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Inhibition of triple-negative breast cancer metastasis has long been a challenge, mainly due to the difficulty in identifying factors
that contribute to this process. In this study, freshly isolated triple-negative breast cancer biopsied cells obtained from consenting
patients were subjected to flow cytometry and bioinformatic analysis to identify three endothelial cell subclusters: EC (ATPIB3),
EC (HSPAIB), and EC (KRT7) in the tumor microenvironment. These endothelial cell subclusters exhibited distinguishing
biological features. Based on differentially expressed genes derived from the subclusters, gene set enrichment analysis showed
that EC (ATP1B3) and EC (HSPAIB) contribute to the process of metastasis, for example, in fibrosarcoma and anaplastic
carcinoma. In this study, we identified the heterogeneity of endothelial cells in the human breast cancer and have provided
insights into its role in metastasis.

1. Introduction TNBC [2, 3]. Current therapies against TNBC include sur-

gery, chemotherapy, and/or immune therapy, and although
Triple-negative breast cancer (INBC) is characterized by  this has led to decreased mortality, numerous patients still
low or no expression of the progesterone, oestrogen, and  undergo cancer metastasis to other organs, such as the brain,
human epidermal growth factor 2 receptors [1]. Approxi-  lung, and bone [2-4], resulting in a drastic loss of therapeu-
mately 20% of the breast cancer patients are diagnosed with tic efficiency and quality of life. The processes underlying
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TNBC metastasis remain unclear due, in part, to the com-
plexity of this process [3].

The tumor microenvironment (TME) participates in
tumor cell proliferation, apoptosis, and migration [5], all of
which are closely related to metastasis. The cellular compo-
nents in the TME include monocytes, macrophages, neutro-
phils, B cells, and endothelial cells [6-8]. Monocytes
facilitate the breast tumor metastasis by CCL2-induced
recruitments [9], and macrophages bridge the tumor cell-
extracellular matrix towards metastasis by secreting SPARC
[10]. Neutrophils promote metastasis by forming extracellu-
lar traps [11, 12] and B-lineage cells contribute to metastasis
by upregulating STX16 and ATIC [7]. Although endothelial
cells have long been considered a key cell type in tumor ini-
tiation and progression [13], their role in TNBC metastasis
has yet to be fully elucidated.

The endothelial cells are heterogenous in both healthy
and pathological conditions [14-17].Exploring the heteroge-
neity of endothelial cells in TNBC would help to understand
their role in metastasis. In this study, three endothelial cell
subpopulations were identified from TNBC biopsies, two
of which could contribute to metastasis to fibrosarcoma
and anaplastic carcinoma.

2. Materials and Methods

2.1. Human Biopsies. Biopsies were isolated from TNBC
patients underwent surgery. After pathological examination,
the residual biopsies were processed either for flow cytome-
try analysis or immunofluorescent staining. This study was
approved by the Ethics Committee of Youjiang Medical
University for Nationalities.

2.2. Flow Cytometry Analysis. Freshly isolated TNBC biop-
sies were digested with collagenase IV (40 mg/mL, Gibco,
#17104-019) and filtered through a 100 ym stainless strainer
to obtain single-cell suspensions. The cells were resuspended
in PBS containing 0.5% BSA and 2mM EDTA. The pre-
pared single-cell suspensions were blocked with an Fcy
receptor blocker and then incubated with fluorescence-
labelled antibodies on ice for 15min for surface staining.
After washing twice with PBS, the cells were fixed and per-
meabilised with a Cytofix/Cytoperm Kit (BD, #554717)
and then incubated with fluorescence-labelled antibodies
for intracellular staining. After washing twice with PBS con-
taining 0.5% BSA, the cells were resuspended in PBS con-
taining 0.5% BSA and 2mM EDTA. A flow cytometer
(Thermo Fisher Attune NxT) was used to measure the
events. The antibodies used in this study included PE anti-
CD31 (Biolegend, #303106), Fixable Viability Dye-eFluor
450 (Biolegend, #65-0863-14), 7-AAD (Invitrogen,
#A1310), APC anti-human CD298/ATP1B3 (Biolegend,
#341706), FITC  anti-HSPA1B  (Cusabio,  #CSB-
PA28047CORDb), Alexa Fluor anti-KRT7 (Novus, #NBP2-
47944 AF700), APC anti-CD93 (Biolegend, #336120), and
FITC anti-CDH5 (LSBio, #LS-C467144-100).

