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Abstract

Objective

We previously showed that MELAS patients have decreased cerebrovascular reactivity

(CVR) (p� 0.002) and increased cerebral blood flow (CBF) (p<0.0026); changes correlated

with disease severity and % mutant mtDNA (inversely for CVR; directly for CBF). We ran a

prospective pilot in 3 MELAS sibs (m.3243A>G tRNALeu(UUR)) with variable % mutant blood

mtDNA to assess effects of L-Arginine (L-Arg) (single dose and 6-wk steady-state trial) on

regional CBF, arterial CVR and neurovascular coupling.

Methods

Patients were studied with 3T MRI using arterial spin labeling (ASL) to measure CBF and

changes in % Blood Oxygen Level Dependent (BOLD) signal to changes in arterial partial

pressure of CO2 to measure CVR. Task fMRI consisted of an alternating black and white

checkerboard to evaluate visual cortex response in MELAS and controls.

Results

Following L-Arg, there was restoration of serum Arg (76–230 μM) in MELAS sibs and a

trend towards increasing CVR in frontal and corresponding decrease in occipital cortex;

CVR was unchanged globally. There was a 29–37% reduction in baseline CBF in one

patient following 6 wks of L-Arg. Pre-treatment fMRI activation in response to visual cortex

stimulus was markedly decreased in the same patient compared to controls in primary visual
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striate cortex V1 and extrastriate regions V2 to V5 with a marked increase toward control

values following a single dose and 6 wks of L-Arg.

Conclusion

Proposed “healing” effect may be due to more efficient utilization of energy substrates with

increased cellular energy balances and ensuing reduction in signalling pathways that aug-

ment flow in the untreated state.

Classification of evidence

This prospective pilot study provides Class III evidence that oral L-Arginine (100 mg/kg sin-

gle dose or 100 mg/kg three times daily po X 6 weeks) normalizes resting blood flow from

elevated pre-treatment levels in patients with MELAS syndrome, selectively increases their

CVR from reduced pre-treatment levels in regions most impaired at the expense of less

abnormal regions, and normalizes reduced BOLD fMRI activation in response to visual cor-

tex stimulus.

Clinical trials.gov (NIH)

NCT01603446.

Introduction

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syn-

drome (m.3243A>G tRNALeu (UUR) in MT-TL1 gene) (OMIM # 590050) [1] is associated with

failure to thrive, lactic acidosis, neuromyopathy, epilepsy, migraine-like headaches and recur-

rent stroke-like episodes (SLEs) resembling vaso-occlusive strokes [2]. These SLEs have a pre-

dilection for occipital, posterior parietal and temporal cortices [3]. However, SLEs are not

restricted to vascular territories, unlike vaso-occlusive strokes [3]. They evolve subacutely over

hours to days (or weeks) [4], have greater potential for reversibility [5], and have complex

hemodynamic alterations [6–8]. Current literature implicates neuronal and/or glial injury due

to mitochondrial failure and cerebrovascular angiopathy with dysregulated cerebral perfusion

[9]. Demonstrated increases in mitochondrial size and number in cerebral vascular endothelial

and smooth muscle cells support cerebral angiopathy [10–12], but cerebrovascular reactivity

studies have had contradictory results [13–16].

Investigators have demonstrated a beneficial effect of L-arginine (L-Arg) therapy for the

acute treatment and prevention of SLEs [17]. The rationale was to promote cerebrovascular

vasodilation through endothelial nitric oxide synthase; however, blood flow dysregulation in

SLEs is complex, involving both cerebral hypo- and hyperperfusion at variable timepoints [6–8],

making sole vasodilatation less plausible. Serum Arg deficiency has been shown in MELAS

patients at baseline, with a further decrease during SLEs [17]. Etiology of the hypoarginemia and

benefit of Arg therapy, while potentially central to pathogenesis, are yet to be fully elucidated.

Blood oxygen level dependent (BOLD) functional MRI is a non-invasive means of measuring

relative changes in cerebral blood flow (CBF) in response to neuronal activation, based on differ-

ences in magnetic properties of oxygenated and deoxygenated haemoglobin, between resting

and activation conditions [18, 19]. Cerebrovascular reactivity (CVR) reflects the capacity of

blood vessels to dilate in response to a global vasodilatory stimulus and is a marker for brain
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vascular reserve [20]. CVR can be measured using a BOLD sequence in combination with

changes in end tidal PCO2. CBF can be measured using an arterial spin labeling (ASL) sequence.

We have previously demonstrated that a family of MELAS siblings had lower serum Arg

(53 ± 11 μM; controls 94 ± 18; p = 0.001) with decreased CVR (p� 0.002) and increased CBF

(p� 0.0026) compared to controls. On regional analysis, mean CVR was reduced in both fron-

tal and occipital cortices but more so in frontal (p< 0.001) versus occipital cortex (p = 0.002).

Furthermore, mean CBF was increased in both frontal and occipital cortices but more so in

occipital (p = 0.001) than frontal (p = 0.0026) cortices compared to controls [21]. We further

previously demonstrated that mean CBF in frontal cortex (but not in occipital infarct penum-

bra) correlated directly (r = +0.85 frontal) with disease severity and % mutant mtDNA whereas

CVR correlated inversely (r = -0.82 frontal, r = -0.91 occipital cortex). This makes sense as the

only way to increase blood flow given constant blood pressure is through vasodilation. But any

vasodilation consumes vascular reserve. The degree of cerebral hyperperfusion, which trans-

lates into a reduction in flow reserve and was inversely proportional to the CVR, was thereby

directly proportional to the severity of the neurological phenotype and percentage of mutant

mtDNA in blood in our cohort [21]. One interpretation of MELAS cerebral blood flow physi-

ology is that the cortical hyperperfusion may be the result of a normal flow control mechanism

responding adaptively in an attempt to compensate for metabolic imbalance resulting from

inefficient ATP generation from oxidative metabolism by abnormal non-vascular cerebral

mitochondria or may represent a passive response to tissue acidosis or to the accumulation of

other intermediary metabolites. This may support the concept that the metabolic defect and

associated hyperemia in MELAS is expressed in cerebral tissue and that the hyperemia is an

adaptive response to a limitation in oxidative glucose metabolism and to the reduction of high

energy phosphates from the inefficient utilization of oxygen for ATP generation and/or the

result of the accumulation of lactic acid or other metabolic intermediates. Thus, a compensa-

tory increase in CBF responding to inefficient use of oxygen for ATP generation would

increase blood flow and decrease vascular reserve and vascular reactivity to a vasodilatory

stimulus. A second hypothesis would be that morphologically abnormal mitochondria in cere-

brovascular smooth muscle and endothelial cells may lead to an angiopathy with functional

impairment of blood vessel vasodilation in response to an increase in PCO2, thereby limiting

CVR and supporting a vascular contribution to SLEs. Thirdly, hyperperfusion could be the

result of both mechanisms.

