nine-radiomic-feature set that could distinguish the histolog-
ic differentiation of non-small cell lung cancer between poorly
differentiated, with a poor prognosis, and well-differentiated,
indicating a noninvasive nature and therefore a good progno-
sis [20]. The use of signatures has also been proposed for
predicting HPV oropharyngeal cancers [21] and recurrence
in glioblastoma [22], differentiating high-grade from low-
grade colorectal cancer [23], and estimating rectal cancer re-
sponse to treatment [24].

The quantitative nature of radiomic features has recently
driven research towards the application of machine learning to
improve the efficacy of radiomics analysis. The advantage of
machine learning is in fact the ability to learn from data and
hence automate and improve the prediction process. Parmar
et al. used 440 radiomic features extracted from pre-treatment
CT images of 464 lung cancer patients and investigated a large
panel of machine-learning approaches for the prediction of 2-
year patient survival in NSCLC patients [25]. The authors
found the best performance in two machine learning methods:
Wilcoxon test-based feature selection and random forest clas-
sification. Such results highlight the importance of machine
learning, but also the need to choose the appropriate machine
learning methods for each tumour type.

Another issue concerning the application of machine learn-
ing to radiomics data is Boverfitting^. In machine learning, the
term Bovertraining^ can also be used, and means that when a
model is trained with a specific dataset (i.e. 150 T2-weighted
MR studies in locally advanced rectal cancer for primary stag-
ing), it perform very well with such datasets (99% accuracy in
detecting tumour heterogeneity and/or predicting response to
treatment), but if the model is applied to previously unseen
(new) data, it may perform more poorly, because this model
will not generalise at all to new data. Overfitting occurs when
a model begins to memorise training data rather than learning

to generalise from a trend. The main cause of overfitting in
radiomics is the application of too many features, which be-
come redundant and irrelevant (so-called noise); the excessive
number of features can be reduced by test–retest studies that
enable the selection of only those robust features that provide
repeatable and reproducible measurements [9, 26, 27].

Reports from other studies investigating the combination of
machine learning and radiomics extraction support of the rec-
iprocity of these tools, and additional studies will be published
in the future [28–32].

Linking radiomics to systems medicine

The radiomic process is designed to identify features and clus-
ters of features (signatures) that are useful for tumour charac-
terization and that will help guide therapy based on the prin-
ciple of personalised care. However, radiomics is a stand-
alone process involving only imaging; image phenotyping is
part of clinical phenotypes and of the more complex Bsystems
medicine^ that includes other Bomics^ of which a significant
share is also represented by liquid biopsy biomarkers.

The term Bsystems medicine^, a translation of the concept
of systems biology to humans, is defined as Ba mosaic of
distinct and interconnected micro-systems allowing [one] to
infer the macro-systems dynamics and produce elements of
synthesis such as signatures and profiles originated by a vari-
ety of information sources and consequently characterised^
[33–35] (Fig. 3).

In the first description of Bsystems biomedicine^ in 1992,
Kamada noted: BIn clinical biomedical engineering ultra-
sound, radioisotopes and electromagnetic resonances have
been applied for non-invasive, speedy and reproducible real-
time monitoring of patients^, and BMedical scientists begin to
consider humans to be Bholon^. Accordingly, a disease is not
only the malfunction of an organ, but of a control mechanism
of a human body, a Bholon^ [36]. In 1981, in a paper on the
human cancer model, ZaJicek stated: BThe organism is strat-
ified into hierarchies among which the cell represents the low-
est. Cells are aggregated into tissues and tissues, into organs.
Organs are assembled into organ systems constituting the hu-
man organism. In each hierarchy an elementary unit, or holon
is defined.^ [37]. Therefore, as radiomics is part of system
medicine, it is important to understand the link between
radiomics and other Bomics^.

Importantly, radiomic features are able to capture intra-
tumour heterogeneity in a non-invasive three-dimensional man-
ner, and can be obtained as part of routine clinical care. The
concomitant use of plasma analysis obtained through liquid
biopsy and radiomics may aid in investigating the link between
genotypic variation and the clinical variability observed in re-
sponse to therapy, as well as the link between specific imaging
traits and specific gene-expression prognostic patterns [8].
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Liquid biopsy

A test done on a sample of blood to look for cancer cells
from a tumour that are circulating in the blood or for
pieces of DNA from tumour cells that are in the blood.
A liquid biopsy may be used to help find cancer at an
early stage. It may also be used to help plan treatment
or to find out how well treatment is working or if cancer
has come back. Being able to take multiple samples of
blood over time may also help doctors understand what
kind of molecular changes are taking place in a tumour.