2.3. Immunofluorescent Microscopy. Biopsies were embed-
ded in 10 x 10 x 5mm mold (Sakura, #4565) and then sec-
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tioned to 4pum thickness with microtome (LEICA
CM1950). After fixation with —20°C methanol, the slices
were washed twice with PBS. Then incubated with primary
antibodies overnight at 4°C, after washing 3 times with
PBS, slices were incubated with fluorescent-labelled second-
ary antibodies. After washing twice with PBS, sections were
mounted with Fluoromount-G (SouthernBiotech, #0100-
01). The images were captured by immunofluorescent
microscope (LEICA DMI3000B). The primary antibodies
used in this study include the following: mouse-anti-
human CD31 (Invitrogen, #14-0311-85), rabbit-anti-
human ATP1B3 (Invitrogen, #PA5-119425), rabbit-anti-
human HSPAIB (Invitrogen, # PA5-28369), and rabbit-
anti-human KRT7 (Invitrogen, #MA1-06316). The second-
ary antibodies used in this study include the following:
A555 goat-anti-mouse IgGl (Invitrogen, #A21127) and
A488 donkey-anti-rabbit IgG (Invitrogen, #A21206).

2.4. scRNA-Seq Bioinformatics Analysis. The scRAN-seq data
of TNBC and control biopsied tissues were retrieved from
the NCBI GEO database (https://www.ncbi.nlm.nih.gov/
geo/) under the accession code GSE161529 [18]. In total,
four TNBC tissues and 13 normal tissues were obtained.
Cells were clustered with R package Seurat (v4.0.2) at a res-
olution of 0.1, and differentially expressed genes (DEGs)
were evaluated and processed using the R package Enhan-
cedVolcano (v1.11.3). Gene set enrichment analysis (GSEA)
was performed using the R package clusterProfiler (v4.0.0).

3. Results

3.1. Identification of Endothelial Cells in the Human Breast
and TNBC Biopsied Tissues. In the freshly isolated malignant
cells from patients with TNBC, a significant proportion of
endothelial cells (CD31"%) were detected (Figure 1(a)). To
detect whether they could be divided into subpopulations,
the expression of ATP1B [19], HSPA1B [20], and KRT7
[21] were evaluated. Interestingly, TNBC endothelial cells
could be further divided into three subpopulations: EC
(ATP1B3), EC (HSPA1B), and EC (KRT7) (Figure 1(a)).
To compare their genetic profiles, the scRNA-Seq data of
normal human breast tissues and TNBC tissues were
retrieved [18]. Overall, nine cell types were identified in nor-
mal tissues and 10 in TNBC tissues (Figure 1(b)). Three
markers, CD93, CDH5 (coding), and PECAM1, were used
to isolate endothelial cells (Figure 1(c), Supplementary
Figure 1) [22]. The fifth population in normal breast tissue
and the ninth population in TNBC tissues were endothelial
cells (Figures 1(b) and 1(c)). The lack of expression of
PTPRC (encoding CD45) further suggested that these two
populations did not belong to leukocytes (Figure 1(c),
Supplementary Figure 1). Flow cytometry analysis showed
that TNBC endothelial cells constitutively expressed CDH5
and CD93 (Figure 1(d)).