The purpose of the current study was to evaluate the effects of L-Arg on CVR, cerebral

hyperperfusion, and BOLD fMRI neuronal activation in our MELAS cohort to gain further

insight into the mechanism (s) of its therapeutic effect.

Materials and methods

Classification of evidence

This prospective pilot study provides Class III evidence that oral L-Arginine (100 mg/kg single

dose or 100 mg/kg tid po X 6 weeks) normalizes resting blood flow from elevated pre-treat-

ment levels in patients with MELAS syndrome, selectively increases their CVR from reduced

pre-treatment levels in regions most impaired at the expense of less abnormal regions, and

normalizes reduced BOLD fMRI activation in response to visual cortex stimulus.

Study methodology

A clinical pilot study design was used to assess the response of cerebral perfusion and cerebro-

vascular reactivity in MELAS patients to L-arginine. The protocol for this trial and supporting

CONSORT checklist are available as supporting information; see S1 Checklist and S1 Protocol.
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The authors confirm that this non-randomized pilot efficacy study and all related trials for this

drug/intervention were registered on the ClinicalTrials.gov (NIH) website under identifier:

NCT01603446. Research ethics board (REB) approval was obtained from both study sites, the

Hospital for Sick Children (HSC) and Toronto Western Hospital (TWH). A data safety moni-

toring committee was in place. Written informed consent was obtained from all participants

and from the next of kin on behalf of all minors enrolled in the study using formal consent

forms approved by the REB of the HSC. All clinical investigations were conducted according

to principles expressed in the Declaration of Helsinki.

Subjects

Three siblings (two females, one male) aged 17, 21 and 22 years with genetically confirmed

MELAS syndrome (m.3243A>G tRNALeu (UUR) in MT-TL1) were recruited from the Neuro-

metabolic clinic at HSC, Toronto, Canada. Four healthy age and sex-matched controls (three

females, one male) living in Toronto were recruited through posted advertisements, approved

by the REB, at the HSC, Toronto and the University of Toronto by referral and by self-selec-

tion. Female patients were also matched to controls for timing of menstrual cycle, and estradiol

levels were measured, as estrogen appears to alter myogenic tone (vasodilation) by increasing

cerebrovascular NO production and/or action [22]. Healthy controls had no ongoing medical

conditions that could affect CVR (e.g. migraine, neurological disease, genetic metabolic disor-

der, cardiac or pulmonary disease, hypertension, prothrombotic disorder, anemia) and were

taking no medications and were not smokers. Healthy controls were also screened prior to

study entry for a normal baseline physical examination, blood pressure, serum hemoglobin,

lactate, creatine phosphokinase, quantitative amino acids, carnitine, and urine organic acids.

The patients and healthy subjects did not smoke and all subjects were asked to refrain from

caffeine. The studies were performed and the data was collected at the HSC in Toronto.

Study design

A Consort flow diagram is given in Fig 1A and a Study Protocol flow diagram is represented in

Fig 1B. At baseline, a complete neurological examination to ensure clinical stability was done.

Serum quantitative amino acids (AA), and CVR and CBF studies were performed on both

MELAS patients and controls. MELAS patients also underwent baseline CBC, serum electro-

lytes, renal and liver functions, glucose, calcium, phosphate, PT, INR, carnitine, CK, lactate,

and urine organic acids. Female subjects had serum estradiol measured. Serum AA were mea-

sured at 4 time-points over the day, both pre- and post-prandially, to better assess average AA

levels. Serum arginine levels of MELAS and control subjects were compared to our well-estab-

lished normal control data (n = 500) from the HSC Metabolic Diseases Laboratory using the

Student‘s T-test. The control females and the control male underwent only the baseline studies,

which were completed in one day. Studies were conducted on separate days from the MELAS

subjects. The MELAS subjects underwent the studies in tandem on the same day. Studies were

conducted at 4 weekly intervals to coincide with the same timepoint in menstrual cycle (Fig

1B). On week 4, MELAS patients only were given a single dose of oral L-Arg (100 mg/kg)

mixed in solution by the clinical research trial nurse in the Physiology Research Unit at the

HSC, Toronto. Serum amino acids were measured following administration (4 time points: 1

hour post oral L-Arg twice and 3–5 hours post L-Arg twice), and a CVR study was performed

1 hour after administration to coincide with peak serum L-Arg concentrations. On week 6,

MELAS patients were commenced on a 6 week, steady state trial of oral L-Arg at 100mg/kg

three times daily as per Koga et al. [23]. At week 12 (MELAS only) serum AA were repeated (4

time points as above) along with baseline bloodwork, and the CVR study was repeated at one
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hour post L-Arg (100 mg/kg) administration. At week 20 (MELAS only), following an 8 week

wash-out period, serum AA were repeated along with the baseline bloodwork. High grade,

highly purified NOW foods commercial Natural Health Product L-Arginine Powder, NPN

80002672, Bloomingdale, Illinois, which was approved for use on the Canadian market by

Health Canada, Natural Health Products Directorate, was used. All subjects received a small

incentive for their participation.

CVR studies

For CVR studies, subjects were fitted with an air-tight mask on the face attached to a sequential

gas delivery breathing circuit. An automated gas blender (RepirAct™ Thornhill Research, Inc.,

ON, Canada) controlled gas delivery to the breathing circuit. In our previous study of the

RespirAct™ sequential gas delivery circuit in five healthy male adults comparing their PETCO2

values with their arterial PCO2, repeated measures of ANOVAs revealed no significant differ-

ences between the end-tidal PCO2 (PETCO2) (between 35 to 50 mmHg), and arterial PCO2

(Pa,CO2) over the ranges of PO2 (between 70 to 300 mm Hg) [24]. This has been confirmed

both in animals [25–27] and in humans [24, 28]. In the current study, the patterns of end-tidal

(end-expiratory) partial pressure of CO2 (PETCO2) and O2 (PETO2) were programmed into the

automated gas blender, which directed mixtures of O2, CO2 and N2 into the breathing circuit

according to prospective targeting algorithms developed by Slessarev et al. [29]. Tidal gas was

sampled and analyzed for PETCO2 and PETO2 and recorded at 20 Hz.

CVR protocal

Subjects were given a series of four hypercapnic challenges where PETCO2 was raised 10

mmHg above their individual baseline for 90, 60, 60, and 60 seconds with 60 second interval

returns to baseline. Total imaging time was 9.5 minutes. This was previously demonstrated to

Fig 1. Flow diagrams for the MELAS/L-arginine study (A) Consort 2010 Flow Diagram (B) Schema for MELAS/L-arginine Study Protocol.

https://doi.org/10.1371/journal.pone.0238224.g001
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be safe, well tolerated and technically feasible in a clinical patient population ranging in age

from 9 to 88 years [30]. The PETCO2 and PETO2 were precisely controlled throughout the

protocol by the RespirAct™ and the PETO2 was maintained at 100 mmHg.