The need for Bliquid biopsy^ arose from the fact that
molecular profiling of tumours relies on invasive surgical
procedures, often associated with procedural risks/compli-
cations, and tissue collection is unfeasible for many can-
cer patients. The identification of circulating biomarkers
such as circulating tumour cells (CTCs) or circulating
tumour-derived nucleic acids thus provided a potential
solution for cancer characterization and management [38].

CTCs derive from primary or metastatic tumour cells
clusters, with the ability to invade blood vessels through
the tissue matrix. CTC analysis offers the advantage of
visualizing intact cells for morphological identification
of a malignant phenotype; their enumeration is relevant
for the assessment of metastatic and primary disease pro-
gression, and enables molecular characterization and
immunolabelling. Unfortunately, CTCs have a number of
disadvantages: they are present in low abundance and are
extremely fragile, they may provide false-negative results,
their analysis requires extremely sensitive and specific
methods, and tumour heterogeneity may not be totally
captured by a small number of CTCs [39].

The number of CTCs is around 1 CTC for 107 leukocytes
per ml of whole blood, and their half-life is estimated at about

1–2.5 h [40]. Several methods have been developed for CTC
isolation, enrichment, and detection. However, isolation of
CTCs is still a challenge, and is based on either their biological
or physical properties.

Isolation methods based on physical properties in-
clude CTC size, density, and electric charge, and consist
of centrifugation, membrane- or filtration-based systems,
and dielectrophoresis. These methods offer the advan-
tage of quick and simple isolation of CTCs, but they
are characterised by poor sensitivity and low sample
throughput [41]. CTCs can also be isolated by their bio-
logical properties, i.e. surface antigen or cytoplasmic
protein expression. Methods based on biological
properties include immunomagnetic separation, epitheli-
al immunospot (EPISPOT) assay, and invasion assay
[42, 43]. Immunomagnetic separation is the most widely
used CTC platform; this approach uses cell-capture
magnetic beads to select CTCs based on surface markers
or to deplete whole blood cells using anti-CD45 antibod-
ies [44]. The US Food and Drug Administration (FDA)-
approved CellSearch™ assay is the most commonly
used, but is hindered by its limited sensitivity. Other
methods based on CTC biological properties are based
on their epithelial cell adhesion molecule (EpCAM)
expression; however, the epithelial-to-mesenchymal
transition may occur, limiting their isolation due to
false-negative results [41]. Despite the challenges with
current technologies in terms of specificity and sensitiv-
ity, several advances have been made, in a number of
directions.

To date, CTCs have been demonstrated to be an indepen-
dent prognostic factor in solid tumours, including breast, pan-
creatic, and prostate cancer [45–51]. In addition, changes in
the number of CTCs may be an early marker of disease

Fig. 3 The multiple systems
(omics) of systems medicine.
Since it is an evolving/growing
community, the sets including a
question mark represent potential
new Bomics^ that will be part
of systems medicine
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progression or treatment response, and thus could be used to
monitor disease outcome. However, clinical validation is still
lacking, and technical constraints may limit their use in rou-
tine monitoring. With currently available technology, the
number of CTCs detected in blood is often very small, and
the minute change in the number of CTCs in progressing or
responding patients, as reported in the majority of published
studies (i.e. from 4 to 5 CTCs), makes the monitoring of dis-
ease outcome very difficult and limits its reliability in the
clinical setting [49–51].

Circulating tumour nucleic acids are tumour-derived frag-
ments of DNA/RNA in the bloodstream, released by apoptosis
and necrosis processes from dying cells or actively released
from viable tumour cells [52]. These nucleic acids have the
advantages of reflecting the disease burden and predicting
acquired drug resistance, which is possible through the detec-
tion of secondary mutations and because the concentration is
influenced by treatment response. A major limitation, howev-
er, is the risk of false-negative results [53].

To date, circulating tumour nucleic acid analysis represents
the most promising method for the identification and monitor-
ing of molecular tumour-related alterations in cancer patients
[54]. In fact, analysis of circulating tumour DNAwas found to
be a good predictive biomarker for monitoring treatment re-
sponse in lung cancer [54–56], colorectal cancer [57–59],
prostate cancer [60, 61], and pancreatic cancer [62, 63].

Circulating free nucleic acid concentrations can be influ-
enced by tumour size, localization, and vascularity, and it is
also possible that they are derived in part from CTC lysis [64].
However, mutation analysis of circulating free nucleic acids,
DNA in particular, has demonstrated significantly higher sen-
sitivity than that of CTCs, establishing circulating free tumour
DNA (cftDNA) as the best source for molecular analysis.
Such analysis can be repeated as often as needed and without
any discomfort for the patient.

