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Abstract
Data transfer is one of the main functions of the Internet. The Internet consists of a large

number of interconnected subnetworks or domains, known as Autonomous Systems

(ASes). Due to privacy and other reasons the information about what route to use to reach

devices within other ASes is not readily available to any given AS. The Border Gateway Pro-

tocol (BGP) is responsible for discovering and distributing this reachability information to all

ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange

and update this reachability information in small chunks, known as routing control packets

or BGP updates. In the view of the quick growth of the Internet there are significant concerns

with the scalability of the BGP updates and the efficiency of the BGP routing in general.

Motivated by these issues we conduct a systematic time series analysis of BGP update

rates. We find that BGP update time series are extremely volatile, exhibit long-term correla-

tions and memory effects, similar to seismic time series, or temperature and stock market

price fluctuations. The presented statistical characterization of BGP update dynamics could

serve as a basis for validation of existing and developing better models of Internet interdo-

main routing.

Introduction
On large scale, the Internet is a global system of approximately 40,000 interlinked computer net-
works connecting billions of users and devices worldwide [1]. These networks are called Auton-
omous Systems (ASes). ASes vary in size and function: they can be (i) Internet Service and/or
Transit Providers (AT&T), (ii) Content Providers (Google), (iii) Enterprises (Harvard Univer-
sity), and (iv) Non-profit organizations [2]. Devices inside ASes are identified via unique Inter-
net Protocol (IP) addresses, which are 32- or 128-bit numerical labels that act both as identifiers
and locators of devices. An IP address is divided into two sections, a network section and a host
section. The network section, which is known as IP prefix, identifies a group of hosts, while the
host section identifies a particular device. An AS can include a number of IP prefixes.
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Each AS is administrated by a single entity, but a single organization may own and operate
several ASes. ASes connect to each other via contractual agreements that govern the flow of
data between and through them. This interconnection of ASes shapes the AS-level topology of
the Internet, which facilitates connectivity between any pair of ASes and thus any pair of
devices connected to the Internet (Fig 1a).

The information about how to reach devices within other ASes is not readily available to
them. The exchange of this information is handled by specialized networked computers called
routers. Performing routing requires signaling reachability information, comparing different
possibilities, and maintaining a state that describes how to reach different IP prefixes. The Bor-
der Gateway Protocol (BGP) [3] is the globally deployed routing protocol that accomplishes this
task. The BGP protocol can be summarized as follows. ASes advertise their IP prefixes to their
neighbor ASes through BGP update messages. At each AS incoming BGP updates are processed
by the BGP router and the resulting reachability information is then stored in routing tables.

The Internet is a dynamic system where participating networks and links between them do
often experience configuration changes, failures, and restorations. BGP protocol reacts to
changes in the Internet connectivity incrementally: BGP routers send update messages to their
neighbor BGP routers. BGP update messages do not carry the information on the whole Inter-
net connectivity state. Instead, they carry only the information concerning the affected IP

Fig 1. The Internet and BGP routing. a, On large scale the Internet is the product of interconnectivity among a large number of ASes (shown with ovals). In
order to perform data transfer, ASes need to exchange the reachability information through BGP update messages. b, c BGP updates are processed by the
BGP routers. b, The reachability information is stored in the routing table. c, Typical dynamics in the number of updates received by the BGP router.

doi:10.1371/journal.pone.0141481.g001
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prefixes. Hence, to keep a consistent view of the network and, consequently, to be able to com-
municate with other networks, a BGP router must process incoming BGP updates in a timely
manner and update its routing table accordingly (Fig 1b and 1c).

Current version of the BGP routing protocol was introduced in 1994. Since then, the
deployment of the BGP routing protocol has sustained tremendous growth and it is arguably
one of the main technological reasons behind the success of the Internet.

Nevertheless, there are two major concerns related to the fast rate of the Internet growth. On
one hand, Internet growth implies the growth in the number of destinations for the BGP routing
and, thus, results in the growth of routing table sizes. On the other hand, the growth of the
Internet also leads to the growth in the number of BGP updates needed to maintain BGP rout-
ing [4]. Both factors are important, especially for routers at the core of the Internet. The growing
size of routing tables requires increasingly larger and faster memory. At the same time, growing
routing table sizes do not necessarily slow down data forwarding as long as address lookups are
performed using high speed memories and constant-time matching algorithms [5]. Increasingly
large amounts of BGP updates, on the other hand, is a more serious concern because processing
BGP updates can be computationally heavy (updating routing state, generating more updates,
checking import/export filters), and can trigger wide-scale instabilities [6].