BOLD-MRI-CVR

Magnetic resonance imaging was performed with a 3.0 Tesla Signa HDx scanner (GE Health-

care, Milwaukee, Wisconsin) using an 8-channel phased-array receiver head coil Imaging con-

sisted of BOLD echo planar acquisitions (EPI) using a gradient echo readout (TR/TE = 2000/

30 ms, 3.75 x 3.75 x 5 mm voxels, field of view 24 x 24 cm, 30 slices, slice thickness 5 mm,

matrix size 64 x 64, number of frames = 254, flip angle (FA) = 850). The acquired MRI and

PET CO2 data were analyzed with AFNI software (National Institutes of Health, Bethesda,

Maryland; http://afni.nimh.nih.gov/afni. To synchronize PETCO2 and BOLD signal data,

PETCO2 data were time-shifted to the point of maximum correlation with the BOLD signal

averaged over the whole brain. BOLD signal drift correction was made assuming a linear drift

over time between the initial and final baselines [31]. Three-dimensional high-resolution

T1-weighted anatomic MR images were acquired for coregistration with BOLD MR images by

using an inversion-recovery fast spoiled gradient-echo sequence [30].

BOLD images were then volume registered and slice-time corrected, and co-registered

to an axial 3-D T1-weighted Inversion-Recovery prepared Fast Spoiled Gradient-Echo

(IR-FSPGR) volume (T1/TR/TE = 450/8/3 ms, voxel size 0.86 x 0.86 x 1.0 mm, matrix size 256

x 256, field of view 22 x 22 cm, slice thickness = 1 mm, FA = 15 0) that was acquired at the

same time [32] as described in Fierstra et al. [33]. All images were normalized by mapping

them into the same number of voxels. This enabled the representation of the fractional fre-

quency of CVR values by constructing frequency distribution histograms which used all CVR

data with the exception of zero values [31].

The BOLD MRI signal was regressed against end-tidal CO2 on a voxel-by-voxel basis. The

CVR was represented by the slope of the regression of the percentage change in MRI signal

intensity versus mmHg change in PETCO2. In other words, the CVR was the % change in

blood flow per unit change in flow stimulus in mmHg [31]. The slope of the relation between

the BOLD signal and the PETCO2 was colour-coded to a spectrum of colours corresponding

to the direction and the magnitude of the slope and overlaid voxel-by-voxel on precisely

matched anatomical scans to generate CVR maps [31]. Each MELAS and study control sub-

ject’s CVR maps were registered in the MNI standard space and compared voxel by voxel to a

CVR atlas generated from a cohort of 19 healthy subjects (ages 20–30 yrs) who had been simi-

larly configured [34].

Cerebral blood flow

Increases in brain blood flow occur in response to a variety of stimuli including neural activity,

anemia, decreased blood pressure, and carbon dioxide. Quantitative cerebral blood flow (CBF)

was measured in MELAS and control subjects at baseline using arterial spin labeling (ASL)

technique (pseudocontinuous ASL product sequence, GE Healthcare, Milwaukee). The CBF

was color-coded on a rainbow spectrum from 0 ml/100 g/min (blue) to 100 ml/100g/min

(red). All MELAS patients and healthy controls had normal haemoglobin and hematocrit,

therefore no adjustments were required for anemia. The CBF maps generated from the MRI

ASL sequence were also compared to a CBF atlas of 14 normal controls (20–30 yrs) previously

studied at TWH.
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Regions of interest

Given the preferential involvement of occipital cortex in MELAS SLEs, we compared CVR and

perfusion that was restricted to regions of interest in the cortical grey matter of the frontal cor-

tex (anterior circulation) and occipital cortex (posterior circulation) in our MELAS patients,

study controls, and normal control population at baseline (no L-arginine). Since MELAS

patient 3 had occipital gliosis from prior SLEs, and since infarcted brain has altered blood flow

characteristics, we excluded regions of infarcted brain from this analysis. In order to maintain

consistency, we similarly excluded a geographically matched region from the other MELAS

patients, our study controls, as well as from the normal control population.

fMRI acquisition

The fMRI stimulus consisted of an alternating black and white checkerboard pattern at a rate

of 8Hz. The spatial frequency was 0.5 cycles per degree of visual angle. Luminance was set at

150 cd/m2 and the black and white check contrast was set at 90%. The stimulus was projected

to the subject in the MRI scanner using a Resonance Technology goggle system. The stimulus

followed a block design beginning with 60 rest followed by 4 alternating cycles of 15 sec of

checkerboard stimulus and 30 sec rest and ending in 60 sec rest for a total imaging time of 5

minutes. Each checkerboard stimulus consisted of a nested 1 sec flash and 1 sec rest subcycle

for a total of 8 subcycles since sustained flashing is not needed to maintain blood flow response

to the stimulus [35]. This results in short 1 sec resting phases during the stimulus and is meta-

bolically less stressful. Data analysis was identical to that used for BOLD CVR MRI except that

a square wave representing the stimulus paradigm was used as the regressor. The BOLD signal

therefore represented the neuronal response to the stimulus and the complex relationship

between neuronal activity and the triggering of the hemodynamic response (termed neurovas-

cular coupling) and the hemodynamic response itself. This study was conducted in MELAS 1

and 2 and in the four age-matched study controls only. The % BOLD signal change was mea-

sured in Brodmann visual cortical region masks including V1 (primary visual area and striate

cortex) and in the extrastriate areas consisting of visual areas V2, V3, V4 and V5.

Statistical analysis

Statistical analysis comparing MELAS patients at baseline (no L-arginine) to healthy study

controls and a healthy control population and comparing CVR and cerebral blood flow in

frontal versus occipital cortices in MELAS patients was conducted using an unpaired student’s

t-test. Repeated measures ANOVA was used to compare mean serum ornithine, glutamate

and citrulline concentrations for MELAS patients before and after single-dose and 6-week

steady state L-arginine administration. Statistical significance was set at p<0.05. Pearson’s cor-

relation coefficient (r) was determined between the % mutant mtDNA blood and the CVR and

between the % mutant mtDNA blood and the cerebral blood flow respectively. The software

program used for the statistical calculations was Microsoft Excel.

Results

Patient characteristics

The MELAS siblings shared a common genetic background. Four MELAS siblings were

screened for the study and three were found to be eligible. The MELAS sisters (MELAS 1 and

2) were 22 and 21 years of age respectively and their brother (MELAS 3) was 17 years of age.