The use of liquid biopsy became more important with the
discovery of tumour heterogeneity: it is very well known
that tumour lesions may be characterised by a non-uniform
distribution of genetically distinct tumour-cell subpopula-
tions across and within disease sites (spatial heterogeneity)
or temporal variations in the molecular makeup of cancer
cells (temporal heterogeneity) [65]. Tumour heterogeneity,
resulting in a different distribution of several tumour-cell
subpopulations with different molecular profiles, can drive
the mechanisms of resistance to treatment and thus therapeu-
tic decisions, conferring dynamics to tumours [62]. In this
context, the detection of somatic mutations in circulating
free nucleic acids could be instrumental in gaining a better
understanding of the genetic modifications driven by the
selective pressure of drug treatments [66].

The analysis of circulating biomarkers allows clinicians to
discover potential predictive and prognostic biomarkers and to
obtain real-time imaging of tumour dynamics.

Which biomarkers can be analysed

The molecular profile of human cancer has enriched the un-
derstanding of tumourigenic processes, improving tumour di-
agnosis, prognosis, and prediction of response to treatment.
Liquid biopsy enables the identification of tumour mutations
responsible for tumour response to treatment (i.e. epidermal
growth factor receptor [EGFR] in NSCLC), primary or ac-
quired resistance to treatment (i.e. RAS gene mutation in co-
lorectal cancer), and monitoring of tumour dynamics during
treatment (i.e. KRAS gene mutation in pancreatic cancer).

In terms of knowledge and technical performance, muta-
tion analysis of cftDNA is the easiest way to use liquid biopsy,
and many examples are already present in literature.
Expression analysis of circulating RNA is still debated al-
though feasible in clinical practice, and requires the most spe-
cific techniques, such as the use of exosomes to isolate tumour
RNA.

The use of liquid biopsy came into clinical practice in 2016,
with its introduction in the European Society for Medical
Oncology (ESMO) guidelines for EGFR analysis of cftDNA
in metastatic NSCLC. In particular, liquid biopsy is consid-
ered a valid alternative to tissue biopsy, representing a surro-
gate source of tumour DNA to monitor disease progression in
first-line treatment of EGFR-mutant patients. The positivity of
the analysis for the EGFR mutation p.T790 M on cftDNA
enables treatment with third-generation EGFR tyrosine kinase
inhibitors [56]. Analysis of EGFR on cftDNA in NSCLC is
also frequently used to assess EGFR status when tissue is
unavailable [67] or to monitor treatment outcome [68, 69].
Resistance to treatment in NSCLC are also monitored on
cftDNA in the ALK gene translocated patients with the anal-
ysis of the gene acquired mutations (ALK makes a protein
called anaplastic lymphoma kinase) [70, 71] or in patients
treated with immunotherapy [72, 73].

In colorectal cancer (CRC), RAS gene mutations may
serve as a mechanism of secondary resistance to EGFR inhib-
itors (EGFR-ab), and cftDNA testing has been shown to be a
sensitive method for detecting CRC clonal evolution. Several
studies have shown that CRC patients with a detectable
cftDNA level after surgery experienced relapse within 1 year,
while patients with undetectable cftDNA had no recurrence
[73]. CftDNAmay also be useful in evaluating tumour burden
and predicting response to standard chemotherapy in early-
stage CRC, with evidence indicating an association between
cftDNA changes and progression-free survival [74] and be-
tween KRAS concentration and overall survival [75].
Moreover, the acquisition of resistance to EGFR-ab is associ-
ated with the emergence of mutations in the RAS pathway,
detectable in the cftDNA months before any clinical evidence
of progression [76, 77].

Prostate cancer has recently entered the arena of the
biomarker-addicted tumour, following the discovery that a
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splice variant of the androgen receptor (AR-V7), tested on
CTCs, drove resistance to hormonal treatment [48]. In this
context, AR-V7 analysis on CTCs, exosomes, and periph-
eral RNA is performed in many laboratories to guide
treatment strategies [60, 78, 79]. Breast cancer response
to hormone therapy or new cyclin-dependent kinase inhib-
itors (CDK, a family of sugar kinases involved in regulat-
ing the cell cycle) can be monitored in cftDNA, analysing
oestrogen receptor mutations or the expression of CDK-
related biomarkers, respectively [80, 81]. CftDNA has al-
so been shown to play an important role as both predic-
tive and prognostic biomarker in melanoma. A longitudi-
nal analysis of the tumour molecular profile of cftDNA in
patients treated with immunotherapy enabled the early
differentiation of pseudoprogression from true progression
[82]. Moreover, cftDNA can predict relapse and survival
in high-risk resected melanoma and could aid the selec-
tion of patients for adjuvant therapy [83].