3.2. The Human Breast and TNBC Endothelial Cells Are
Heterogeneous. To compare the biological features of endo-
thelial cell subpopulations, isolated endothelial cells from
the scRNAN-seq experiment were evaluated. The
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Ficure 1: Continued.
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FiGure 1: Identification of endothelial cells in TNBC biopsies. (a) Flow cytometry analysis revealed three endothelial cell subclusters in
TNBC biopsied tissues, featured by the expression of ATP1B3, HSPA1B, and KRT7, respectively. Data represent similar results acquired
from five independent experiments. (b) UMAP plots showed 9 cell types in the normal human breast and 10 cell types in TNBC biopsy
tissues. The boxed cell types indicate endothelial cells. (c) Violin plots exhibited the expression pattern of endothelial cell markers
(CD93, CDH5, and PECAMI) and a leukocyte marker (PTPRC). (d) Flow cytometry analysis identified the expression of CDH5 and
CD93 from endothelial cells in TNBC biopsies. Data represent similar results acquired from three independent experiments.

integration of the human breast and TNBC endothelial cells
revealed three subclusters (Figure 2(a)). Interestingly,
ATP1B3, HSPA1B, and KRT7 were preferentially expressed
in three endothelial cell subpopulations (Figure 2(b)), which
is consistent with the flow cytometry analysis (Figure 1(a)).
To determine distribution pattern of these 3 endothelial cell
subpopulations, we performed immunofluorescent staining.
Obviously, these 3 subpopulations preferentially exist in dif-
ferent regions of TNBC biopsies, which could be indicated
by DAPI staining (Figure 2(c)). In total, 292 genes were
expressed at higher levels in EC (ATP1B3), 505 were higher
in EC (HSAPI1B), and 118 genes were expressed at higher
levels in EC (KRT7), compared among these three subpopu-
lations (Supplementary Figure 2). The heat map shows a
brief view of the similarity/disparity of the top 20 genes
from the three subpopulations (Figure 2(d)). Biological
theme comparison analysis (Figure 2(e), Supplementary
Figure 3) of these subpopulation indicates that EC
(ATP1B3) plays a vital role in mediating phagocytosis and
fluid shear stress and increases the susceptibility to develop
an atherosclerosis, prion disease, and salmonella infection

in the breast cancer patients [23-25]; EC (HSPA1B) could
promote in antigen presentation and MAPK signalling and
participates in mediating rheumatoid arthritis [26] and
toxoplasmosis [27] in the breast cancer patients; and EC
(KRT7) could be more important for mediating leukocyte
transendothelial migration and thyroid hormone signalling.
Interestingly, EC (ATP1B3) exhibited higher expression of
phagocytosis-related genes in TNBC patients, RAB5A and
EEA1 (Supplementary Figure 4), indicating these patients
could be more susceptible to infection.

3.3. Endothelial Cell Subpopulations Contribute to TNBC
Metastasis. In comparison to the normal human breast
endothelial cell subpopulations, integrated scRNA-seq data
revealed that the distribution and frequencies of these sub-
populations were different (Figures 3(a) and 3(b)). The pro-
portion of subpopulation EC (ATP1B3) increased
significantly (Figure 3(b)), indicating that it is more impor-
tant in the development of TNBC. Further calculation
revealed 6068 DEGs in EC (ATP1B3) (TNBC vs. normal
human breast) and 8529 DEGs in EC (HSPAI1B)
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FIGURE 2: scRNA-seq analysis showed three subclusters in breast-associated biopsies. (a) UMAP plot showed integration of endothelial cells
isolated from normal breast and TNBC tissues. Three subclusters were identified based on genetic profiles. (b) Violin plots showed the
expression pattern of three feature genes ATPIB3, HSPAIB, and KRT7. (c) Immunofluorescent staining of 3 endothelial cell
subpopulations: EC (ATP1B3), EC (HSPA1B), and EC (KRT7). Endothelial cells were labelled with CD31. (d) Heatmap showed
expression pattern of top 20 genes from each endothelial cell subclusters. (e) Dot plot revealed that each endothelial cell subcluster

possesses distinct biological features.