Seven control subjects were screened for the study and four were found to be eligible. All study

subjects completed the study. The healthy study controls were matched for age and gender
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(females aged 21, 21 and 22 yrs; male 17 yrs). The % mutant mtDNA in blood was 35, 41 and

59% respectively for MELAS patients 1, 2, and 3. MELAS patient 1 had a normal physical and

neurological exam and good cognitive function. MELAS patient 2 had sensorineural hearing

loss, peripheral neuropathy and exercise intolerance but normal peak power and a head cir-

cumference on the 3rd percentile, weight less than the 3rd percentile, height greater than the

10th percentile. Only MELAS patient 3, who had the highest % mutant mtDNA in blood, had a

history of multiple prior SLEs (left greater than right parieto-occipital) and migraine head-

aches. He also had a weight less than 3rd percentile (height 10%) and globally reduced cognitive

function with slow processing, apraxia, right hemianopsia, sensorineural hearing loss, subtle

ptosis, reduced muscle bulk and tone with normal power. Brain MRI of MELAS patient 1 was

normal; MELAS patient 2 had mild global cerebral cortical atrophy; whereas MELAS patient 3

had gliosis and atrophy of left greater than right occipital cortices. Magnetic resonance spec-

troscopy (with voxel in the occipital cortex) did not demonstrate a lactate peak for any of the

MELAS patients. The healthy study controls had normal brain imaging and MRS studies with

the exception of an incidental congenital variant of a retrocerebellar cyst in the 17 year old

control male. The Montreal Cognitive Assessment screening tool revealed MOCA scores of

30, 26 and 10 out of 30 in MELAS patients 1, 2, and 3 respectively and 25, 30 and 28 out of 30

in the study control females (Controls C1, C2 and C3 respectively) and 28 out of 30 in the

study control male (C4) (score of� 26 considered as normal).

Arginine, ornithine, glutamate, and citrulline concentrations

MELAS patients had significantly lower baseline serum arginine concentrations

(53 ± 11 μmol/L) than study controls (94 ± 18 μmol/L; p = 0.001), although levels remained in

the normal range [21]. L-Arg supplementation successfully increased serum concentrations in

MELAS patients (76 to 230 μmol/L) (Fig 2). There were no significant differences between

MELAS versus controls at baseline in serum ornithine (40.8 ± 12.3 μmol/L for MELAS vs

36.2 ± 7.3 μmol/L for study controls; unpaired two-tailed t-test p = 0.24) or citrulline

(24.8 ± 4.8 μmol/L for MELAS vs 23.2 ± 5.4 μmol/L for controls; unpaired two tailed t-test

p = 0.44) concentrations. Serum amino acids were measured twice at ~ 1 hour following morn-

ing and afternoon oral L-Arg supplementation and twice at ~ 3–5 hours post-L-Arg in the

MELAS patients. Following single-dose and 6-week steady state L-arginine dosing in MELAS

patients only, there were no statistically significant differences in serum citrulline or glutamate

concentrations in MELAS patients when compared to their baseline values, which remained

within the normal range. There was a 2- to 3-fold increase in serum ornithine concentrations

with the highest value reaching 3.5-fold above the upper normal control range which was

highly statistically significant for serum ornithine concentrations following single-dose L-argi-

nine (119.67 ± 20.34 μmol/L; p = 0.0019) as well as following 6-week steady state L-arginine

(113.92 ± 26.0 μmol/L; p = 0.0025) compared to baseline values (40.83 ± 11.67 μmol/L; n = 3)

(Table 1). There were no improvements in baseline serum lactates for MELAS 1, 2 and 3

respectively (2.2 mM, 4.5 mM, 3.7 mM) respectively following single dose L-arginine (2.9 mM,

6.8 mM, 4.6 mM) or 6 week steady state L-arginine (3.3 mM, 5.4 mM, 2.9 mM).

Baseline cerebrovascular reactivity to CO2 stimulus and perfusion

In our prior study [21], we compared our three MELAS sibs to our 4 age- and sex-matched

study controls and our healthy control adult population (subjects aged 20–30 yrs) which we

combined as there was no statistically significant difference between our study controls and

healthy control adult population for CVR (n = 18) or CBF values (n = 14). The MELAS siblings

had notably reduced CVR values (mean ± SD: MELAS = 0.100 ± 0.026; controls = 0.225 ± 0.049,
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n = 23; p< 0.001 in frontal cortex; MELAS = 0.18 ± 0.026; controls = 0.258 ± 0.037, n = 23;

p = 0.002 in occipital cortex), which correlated inversely with the severity of neurological phe-

notype and % mutant mtDNA blood (r = - 0.82 for frontal and—0.91 for occipital cortex). In

MELAS sibs, mean CVR was reduced to a greater degree in frontal cortex [21]. MELAS sibs

also demonstrated global cortical hyperperfusion compared to study controls and normal

control adult population (mean ± SD: MELAS = 88.3 ± 16.5 ml/100 g brain/min; controls =

63.2 ± 10.9, n = 18; p = 0.0026 in frontal cortex; MELAS = 102.9 ± 36.2; controls = 64.1 ± 11.6,

n = 18; p = 0.001 in occipital cortex) and normative literature values; the degree of hyperperfu-

sion correlated directly with disease severity and % mutant mtDNA in blood (r = +0.85 in

frontal cortex; r = +1.0 in occipital cortex for M1 and M2 with no significant correlations

when CBFs of all 3 MELAS patients were compared to % mutant mtDNA due to occipital

infarct penumbra in M3) [21]. There was reduced perfusion in the occipital region of MELAS

3 where previous infarction had occurred. In MELAS sibs, mean cerebral blood flow was

increased more in occipital than frontal cortex for MELAS 1 and 2. Given the more severe

neurological phenotypes and % mutant mtDNA in MELAS 3>MELAS 2>MELAS 1 and the

strong direct correlation between % mutant mtDNA and cerebral blood flow in frontal cortex

(r = +0.85), we would have expected that CBF in MELAS 3 would have similarly been greater

than that in MELAS 2 (143.9 ml/100g/min). There was an inverse correlation between CBF

and CVR in frontal cortex as expected (r = - 0.99), suggesting that increased resting flows are

Fig 2. Mean serum arginine concentrations (μmol/L) at baseline and peak serum arginine concentrations following single-dose and steady-state L-

arginine supplementation.

https://doi.org/10.1371/journal.pone.0238224.g002
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Table 1. Serum ornithine, glutamate, and citrulline concentrations (μmol/L) at baseline and following single-dose and 6 week steady state L-arginine supplementa-

tion in MELAS subjects.

