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The era of Precision Medicine (PM) has entered its execution
phase where acquisition of human genome variation data is
already leading the charge [1,2]. PM has come a long way to

this phase from the Human Genome Project started some
25 years ago [3,4]; it marks the beginning of disease-centric
research in the field of biomedical sciences. Other than deliver-

ing high-coverage human genomes by millions—of course tai-
lored to patients and common diseases—in the next decade or
so, what else do we expect to have and what should we be
doing to make the best out of PM projects beyond the current

expectation of genetics?
Believe or not, the PM bandwagon is still largely bannered

with slogans promoting large-scale, data-driven (or discovery-

driven) approaches, such as in-depth discovery of cancer-causing
mutations, drug targets, and biomarkers, and may be
coupled with hypotheses to balance the currently-debated

environment-centric vs. mutation-centric arguments. Never-
theless, we are still in time to speculate how to grasp disease-
centric PM tasks, largely focusing on various common

diseases, which are clear in priority and complex in nature,
including but not limited to cancers, as well as cardiovascular,
infectious, metabolic, and neurological diseases or disorders.
Other than disease-oriented objectives, we should think more
and deeper about other useful data and well-thought tasks in
addition to genome sequences, as well as new synthesis as to
how to acquire novel data and to interpret them with wisdom

[5–7].
First of all, once we have an enormous amount of high-

quality sequences, understanding the human population struc-

tures and defining haplotypes within and between populations,
as well as their disease relevance, are of essence. As the nature
of this particular venture is largely informational, population-
based sequence variation databases [8] are long-awaited, since

the raw data accumulation may exceed the current computa-
tion and storage capacities. An integrated database hosts all
sequence variations and functional annotation is highly desir-

able. In addition, mutation biases can also be further used to
define function-selected sequence elements beyond protein-
coding sequences [9,10]. For instance, when human genes are

partitioned into house-keeping and tissue-specific genes, the
mutation rate of tissue-specific genes appear 33% higher than
that of house-keeping genes [11,12]. This observation suggests

that the germline associated genes and chromosome organiza-
tion hold keys to a variable mutation rate. Another example is
the fact that the size of universal introns (size-invariable within
lineages) are found—based on population data—to be func-

tionally selected toward size optima, albeit lineage-associated
[9,13]. After all, mutations are neither created randomly nor
equally in an operational sense for overall DNA sequences

and their carriers—chromosomes, let alone selections
that are largely attributable to function or phenotype and
nces and
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poorly defined in structural terms of genes and intergenic
sequences [14].

Second, studying cellular gene expression and regulation in

precision presents another challenge. As a compartmental unit
of life, cellular heterogeneity provides functional diversity,
even when spoken about asexually divided bacteria. Although

transcriptomics is well-respected as a critical paradigm for
gene expression study tailored to cells [15], not yet has a single
standard human transcriptome been produced, claimed, vali-

dated, and hosted in an authorized database. The difficulties
are enormous at present time [16]. We have not yet been able
to sequence RNA directly in a resolution of copies per cell and
to define chemically-modified RNA sequences quantitatively at

single-molecule resolution [17–19]. We have not yet been able
to separate cellular RNAs into appropriate classes, ribosomal
vs. total, messenger vs. non-coding, small vs. large, etc. All

these call upon a genome-wide large-scale project world-wide:
the Human Transcriptomes Project. The Human Transcrip-
tomes Project will certainly come after the sequencing effort

in the early phase of the PM project, or being a sequel of it
or maybe even sooner, as the current sequencing capacity
and tasks will have to be redirected after the genome sequenc-

ing effort reaches a peak.
Third, defining DNA structural elements and gene organi-

zation as landmarks of chromosomes is undoubtedly a major
endeavor. The ENCODE project has been paving ways for

thorough definition of operational DNA elements for each cell
type and tissue (http://www.genome.gov/encode/). There are
quite a few unanswered questions along the line. For instance,

most human genes are organized into clusters but circadian-
regulated genes are cluster-avoiding. How are they synchro-
nized in expression and organized into chromosome territories

[14]? How transcript-rich cells, such as testis, brain, and stem
cells, are organized to express most of their genes [20,21]?
How chromosomes are organized, inherited, and regulated in

step-wise changes precisely in germline cells to ensure body
development from a zygote? Obviously, a human chromo-
some-based gene organization map becomes important, which
may include experimental data and information, such as sites

of chemical modifications, gene clustering and regulation (such
as antisense transcription-based regulation), nucleosome occu-
pancy (density vs. expression levels), non-transcribed regula-

tory elements, and organizer-anchorage sequences. We still
have a long way toward three-dimensional modeling of the
human chromosomes in a dynamic way for development and

differentiation.
Fourth, other than informational and operational (struc-

tural and interactive functions) systems, rules and nature of
various homeostatic processes are also critical and unique,

including generation and control of energy, material, and sig-
nal transduction. The leptin-adipocyte signal control system
represents an excellent example; the discovery of obese (ob)

gene and its mutation in mouse has not yet led to an ultimate
cure for obesity [22]. In this particular regime, cellular pro-
cesses involved in cross-physiological systems are to be deci-

phered and large PM projects to categorize components and
metabolites in circulating and excreting body fluids are to be
expected. To measure everything in precision, novel assays

and instrumentation are both essential.
Fifth, some PM projects have to go longitudinal as life

is after all governed by time. In the dimension of time, we
have so many mysteries to be solved; in addition to normal
development and aging, there are more than enough symptoms
to be reduced and maybe even cured, including menopause
syndrome, Alzheimer’s disease, osteoporosis, osteoarthritis,

diabetes, just to name a few. In this regime, plasticity or cellu-
lar responsiveness to stress signals and materials comes to the
center stage, and the degree and timing are both to be mea-

sured in precision. Whether the relevant PM projects are
named exposomes, stressomes, or plastisomes may not be
important but time-lapse records and measures are the keys.

The connectome projects for neurology of several model
organisms together with the Human Connectome Project have
been pioneering on cognitive plasticity (http://www.human-
connectomeproject.org/). Similar projects on the lymphatic

system have also come to their time.
It is clear that the stratification of biology into distinct

systems is equally important to that of diseases, as we are

increasingly capable of exploiting new territories of research
fields [23,24]. The fields of genetics, epigenetics, and environ-
ment have not provided enough conceptual freedom to allow

precise description of genotype–phenotype relationship,
where complexity, phenotypic plasticity, and cellular hetero-
geneity are conceptions frequently used. On the one hand,

multi-track biology takes a divide-and-conquer approach to
define useful data for understanding disease mechanisms at
molecular levels. On the other hand, multi-track biology also
takes a systematic approach to integrate data into the infor-

mation commons that can be synthesized into knowledge on
physiological systems as well as diseases, the pathological
states of the physiological systems. The medicine side of the

PM projects is also disease-centric, and their success largely
depends on the organization of cohorts; we also expect the
data from this side merges into the same information com-

mons, where mechanisms of diseases are deciphered and
strategies are designed to make humans healthier more than
ever.
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