Recent studies of BGP scalability range from measurements assessing the extent of the con-
cern [7, 8] to studies suggesting radically new routing architectures [9, 10]. Elmokashfi et al. [7]
analyzed the dynamics of BGP updates in four networks at the backbone of the Internet over a
period of seven years and eight months. They have shown that on average the level of BGP
updates is increasing, but not at an alarming rate: it was shown to grow at rates similar to the
growth in the number of ASes. However, they have also illustrated that the dynamics of BGP
updates is highly volatile even at large time scales, with peak rates exceeding the daily averages
by several orders of magnitude.

The complexity of the inter-AS routing system makes it difficult to isolate different factors
behind these fluctuations [11, 12]. An approach alternative to inferring this factors directly is
to build a realistic model for the dynamics of BGP updates. To this end, one needs an in-depth
statistical characterization of fluctuations in BGP update time series, which is the subject of
this work.

We aim at improving our understanding of these fluctuations, which can help in validating
existing models [13] and in developing better ones. To study the statistical properties of BGP
updates, we use historical BGP update logs spanning a period of 8.5 years, collected by the Rou-
teViews project [14] from the BGP routers of four ASes (AT&T, NTT, IIJ, and Tinet). Through-
out the manuscript we refer to these routers as monitors. A BGP update log is the time series of
BGP updates arriving at the monitor recorded in 1 second intervals. The four ASes analyzed in
this work are among the largest Internet Service Providers (ISPs). Therefore, their correspond-
ing BGP update traffic is a reflection of BGP dynamics taking place in the core of the Internet,
where the BGP update volatility is believed to reach maximum rates. (Detailed information on
data collection and pre-processing can be found in the S1 Text Section II).

To put our study in a broader context we wish to note that many natural and economic sys-
tems have also been found to exhibit extreme fluctuations. Examples include DNA sequences
[15] and heartbeat intervals [16], climate variability [17, 18], earthquakes [19, 20], stock mar-
kets [21–23], and languages [24, 25].

Analysis
First we highlight the volatility of BGP updates series by reproducing the results of previous
works [7]. We plot the average rate of BGP updates received by the NTTmonitor on May 28th,
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2010, from 00: 00 to 24: 00 Greenwich Mean Time (GMT). As seen from Fig 2a, in 1 minute
interval the NTTmonitor receives on the average several hundred updates, while extreme fluc-
tuations occasionally produce 104 updates per minute. BGP updates are largely driven by two
sources: spontaneous BGP events and maintenance sessions. The former consist of mostly
spontaneous updates, such as misconfigurations, duplicate announcements and special events.
Maintenance sessions, on the other hand, are periodic by nature and happen at certain times of
the day on particular days of the week.

In order to separate the two sources of fluctuations we calculate the intra-day and intra-
week patterns for the BGP update time series. The intra-day pattern, �Zd , is then defined as the
number of events taking place at a specific time of the day, tday, averaged throughout the obser-
vation period:

�ZdðtdayÞ ¼
1

Nd

XNd

i¼1

ZiðtdayÞ; ð1Þ

where Nd is the total number of days in the observation period, and Zi(tday) is the number of
events at day i at tday. The intra-week pattern �ZwðtweekÞ is defined in a similar way after first nor-
malizing the time series with the intra-day pattern.

~ZðtÞ � ZðtÞ
�Zd tday tð Þ
� � ; ð2Þ

Fig 2. Time series of BGP updates. a, The number of updates received by theNTTmonitor on May 28th, 2010, from 00.00 to 24.00 GMT. b, the intra-day
pattern, �ZdðtÞ, and, d, the standard deviation from the intra-day pattern, �sdðtÞ, of BGP updates measured for NTT, IIJ, Tinet, and AT&Tmonitors. c, the intra-
week pattern, �ZwðtÞ, and, e, the standard deviation from the intra-week pattern, �swðtÞ, of BGP updates measured for NTT, IIJ, Tinet, and AT&Tmonitors.

doi:10.1371/journal.pone.0141481.g002
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�ZwðtweekÞ ¼ 1

Nw

XNw

i¼1

~ZiðtweekÞ ð3Þ

Here Nw is the number of weeks in the observational period and ~ZiðtweekÞ is the normalized
number of events at week i at time of the week tweek (see Methods for details).