Serum

Amino Acid

(μmol/L)

1 hour post

L-Arg (or pre-

prandial if

baseline)

3–5 hrs post

L-Arg (or post-

prandial if

baseline)

1 hour post

L-Arg (or post-

prandial if

baseline)

3–5 hrs post

L-Arg (or post-

prandial if

baseline)

Mean ± SD (μmol/

L) for specific

amino acid

Repeated measures

ANOVA p-value

comparing dose-effect of

L-Arg on baseline serum

AAs

Ornithine Baseline (no

L-Arg)

MELAS

1

68 48 52 49 54.25

MELAS

2

39 27 L 35 31 33

MELAS

3

42 23 L 42 34 35.25

Baseline

mean ± SD

40.83 ± 11.67

(n = 3)

Single-dose

L-Arg

MELAS

1

112 212 H 148 H 94 141.5

MELAS

2

60 98 140 H 107 101.25

MELAS

3

77 97 130 H 161 H 116.25

Single dose

mean ± SD

119.67 ± 20.34 p = 0.0019��

6-wk steady

state L-Arg

MELAS

1

113 134 H 180 H 121 137

MELAS

2

85 123 135 H 133 H 119

MELAS

3

58 72 112 101 85.75

Steady state

mean ± SD

113.92 ± 26.0

(n = 3)

p = 0.0025��

Glutamate Baseline (no

L-Arg)

MELAS

1

28 37 15 18 24.5

MELAS

2

89 26 41 44 50.0

MELAS

3

36 19 23 20 24.5

Baseline

mean ± SD

33.0 ± 14.7 (n = 3)

Single-dose

L-Arg

MELAS

1

49 49 71 24 48.25

MELAS

2

45 68 57 44 53.5

MELAS

3

44 55 34 39 43.0

Single dose

mean ± SD

48.2 ± 5.25 (n = 3) p = 0.0855

6-wk steady

state L-Arg

MELAS

1

56 36 36 44 43

MELAS

2

73 46 47 47 53.25

MELAS

3

45 41 34 105 56.25

Steady state

mean ± SD

50.8 ± 6.94 (n = 3) p = 0.0566

(Continued)
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at the expense of the flow reserve. This relationship was not evident in the occipital cortex, we

believe, due to a significant artefact in the measurement of CBF in grey matter likely affected

by stroke penumbra and a generalized reduction in the occipital neuropil caused by the ische-

mic injury in MELAS 3 [21].

Cerebrovascular reactivity to CO2 stimulus following L-arginine

supplementation

Comparative CVR histograms for MELAS patients before L-Arg supplementation and follow-

ing single dose L-Arg, and steady state L-Arg dosing were not significantly different (Fig 3A,

3B and 3C). The CVR study on steady state dosing of L-Arg for MELAS patient 3 was not

admissible because of movement artefact. To determine whether there was a differential effect

of L-Arg in the occipital versus the frontal grey matter, we calculated the mean CVR in each of

these regions in our MELAS patients at baseline and following single dose and steady state

L-Arg. On analysis of the neurologically symptomatic MELAS siblings 2 and 3, there was an

Table 1. (Continued)

Serum

Amino Acid

(μmol/L)

1 hour post

L-Arg (or pre-

prandial if

baseline)

3–5 hrs post

L-Arg (or post-

prandial if

baseline)

1 hour post

L-Arg (or post-

prandial if

baseline)

3–5 hrs post

L-Arg (or post-

prandial if

baseline)

Mean ± SD (μmol/

L) for specific

amino acid

Repeated measures

ANOVA p-value

comparing dose-effect of

L-Arg on baseline serum

AAs

Citrulline Baseline (no

L-Arg)

MELAS

1

28 32 32 28 30

MELAS

2

24 24 17 L 17 L 20.5

MELAS

3

23 23 24 26 24

Baseline

mean ± SD

24.83 ± 4.80 (n = 3)

Single-dose

L-Arg

MELAS

1

28 33 31 28 30

MELAS

2

13 L 20 L 19 L 24 19

MELAS

3

33 38 35 45 37.75

Single dose

mean ± SD

28.92 ± 9.42 (n = 3) p = 0.352

6-wk steady

state L-Arg

MELAS

1

23 31 27 33 28.5

MELAS

2

21 L 31 24 24 25

MELAS

3

23 30 31 34 29.5

Steady state

mean ± SD

27.67 ± 2.36 (n = 3) p = 0.506

Key: Normal control ranges for Ornithine = 29–125 μmol/L; Glutamate = 14–192 μmo/L; Citrulline = 23–49 μmol/L. H = high; L = low. We used repeated measures

ANOVA for the determination of the significance of the differences in mean serum amino acid concentrations in MELAS subjects following single-dose or 6 week

steady state L-arginine supplementation compared to mean baseline serum amino acid concentrations with no L-arginine supplementation. P-value < 0.05� statistically

significant; P-value < 0.005 �� highly statistically significant. The statistical power for a sample size of 3 patients to detect clinically meaningful differences between

baseline (no L-Arginine) compared to L-Arginine dose effects (single-dose or 6-week steady state L-Arginine) on mean serum amino acid concentrations was > 92% for

ornithine and < 40% for glutamate and < 10% for citrulline.

https://doi.org/10.1371/journal.pone.0238224.t001
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Fig 3. CVR histogram in MELAS patient 1 (A) and MELAS patient 2 (B) at baseline and following single-dose and

steady state L-arginine supplementation and in MELAS patient 3 (C) at baseline and following single-dose L-

arginine supplementation.

https://doi.org/10.1371/journal.pone.0238224.g003
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increase in CVR in the frontal cortex and a corresponding decrease in CVR in the occipital

cortex on L-Arg therapy compared to baseline (Fig 4) (Table 2). Asymptomatic MELAS

patient 1 demonstrated no major change in CVR in either frontal or occipital cortex. In addi-

tion, the MELAS patients showed a narrowing of CVR range in the frontal and occipital corti-

ces from a baseline of 0.08 to 0.20 to a narrower asymptote between 0.11 and 0.17 following

L-Arg therapy (with the exception of the occipital lobe CVR in MELAS patient 3 in whom

there was only a single-dose L-Arg data point).

Cerebral blood flow following L-arginine supplementation

There was no major change in CBF as measured by ASL following 6 weeks of L-Arg therapy in

mildly affected MELAS patient 1. There appeared to be a dramatic reduction in the significantly

increased baseline CBF in MELAS subject 2 with a 29% reduction in CBF in the frontal cortex and

a 37% reduction in CBF in the occipital cortex following 6 weeks of L-arginine (Table 2, Fig 5).

BOLD fMRI activation in response to an alternating black and white

checkerboard pattern

There was no major difference in the BOLD fMRI activation to visual stimulus in primary

visual striate cortex V1 or in the extrastriate visual cortices (V2 to V5) in mildly affected

Fig 4. Mean cerebrovascular reactivity (CVR) in frontal and occipital grey matter in MELAS siblings (M1, M2, M3) at baseline and post-combined

mean of single-dose and steady-state L-arginine therapy (M3 only single dose).

https://doi.org/10.1371/journal.pone.0238224.g004
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Table 2. Cerebrovascular reactivity (CVR) and cerebral blood flow (CBF) pre- and post-L-arginine therapy in MELAS patients.