The use of liquid biopsy enables improved surveillance
and patient outcome. However, more complex and differ-
ent strategies are needed in order to fully understand tu-
mour heterogeneity and tumour dynamics. In this context,
a radiomics approach, in addition to pharmacogenetics,
may be of help in integrating knowledge for a better
personalised medicine approach.

Synergistic approach to radiomics and liquid
biopsy

Recent progress in cancer genomics has expanded our
knowledge of tumour heterogeneity. The genotype-
guided approach is a successful strategy in tumours de-
pendent on genetic alterations. However, despite an initial
response, most tumours progress, developing resistance to
targeted therapies. Thus there is an urgent need for an
understanding not only of the static molecular profile,
but of cancer dynamics, considering that tumour hetero-
geneity drives cancer evolution [84].

Advances in radiomics interpretation may make it possible
to correlate quantitative features with tissue pathophysiology,
linking the imaging phenotypes to the genotype.

On the other hand, the analysis of circulating tumour
nucleic acids permits the detection of molecular changes
at low frequency and in low abundance months before
clinical evidence of tumour progression. In this context,
the multiparametric pattern analysis of radiomics, com-
bined with molecular information obtained from liquid
biopsy, may aid decision-making in clinical practice.

As discussed above, radiomics and liquid biopsy have
similar advantages: they are both minimally invasive
Btests^ that can be easily obtained and repeated, enabling
the extraction of valuable and early information about

tumour type, and can aid in determining tumour aggres-
siveness to predict progression and recurrence. Both can
be used as synergistic tests in the screening, diagnosis,
and follow-up of cancer, shifting the therapeutic path
from the traditional Bone-size-fits-all^ concept to the mod-
ern personalised treatment of cancer, which will be in-
creasingly dependent on a multidisciplinary approach that
combines the different Bholons^ of systems medicine.

The best means of integrating radiomic signatures and
liquid biopsy is the collection of data in large repositories
of biomarkers, referred to as biobanks [85]. In fact,
biobanks are collections, repositories, and distribution
centres for all types of human biological samples, and
can be an ideal environment for collecting mutual infor-
mation from all types of samples, including the imaging
biomarkers derived from radiomics analysis [86]. In 2014,
the European Society of Radiology established an imag-
ing biobanks working group of the research committee,
aimed at defining the concept and scope and exploring
the existence of imaging biobanks, as well as providing
guidelines for their implementation. The working group
defined imaging biobanks as Borganised databases of
medical images, and associated imaging biomarkers (radi-
ology and beyond), shared among multiple researchers,
and linked to other biorepositories^, and suggested that
biobanks (which focus only on the collection of genotype
data) should simultaneously come with a system to collect
related clinical or phenotype data [87].

Linking imaging biobanks to already existing biobanks
is certainly one possible strategy in a synergistic approach
to radiomics and liquid biopsy, but prospective data col-
lection must be defined in order to obtain synchronous-
linked biomarkers of the same patient. The linking of
biomarkers should be followed by correlation analysis
that may result in patient stratification based on multi-
omic signatures/profiles, among which radiomics and liq-
uid biopsy are essential components.

From the radiologist's point of view, the use of radiomics
could aid in the interpretation of clinical cases in oncologic
imaging, and contemporary evidence of CTCs derived from
liquid biopsy could enhance the predictive value of radiomic
signatures. For example, a patient with CTCs of colorectal
cancer and a radiomic signature of an aggressive, non-
responsive tumour could then benefit from high-frequency
follow-up after chemoradiotherapy in order to monitor for
evidence of local recurrence or metastases.

In summary, the combined use of radiomics and liquid
biopsy could serve as an alarm signal in patients with a high
likelihood of recurrence and metastasis. Future reporting
should consider the integration of imaging biomarkers and
radiomic profiles in the radiological report; this will be possi-
ble only through the adoption of structured reporting tools that
allow the integration of quantitative data in the template.

Insights Imaging (2018) 9:915–924 921



Conclusions

Radiomics and liquid biopsy have similar attractive character-
istics: they can be collected in a non-invasive manner, are
quantifiable, and can be repeated to evaluate tumour progres-
sion. Finally, they address two faces of the same problem—
cancer diagnosis and treatment decisions.

Both provide quantitative biomarkers of most cancer types,
and evidence in the literature and in clinical practice suggests
their growing role in cancer management.

Aggregating information from multiple holons of systems
medicine is one strategy in the fight against cancer, and
radiomics and liquid biopsy constitute an essential component
in addressing this challenge. Further research in the form of
large clinical trials and biobanks that include multiple imaging
biomarkers is needed to confirm the evidence gather thus far.
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