As seen from Fig 2b, the intraday BGP update patterns reach maximum values in the inter-
val from approximately 06: 00 to 10: 00 GMT, which is typical time for scheduling maintenance
tasks [26]. The intraweek patterns, in their turn, are characterized by higher values during
weekdays and smaller values during weekends. (see Fig 2c). We note that the standard devia-
tions of the intraday and intraweek patterns, �sdðtÞ and �swðtÞ, tend to exceed the corresponding
average values of the intra-day and the intra-week patterns by an order of magnitude, which is
consistent with the extreme burstiness of the BGP updates (Fig 2d and 2e).

To characterize the volatility of the BGP updates we analyze the distribution of the number
of BGP updates received by the monitor in 1 minute intervals. Fig 3a confirms the volatile
nature of BGP updates. We find that all monitors are characterized by similar distributions P
(Z). Although the average number of BGP updates received per minute is quite small
(�ZNTT ¼ 250), the peak values may occasionally exceed 105 BGP updates per minute. The dis-
tributions of the number of BGP updates, P(Z), are positively skewed (measured skewness val-
ues are: γ1(AT&T) = 45.7, γ1(IIJ) = 121.2, γ1(Tinet) = 49.1, γ1(NTT) = 69.1) and the
distribution tails scale as a power-law, P(Z)* Z−μ with μ = 2.51 ± 0.11 (p = 0.992 for IIJ, see S1
Text Section V for details). We also note that the observed power-law behavior of the tail of P
(Z) seems to be independent of the aggregation window size (Fig 3b).

The power-law distribution of the number of BGP updates implies that BGP routers should
be able to cope with surges in the number of updates exceeding the corresponding average lev-
els by several orders of magnitude. To understand how and when these surges occur we analyze
correlation patterns of the BGP updates. We employ three standard methods traditionally used
in the time-series analysis: auto-correlation function (ACF), power spectrum (PS), and the lin-
ear detrended fluctuation analysis (DFA1) (see Methods, S1 Text Section IV, and Ref. [27] for
details).

Fig 3. Extreme events in BGP dynamics. a, The distribution of the number of BGP updates received by the 4 monitors in 1 minute interval, All monitors
collapse onto a single master curve. Power law regression fit yields a slope of μ = 2.3 b, The distribution of number of updates P(z) received by the NTT
monitor calculated for aggregation window sizes Δt = 1min, Δt = 10min, Δt = 1hour, Δt = 1day and Δt = 1week.

doi:10.1371/journal.pone.0141481.g003
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Even though most of BGP update events last less then 1 minute, the duration of some of
them may exceed several minutes [28]. Thus, to avoid possible correlations associated with
long BGP updates in our subsequent analysis we use larger aggregation window size of Δ(t) =
10min. Further, to eliminate possible spurious effects and correlations attributed to periodic
activities we also normalize the BGP update data with both intra-week and intra-day patterns:

zðtÞ � ZðtÞ
�Zw tweekðtÞð Þ�Zd tdayðtÞ

� � ; ð4Þ

All three methods indicate the presence of long-range correlations in the BGP update time-
series (see Fig 4 and S1 Fig). Specifically, we find that DFA1 performed for NTT, IIJ and Tinet
and AT&T indicates that fluctuations grow as a power-law with aggregation window size Δ, F
(Δ)* Δα, where α = 0.75 (Fig 4). To highlight the effects of long-range correlations in the BGP
updates time series we also performed DFA1 for the randomized counterparts of the BGP
updates (see Methods). In the randomized case we obtained Frandom(Δ)* Δα with α = 0.5,
which corresponds to the uncorrelated time series (Fig 4). Similar results are obtained by ACF
and PS analysis. The autocorrelation function of the BGP updates decays as a power law over
several orders of magnitude for all monitors, ACF(Δz)* z−γ (S1a Fig). We obtain similar γ val-
ues for three monitors: γ = 0.5 for NTT, and γ = 0.4 for IIJ and Tinetmonitors. The power spec-
trum density, S(f), also decays as a power-law with frequency, S(f)* f−β, where β = 0.6 for all
monitors (S1b Fig). We note that the obtained values of correlation exponents approximately

conform with expected relations, γ = 1 − β, a ¼ bþ1

2
, and γ = 2(1 − α) [17, 29–31].