Subject Baseline Single-dose L-

arginine

Response to single dose

compared to baseline

Baseline 6 week steady-state L-

arginine

Response to steady state

compared to baseline

CVR (% change/

mmHg)

Frontal cortex controls
(n = 23) x±SD

0.225 ± 0.049

MELAS 1 0.13 0.122 0.13 0.136

MELAS 2 0.09 0.183 0.09 0.117

MELAS 3 0.08 0.113 N/A

Median MELAS 1st to

3rd quartile

0.09 (0.085–0.11) 0.122 (0.117–

0.152)

0.11 0.1265

Mean MELAS ± SD 0.10 ± 0.026 0.139 ± 0.038 39% increase 0.11 ± 0.028 0.126 ± 0.013 15% increase

Mean MELAS vs Total

controls �
p < 0.001

Occipital cortex controls
(n = 23)

0.258 ± 0.037

MELAS 1 0.19 0.191 0.19 0.167

MELAS 2 0.20 0.192 0.20 0.151

MELAS 3 0.15 0.055 N/A

Median MELAS 1st to

3rd quartile

0.19 (0.17–0.195) 0.191 (0.123–

0.192)

0.195 0.159

Mean MELAS ± SD 0.18 ± 0.026 0.146 ± 0.078 19% reduction 0.195 ± 0.007 0.159 ± 0.011 19% reduction

Mean MELAS vs Total

controls �
p = 0.002

CBF (ml/100g brain/

min)

Frontal cortex controls
(n = 18) x±SD

63.2 ± 10.9

MELAS 1 69.91 - 69.91 76.50

MELAS 2 93.38 - 93.38 66.69 29% reduction

MELAS 3 101.69 - N/A

Median MELAS 1st to

3rd quartile

93.38 (81.64–

97.53)

81.64 71.60

Mean MELAS ± SD 88.32 ± 16.48 81.64 ±16.6 71.60 ± 6.94

Mean MELAS vs Total

controls �
p = 0.0026

Occipital cortex controls
(n = 18)

64.1 ± 11.6

MELAS 1 75.42 - 75.42 83.30

MELAS 2 143.95 - 143.95 91.81 37% reduction

MELAS 3 89.22 (?)�� - N/A

Median MELAS 1st to

3rd quartile

89.22 (82.32–

116.58)

109.68 87.55

Mean MELAS ± SD 102.86 ± 36.24 109.68 ± 48.4 87.55 ± 6.01

Mean MELAS vs Total

controls �
p = 0.001

MELAS 2 mean frontal
& occipital

118.66 ± 35.7 79.25 ± 17.8 34% reduction

Key: CVR = cerebrovascular reactivity (% change/mmHg); CBF = cerebral blood flow (ml/100 g brain/min); N/A = not admissible due to movement artefact; x = mean;

SD = standard deviation;

� p–value calculated using unpaired two-tailed Student’s t-test between MELAS and total controls;

�� this CBF value likely reflects peri-infarct penumbra and is therefore not a true reflection of the CBF in the occipital grey matter of MELAS 3.

As we go further away from the infarct e.g. 5 mm and 10 mm, the CBF increases to 95.94 and 104.34 ml/100g/min respectively, which may still reflect infarct penumbra.

https://doi.org/10.1371/journal.pone.0238224.t002
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MELAS patient 1 when compared to our four study controls at baseline or after single-dose or

6 wk steady state L-arginine; all of the values were near to the study control means and within

the standard error mean and near to the study control median values being within the 1st to

3rd quartile range of the controls (Table 3, Fig 6). In contrast, in symptomatic MELAS 2 at

baseline, compared to study controls, there was a marked reduction in BOLD fMRI activations

in response to visual stimulus in visual striate cortex V1 and in extrastriate visual cortices V2,

V3, V4 and V5 all of which were well below the 1st quartile of the median of the signal that was

seen in the study controls. Following L-arginine, there was a remarkable increase in BOLD

fMRI activation in response to visual stimulus in MELAS 2 in the primary visual cortex follow-

ing single dose L-arginine (though still below the 1st quartile of the median of the study con-

trols) and in the extrastriate visual cortices (though still below the 1st quartile of the median of

the study controls) following both single-dose L-Arg with a 2.23 to 2.75-fold increase in activa-

tion and following 6 weeks of L-Arg with a 1.92 to 2.03-fold increase in activation. When both

the primary visual cortex (V1) and extrastriate visual cortices (V2, V3, V4, V5) activation were

averaged together, there was a marked 7.5 fold increase in activation following single dose L-

arginine and a 4.37-fold increase in activation following 6 weeks of steady state L-arginine in

MELAS 2 suggesting a possible downregulation of the response to L-arginine or alteration in

L-arginine metabolism during chronic therapy compared to the single dose trial.

Discussion

We have previously demonstrated in our patients with MELAS syndrome (m.3243A>G Leu(UUR))

that CVR between SLEs is reduced and is inversely proportional to the increase in cerebral

Fig 5. Cerebral blood flow in MELAS siblings (M1, M2) at baseline and post-steady-state L-arginine therapy.

https://doi.org/10.1371/journal.pone.0238224.g005
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blood flow [21]. We also unexpectedly found that CVR was more reduced in frontal compared

to occipital grey matter. We have previously further shown that baseline cerebral perfusion is

increased in patients with MELAS compared to controls and normative cerebral blood flow

values reported in the literature [21]. The degree of cerebral hyperperfusion, which translates

into a reduction in flow reserve and was inversely proportional to the CVR, was directly pro-

portional to the severity of the neurological phenotype and percentage of mutant mtDNA in

Table 3. BOLD fMRI activation in response to alternating checkerboard visual cortex stimulation at baseline in study controls and pre- and post-L-arginine therapy

in MELAS siblings.