(Figure 3(c)). Unfortunately, the DEGs from EC (KRT7)
could not be calculated because of their extremely low num-
bers. GSEA analysis revealed that most of the pathways were
downregulated in TNBC endothelial cell subpopulations
compared to the normal human breast tissues, such as IL-
17 signalling (including ILI7RA, TRAF3IP2, GSK3B, and
NFKBI), TNF signalling (including TNFRI, TRADD,
TAB2, and RIPI), and NOD-like receptor signalling (includ-
ing NFR1, NFR5, and NIN) (Figure 3(d)), all of which are
highly related to the development of cancer [28, 29]. More-
over, EC (HSPA1B) in the TNBC tissues exhibited altered
fluid shear stress compared to the normal human breast tis-
sues (Figure 3(d)), which participates in tumor metasta-
sis [30].

Gene concept network analysis of the DEGs abstracted
from the above two endothelial cell subpopulations revealed
that in TNBC, EC (ATP1B3) could contribute to TNBC
metastasis to fibrosarcoma, hereditary diffuse gastric cancer,
and anaplastic carcinoma (Figure 4(a)), while EC (HSPA1B)

could participate in TMBC metastasis of fibrosarcoma and
anaplastic carcinoma (Figure 4(b)).

4. Discussion

The lack of expression of progesterone, oestrogen, and
human epidermal growth factor 2 receptors makes the cur-
rent therapies against TNBC, such as chemotherapy, immu-
notherapy, less effective [3]. Numerous patients develop
metastasis to distal organs [31]. TNBC patients are likely
to develop fatal metastatic fibrosarcoma [3], gastric cancer
[32], and anaplastic carcinoma [33]. Though it is known that
cells and factors in the TME are key components driving
TNBC metastasis, it remains challenging to identify such
“foes”. For a long time, scientists have attempted to delineate
immune cells, such as neutrophils, monocytes, macrophages,
and B-lineage cells, in the process of TNBC metastasis; how-
ever, few studies have emphasised the role of endothelial
cells in TNBCs. Recently, Huang et al. reported a correlation
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Fiure 4: Endothelial cells in TNBC biopsies contribute to metastasis. (a) CNET plot shows the DEGS of EC (ATP1B3) and predicts
metastasis. (b) CNET plot shows the DEGS of EC (HSPA1B) and predicts metastasis.

between fluid shear stress and tumor metastasis [30]. Rivo-
ceranib treatment (targeting vascular endothelial growth fac-
tor-2) showed a prominent effect on metastatic gastric
cancer, indicating that endothelial cells play a vital role in
TNBC metastasis. However, the detailed cellular/molecular
mechanisms still need to be elucidated. Besides, we discov-
ered that endothelial cells in TNBC patients could respond
abnormally to fluid shear stress (Figure 3(d)). It helps
explain how cancer cells reverse transmigrate into nearby
blood vessels and/or lymphatic vessels. Possibly, the cancer
cells intravasate via two independent manners: through
endothelial cell surface junctions and direct reverse transmi-
grate through endothelial cells. Inevitably, fluid shear stress
could potentially facilitate the above procedures.

The advent of scRNA-seq makes it feasible to analyse
endothelial cell genetic profiles [15, 16]. Using sequencing
data, we first identified three endothelial cell subpopulations
in the normal human breast and TNBC tissues and validated
them by flow cytometry analysis. The heterogeneity of breast

endothelial cells was studied with distinguished biological/
pathological features of each subpopulation, and their
genetic profiles were analysed. Moreover, the importance
of endothelial cells in mediating TNBC metastasis has been
delineated and discussed, especially the development of
fibrosarcoma, hereditary diffuse gastric cancer, and anaplas-
tic carcinoma in TNBC patients. Thus, endothelial cells
could serve as a therapeutic target for TNBC metastasis.
However, the potential role of EC (KRT7) in TNBC
metastasis has not been studied because of extreme cell
events. Further studies should be conducted to bridge this
gap. Moreover, TNBC metastasis should be evaluated with
relevant genetic modified animal models in further studies.
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