The appearance of long-range correlations in BGP update time series indicates that at a
given time the state of a particular BGP router is determined by its previous states. Conse-
quently, long-range correlations may imply the presence of memory effects in the inter-domain
Internet routing. To probe for the latter we ask, what is a typical time interval τ separating two
large events. Formally, we define a return interval τ(q) as a time separation between two conse-
cutive events z(t1) and z(t2), such that z(t1)> q and z(t2)> q (see Fig 5a). The evidence of
memory in BGP update time series is seen in Fig 5b, which displays typical sequence of 500

Fig 4. Correlations in the BGP update times series. Fluctuations of the detrended BGP update time series
as a function of window size.

doi:10.1371/journal.pone.0141481.g004
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Fig 5. Return interval statistics of BGP updates. a, Schematic illustration of the BGP update return intervals. Shown are the intervals τ1 and τ2 calculated
for threshold q = 1 and q = 2 respectively. b, Typical sequence of 500 BGP update return intervals for NTT, where q = 4, calculated for (magenta) original and
(black) shuffled data. c, The distribution function Pq(τ) of BGP update return intervals of theNTT, calculated for different values of q. The inset depicts the
average return interval �t as a function of threshold q. d, Pq(τ) for BGP update return intervals of the NTTmonitor calculated for q = 1. Original data is shown
with red while shuffled data is shown with black. e, Scaled plots of the BGP return intervals for theNTTmonitor. f, The mean conditional return interval t̂ as a
function of preceding return interval τ0 for the NTTmonitor. Both t̂ and τ0 are normalized with the mean return interval (�t). For BGP updates without memory
we expect t̂ðt0Þ ¼ 1, as supported by the open symbols obtained for shuffled return interval data.

doi:10.1371/journal.pone.0141481.g005
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consecutive return intervals for the NTTmonitor. The original return interval data (shown in
magenta) is characterized by “patches” of extreme return intervals, while there is no such
“patches” in the shuffled data (shown in black) obtained by randomizing the time-order of the
original series of BGP updates.

To further explore memory effects we analyze the distribution of return intervals Pq(τ) for
the NTTmonitor (Fig 5c). We note that Pq(τ) decays slower than the Poisson distribution,
which is expected for uncorrelated data (Fig 5d). As q increases, the decay of Pq(τ) becomes
slower and the average return interval �tðqÞ increases implying that the larger events become
increasingly rare (see the inset of Fig 5c)). We also note that, independent of q, all the distribu-
tions Pq(τ), upon proper rescaling, collapse to a single master curve:

PqðtÞ ¼
1

�t
f

t
�t

� �
; ð5Þ

where f(x) does not depend on the threshold value (see Fig 5e and S3 Fig). The resulting master
curve f(x) fits a stretched exponential exp(−x−γ) with exponent γ = 0.5 (p = 0.08, see S1 Text
Section V), which approximately matches the observed autocorrelation exponent γ = 0.5 [32].
We note that the observed scaling of Pq(τ) holds not only for NTT but also for the other three
analyzed monitors (see S1 Text Section IV and S2 Fig).

Finally, to test memory effects directly we measure the average return interval t̂ following
immediately after return intervals of fixed duration τ0. Fig 5f and S3 Fig depict t̂ as a function
of τ0 for three possible values of threshold q (filled symbols). We observe that t̂ increases as a
function of τ0, indicating that on the average longer (shorter) return intervals tend to follow
longer (shorter) intervals. In contrast, t̂ is independent of preceding return interval τ0 for ran-
domized data (open symbols in Fig 5f and S3 Fig).

Discussion
In this work, we investigated the statistical properties of BGP updates. Complementing previ-
ous studies, we confirmed that the rate of BGP updates is highly volatile, with extreme events
at times exceeding the average rates by up to 4 orders of magnitude. We established that the
distribution in the number of BGP updates received by a BGP monitor in a given time win-
dow is characterized by a power-law tail with exponent μ = 2.5. We also found (using three
independent methods) that the BGP update time series exhibit long-range correlations. The
analysis of the return interval data revealed the universal scaling in the distribution of return
intervals Pq(τ). We also found memory effects in the return interval data. Small (or large)
return intervals separating BGP update events are more likely to be followed by small (or
large) intervals.

The observed volatility and correlation properties of the BGP update dynamics place inter-
domain Internet routing into the same class of phenomena as earthquakes [19, 20], climate
[18], stock markets [21–23] and languages [24, 25]. Unlike these systems, however, the Internet
routing is a fully engineered system. The observed dynamical similarities between these sto-
chastic systems imply that the key mechanisms underlying Internet routing are in a certain
way similar to the mechanisms governing the dynamics of stock markets or seismic movements
in the Earth crust.

As with stock market price dynamics, one would wish to be able to predict BGP dynamics,
or at least extreme events in it. To this end, one could benefit from the return interval scaling.
The established scaling of Pq(τ) may allow one to approximate the statistics of return intervals
for large events (characterized by large q values) using the much richer statistics of return inter-
vals of smaller events.