Subject Baseline Single-dose L-

arginine

Response to single dose compared to

baseline (% increase)

6 week steady-state

L-arginine

Response to steady state compared to

baseline (% increase)

V1 visual cortex

Study controls x ± SEM

(range; n = 4)

1. 46 ± 0.34

(0.42–1.92)

Study controls median 1.74

1st - 3rd quartile; (IQ

range)

1.07–1.83 (0.76)

MELAS 1 1.71 1.61 1.26

MELAS 2 0.31 0.78 2.52-fold 0.27 0.87-fold

V2 visual cortex

Study controls x ± SEM

(range; n = 4)

1.08 ± 0.18

(0.61–1.38)

Study controls median 1.16

1st - 3rd quartile; (IQ

range)

0.79–1.36 (0.57)

MELAS 1 1.18 1.16 0.98

MELAS 2 0.24 0.66 2.75-fold 0.46 1.92-fold

V3+4+5 visual cortex

Study controls x ± SEM

(range; n = 4)

0.76 ± 0.14

(0.35–1.01)

Study controls median 0.83

1st - 3rd quartile; (IQ

range)

0.54–0.97 (0.43)

MELAS 1 0.65 0.68 0.63

MELAS 2 - 0.31 0.38 2.23-fold 0.32 2.03-fold

V1+2+3+4+5 visual

cortex

Study controls x ± SEM

(range; n = 4)

1.01 ± 0.19

(0.47–1.31)

Study controls median 1.13

1st - 3rd quartile; (IQ

range)

0.74–1.28 (0.54)

MELAS 1 1.06 1.06 0.90

MELAS 2 0.08 0.60 7.50-fold 0.35 4.37-fold

Key: BOLD fMRI activation in response to alternating checkerboard visual stimulus; Cut off for CVR Pc < 0.05 with 3ClustSim for all measurements; x = mean;

SEM = standard error mean; IQ = interquartile Broadman visual cortical region masks: V1 = primary visual area and striate cortex located in and around calcarine

fissure in the occipital lobe; Extrastriate visual areas: V2 = secondary visual cortex (prestriate cortex) and is the second major area of the visual cortex and the first region

within the visual association area. It receives strong feedforward connection from V1 and sends strong connections to V3, V4 and V5; V3 = region located immediately

in front of V2; V4 is one of the visual areas in the extrasriate visual cortex and is anterior to V2; V5 = middle temporal visual area and is a region of the extrastriate visual

cortex and thought to play a major role in perception of motion.

https://doi.org/10.1371/journal.pone.0238224.t003
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blood in our cohort [21]. Increased CBF has also been demonstrated by other investigators

using 133Xe regional cerebral blood flow studies in a young adult man with MELAS in whom

there was generalized hyperperfusion 15 and 26 days after the SLE which was highest in the

infarcted areas [36]. The brain continued to be hyperemic with the highest flow in nonin-

farcted tissue at 4 and 8 months after the SLE. They similarly demonstrated an inverse relation-

ship between resting CBF and CVR. This data supports two different interpretations of

MELAS cerebral blood flow physiology. The first hypothesis is that the cortical hyperperfusion

in MELAS syndrome may be the result of a normal flow control mechanism responding adap-

tively in an attempt to compensate for metabolic imbalance resulting from inefficient ATP

generation from oxidative metabolism by abnormal non-vascular cerebral mitochondria or

may represent a passive response to tissue acidosis or to the accumulation of other intermedi-

ary metabolites. In another study, investigators also found generalized cerebral hyperperfusion

in a patient following a SLE and found that the hyperemia was accompanied by low cerebral

metabolic rate (CMR) for oxygen and oxygen extraction fraction in contrast to preservation of

CMR for glucose [37]. This is a pattern consistent with glycolysis to lactate or other intermedi-

ate metabolites as it would indicate a reduction in the use of oxygen relative to glucose. These

studies support the concept that the metabolic defect and associated hyperemia in MELAS is

expressed in cerebral tissue. They may also suggest that the hyperemia is an adaptive response

to the limitation in oxidative glucose metabolism and to the reduction of high energy

Fig 6. BOLD-fMRI activation in response to alternating checkerboard stimulus in MELAS siblings (M1, M2) at baseline (d1) and post-single-dose

(d2) and steady-state L-arginine (d3) therapy compared to controls (C1, C2, C3, C4) at baseline.

https://doi.org/10.1371/journal.pone.0238224.g006
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phosphates from the inefficient utilization of oxygen for ATP generation and/or the result of

the accumulation of lactic acid or other metabolic intermediates. In our MELAS cohort, using

MRS, we did not demonstrate a lactate peak in the occipital cortex. However, this may not

have been representative of the other surrounding brain regions, given the limited region of

our voxel. Furthermore, MRS would not measure other intermediate metabolites. The second

hypothesis is that morphologically abnormal mitochondria in cerebrovascular smooth muscle

and endothelial cells may lead to an angiopathy with functional impairment of blood vessel

vasodilation in response to an increase in PCO2, thereby limiting CVR and supporting a vascu-

lar contribution to SLEs. Thirdly, hyperperfusion could be the additive result of both mecha-

nisms which our current studies cannot differentiate. Nonetheless, we hypothesize that

perfusion studies could be utilized as a safe, noninvasive and sensitive prognostic marker for

patients with MELAS, by which to stratify potential risk for SLEs, with the provision that they

are measured in cortical regions of interest, such as the frontal cortex, that are distant from

infarcted regions or peri-infarct tissue which may significantly underestimate CBF due to

injured neuropil and/or altered vasculature. The markedly exaggerated CBF in the occipital

cortex of MELAS patient 2, while of uncertain nature, does raise concern for the capability of

matching blood flow in response to energy needs as, provided blood flow is not rate limiting,

mutant mtDNA are impaired in their oxygen extraction ability regardless of perfusion rates,

and thereby have an ongoing physiological demand for increasing blood flow.

We further demonstrated that the BOLD fMRI activation in response to an alternating

checkerboard visual cortex stimulus was within normal limits in unaffected MELAS 1. In con-

trast, the BOLD fMRI activation to visual stimulus was markedly reduced in the striated (V1)

and extrastriate visual cortex (V2 to V5) in symptomatic MELAS patient 2. Notably, the BOLD

fMRI activation in MELAS 2 was increased toward normal control values following a single

dose and a 6 week steady-state trial of L-Arg therapy. This partial restoration of the BOLD

fMRI activation may suggest an improvement in neural activation in the visual cortex and/or

in the neurovascular coupling response which includes the complex relationship between neu-

ronal activity and the triggering of the hemodynamic response, followed by the hemodynamic

response itself. This may suggest an improvement in the function of the neuronal mitochon-

dria which would have enhanced the neuronal response and/or the cerebrovascular mitochon-

dria which would have enhanced the vascular regulation. The BOLD fMRI BOLD activation

was somewhat lower following 6 weeks of steady-state L-Arg than with the single dose in the

subject naïve response which may suggest some downregulation of the response through

accommodation to the L-Arg or more rapid metabolism of the L-Arg.

Arginine is a dibasic, semi-essential amino acid. Serum arginine concentrations are influ-

enced by dietary intake, endogenous synthesis (kidney and intestine), and protein turnover.

Endogenous synthesis occurs though the urea cycle, which converts citrulline to arginine.

Arginine is converted to ornithine which has a role in both polyamine and proline synthesis.

Arginine itself serves as a precursor for a number of important biochemical reactions [38].

Through the action of endothelial nitric oxide synthase, arginine with NADPH and oxygen are

converted to citrulline and nitric oxide with nitric oxide playing a major role in vasodilation.

In addition, arginine can be decarboxylated to agmatine, which is a precursor in the polyamine

pathway, acts as a neurotransmitter, and inhibits nitric oxide synthase. Arginine is also a pre-

cursor for creatine. Furthermore, through a number of reactions, L-arginine following conver-

sion to L-ornithine can be converted to the tricarboxylic acid (TCA) cycle intermediate alpha-

ketoglutarate, improving TCA cycle kinetics (anapleurosis) [38] which generates ATP and pro-

vides essential reducing equivalents to the mitochondrial respiratory chain. We have shown a

statistically significant increase in serum ornithine concentrations with both single dose and

steady state oral L-arginine supplementation (Table 1). In addition, arginine can be converted
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by arginase into ornithine which can then be converted into citrulline by ornithine transcarba-

mylase. Citrulline can be further converted by two enzymatic steps, namely, argininosuccinate

synthetase and argininosuccinate lyase, into arginine [38]. There is a dibasic amino acid trans-

port system in intestinal epithelium and renal tubular cells that transports arginine, lysine, and

ornithine. There is still much to be known regarding the intracellular compartmentalization of

the aforementioned metabolic pathways, and the cellular transport of arginine [38].

Arginine levels were significantly lower in MELAS patients compared to controls in our

study, whereas levels of citrulline and ornithine were similar. Low arginine levels in MELAS

are supported by the literature [17]. The etiology of the relative hypoarginemia in MELAS syn-

drome is not currently known, although a number of theories have been proposed. One group

has proposed that the globally increased activity of cytochrome oxidase (COX) in MELAS

patients, derived from relatively spared COX activity per mitochondria combined with the

proliferation of abnormal mitochondria, consumes nitric oxide and secondarily depletes argi-

nine [39]. Other theories include increased activity of arginase, reduced activity of the cationic

amino acid transporter, and/or reduced activity of argininosuccinate synthase [17]. Deficien-

cies of the other cationic amino acids have not been reported in MELAS syndrome, nor have

consistent alterations in levels of citrulline or ammonia.

We propose that chronic cerebral hyperperfusion in between SLEs, as we have demon-

strated, requires increased production of nitric oxide. Increased nitric oxide synthesis in cells

harboring the m.3243A>G Leu (UUR) mutation has been demonstrated in vitro [40]. We believe

that there may be a secondary depletion of arginine stores arising from the increased activity

of nitric oxide synthase. Significant metabolic stressors such as infection or seizures would

necessitate a further commensurate increase in cerebral perfusion from baseline. This would

increase nitric oxide requirements and would consequently cause a further drop in arginine

levels. Decreased serum arginine levels during SLEs compared to baseline have been demon-

strated in previous studies. Energy metabolism may be impaired by arginine deficiency

through decreased repletion of the Kreb cycle intermediate alpha-ketoglutarate and decreased

creatine production. Hypoarginemia would also contribute to the already decreased CVR that

we have previously demonstrated in MELAS patients at baseline. In MELAS, oxygen extrac-

tion is impaired, however, oxygen delivery could also become rate limiting. The removal of

metabolic intermediates such as free radicals, organic acids and lactate that may contribute

toward neuronal toxicity may also depend upon increased perfusion.

We did not demonstrate an overall improvement in interictal CVR in our MELAS patients

following L-Arg supplementation; however, on regional analysis there appeared to be an

increase in CVR in the frontal cortex (region of most reduced CVR) with a corresponding

decrease in CVR in the occipital cortex (region of less reduced CVR). Based on this prelimi-

nary finding, it seems as though L-Arg may selectively improve CVR in regions that are most

impaired at the expense of less abnormal regions in a manner reminiscent of a vascular-steal.

During a SLE, L-Arg may work by “rescuing” regions of the brain at risk by re-routing blood

flow from areas with greater reserve. It is important to note that arginine levels were all within

the low normal range in our MELAS patients. During a SLE, serum arginine levels will likely

decrease and metabolic demand will increase. In these circumstances, CVR may be even more

responsive to L-Arg therapy.

Importantly, we demonstrated marked reductions in pre-treatment BOLD-fMRI activation

to visual cortex stimulation in affected MELAS patient 2 in the striate (V1) and extrastriate

visual regions (V2 to V5) which were increased toward control values following a single dose

and 6 wks of L-Arg therapy suggesting an improvement in neuronal activation, neurovascular

coupling and/or the hemodynamic response. In MELAS patient 2, we also found a dramatic

reduction in cerebral hyperperfusion following 6 wks of L-Arg therapy. This may have been in
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part related to the role of arginine as a precursor for the energy substrate creatine. In addition,

arginine can be converted, through a number of reactions, to the tricarboxylic acid (TCA)

cycle intermediate alpha-ketoglutarate, which is critical to improving TCA cycle kinetics (ana-

pleurosis) [38] which generates ATP and provides essential reducing equivalents to the mito-

chondrial respiratory chain. Energy metabolism may thus be impaired by arginine deficiency

documented in MELAS syndrome through decreased repletion of the Kreb cycle intermediate

alpha-ketoglutarate and through decreased creatine production. We hypothesize that hyper-

perfusion may result from energy failure affecting non-vascular cerebral and cerebrovascular

mitochondria and/or from vascular dysregulation. Our data may support the concept that

L-Arg facilitates metabolic homeostasis and/or vasomotor stability, which could potentially

reduce the compensatory hyperperfusion in MELAS syndrome and could potentially play a

role in reducing the risk of SLEs. The role of arginine in cellular anaplerosis and overall energy

metabolism in MELAS syndrome is yet to be fully elucidated and serves as a key focus for

future studies.

Limitations to the present study: We recognize that there were specific limitations to our

small pilot study in a single kindred. Firstly, the entire trial was limited to one group of siblings

which may limit extrapolation of the results to other individuals with MELAS syndrome with

different genetic backgrounds. Secondly, though the diets were relatively constant and similar

throughout the study within the same family of siblings, we did not take specific dietary histo-

ries which may have influenced amino acid profiles. Thirdly, we did not have the facilities to

measure neuronal metabolism with PET scanning which may have further contributed to our

understanding of the underlying neuronal and neurovascular pathophysiologic changes with

L-arginine supplementation. These factors would ideally be included in future prospective

studies in a larger cohort of subjects. Given the variability in clinical phenotypes in individuals

with MELAS syndrome, which depends upon the percentage of mutant to wt mtDNA hetero-

plasmy, comparison of the patients to themselves off and on single dose and steady state L-

arginine therapy for changes would seem the most sensitive for detection of changes, as done

in this study.
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