Long-Range Correlations and Memory in the Dynamics of Internet Routing
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The observed long-range correlations and memory effects indicate that the communication
patterns between BGP routers are an outcome of an interplay between certain semi-determin-
istic processes. Such processes are well known at the low level of the operation of an individual
BGP router (e.g. BGP route selection process). Yet this knowledge is as helpful as the knowl-
edge about the dynamical properties of an individual molecule in a gas—when studying the
properties of this gas (or the Internet in our case), some molecular details do matter, but most
details are irrelevant.

Therefore the identification of a proper level of abstraction in modeling the dynamics of
BGP routing is an important problem for understanding Internet dynamics. The statistical
analysis of the BGP update time series that we have conducted here should serve as a basis for
validation of existing models and for developing better ones.

Materials and Methods

Intraday and Intraweek Patterns
Consider series Z(t), where Z is the number of events taking place at time t, and t is specified as
UNIX timestamps. We first define functions tday(t) and tweek(t) which map Unix timestamps t
to respectively specific time of the day or specific time of the week (tday 2 [0: 00, 24: 00], tweek 2
[Sunday, 0: 00, Saturday, 24: 00]). Both tday and tweek are calculated corresponding to the GMT
time zone.

The intra-day pattern, �Zd , is then defined as the number of events taking place at a specific
time of the day, tday, averaged throughout the observation period:

�ZdðtdayÞ ¼
1

Nd

XNd

i¼1

ZiðtdayÞ; ð6Þ

where Nd is the total number of days in the observation period, and Zi(tday) is the number of
events at day i at tday. The intra-week pattern �ZwðtweekÞ is defined in a similar way after first nor-
malizing the time series with the intra-day pattern.

~ZðtÞ � ZðtÞ
�Zd tday tð Þ
� � ; ð7Þ

�ZwðtweekÞ ¼ 1

Nw

XNw

i¼1

~ZiðtweekÞ: ð8Þ

Here Nw is the number of weeks in the observational period and ~ZiðtweekÞ is the normalized
number of events at week i at time of the week tweek.

The standard deviations of the intraday and intraweek patterns are defined as

sdðtdayÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

XNd

i¼1

ðZiðtdayÞ � �ZdðtdayÞÞ2
s

; ð9Þ

sdðtweekÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nw

XNw

i¼1

ð~ZiðtweekÞ � �ZwðtweekÞÞ2

s
ð10Þ
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Detrended Fluctuation Analysis
Detrended Fluctuation Analysis is a method designed to study correlations in time series [27].
Here we employ the linear version of the DFA, defined as follows. We first calculate the cumu-
lative BGP update time series:

yðtÞ ¼
Xt

t0¼ti

zðt0Þ � �zð Þ; ð11Þ

where ti is the initial time value in the series, z(t) is the original time series and �z is its average
value. The cumulative time series y(t) is then divided into boxes of equal size Δ. In each box, a
least squares linear fit to the y(t) data is performed, representing the trend in that box. That is,
for each box Δ we determine linear approximation for the corresponding piece of the time
series:

yDðtÞ ¼ mDt þ bD; ð12Þ
wheremΔ and bΔ are the slope and the intercept of the straight line. Next we detrend the inte-
grated time series, y(t), by subtracting the local trend, yΔ(t), in each box. The root-mean-square
fluctuation of this integrated and detrended time series is calculated:

FðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xtf
t¼ti

½yðtÞ � yDðtÞ�2
vuut ; ð13Þ

where N is the total number of points in the original time series, ti and tf are respectively the ini-
tial and final time values in the series.

This fluctuation measurement process is repeated at a range of different box sizes Δ. The
fluctuations typically exhibit a power law scaling as a function of box size:

FðDÞ � Da; ð14Þ
depending on the observed exponent α one can distinguish anti-correlated fluctuations (α< 1/
2), uncorrelated fluctuations (α = 1/2), and correlated fluctuations (α> 1/2).

Data Randomization
To assess the significance of correlations and memory effects in the BGP update time series we
compare original results to those obtained for randomized (shuffled) datasets. In all experi-
ments the randomization is performed at the most basic level: for a given time series Z(t) we
obtain its randomized (shuffled) counterpart by randomly rearranging time stamps attributed
to each element in the series. Shuffled data is subsequently normalized and binned using the
same procedures as those applied to original data.
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Tinet, and h, IIJmonitors.
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S3 Fig. The mean conditional interval t̂ðt0Þ divided by �t as a function of t0
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S4 Fig. KS goodness of fit tests for a, the distribution of number of BGP updates, P(z) for the
NTTmonitor, and b, the distribution of return intervals Pq(τ) for the NTTmonitor.
(TIFF)
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