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Abstract 

Background

This study had three aims. First, we wanted to explore if there was difference in 

motor performance at 12 years of age in children born extremely preterm (EPT < 28 

weeks of gestation) and at term. Our second aim was to study whether the volumes 

of motor networks and regions differed between those groups when they underwent 

brain scans at 10 years of age. Third, we investigated whether there were differences 

in the motor networks and regions of the brain in children born EPT who did or did 

not have motor impairment at 12 years of age.

Methods

In a Swedish national study, a subgroup of 42 children born before 27 weeks and 

25 term-born controls underwent MRI at age 10. A neuroradiologist performed MRI 

acquisitions, and analyses focused on brain regions associated with motor function. 

At age 12, motor function was assessed using the Movement Assessment Battery 

for Children – Second Edition (MABC-2), conducted by a licensed physiotherapist. 

Examiners were blinded to group status. Motor function and motor-related brain 

volumes were compared between the EPT and control group, and between children 

born EPT with and without motor impairments.

Results

Findings revealed significantly reduced motor performance and smaller motor region 

volumes in EPT children compared to controls (p < 0.001). Among EPT children, 

those with motor impairment especially in aiming and catching, had notably smaller 

brain volume in the basal ganglia (mean difference:1.2 cm3, p = 0.049), cerebellum 

(mean difference:14.4 cm3, p < 0.001), motor execution (mean difference:3.7 cm3, 
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p = 0.049) network and motor imagery network (mean difference 5.6 cm3, p = 0.049) 

than their EPT peers without such impairments. Cerebellar volume remained signifi-

cant different between the groups when adjusting for birth weight and sex in a linear 

regression model, p = 0.02 (η2 = 0.17).

Conclusion

The results underscore the impact of extreme prematurity on motor function and 

brain structure, highlighting a specific link between reduced motor area volumes and 

impaired ball skills.

Introduction

Development in perinatal and neonatal intensive care has been associated with 
increased rates of survival among children born extremely preterm (EPT < 28 weeks 
of gestation). However, many of these children develop neurodevelopmental impair-
ment (i.e., cognition, language, motor problems) [1]. Serenius et al reported that 
20% of 441 children born EPT had moderate disabilities at 6.5 years of age, 13% 
had severe disabilities and 67% had no or mild disabilities [2]. Children born EPT 
have more motor impairments than term-born children and it is well known that these 
include aiming and catching, balance and fine motor skills [3]. A meta-analysis of 
motor development in children born very preterm or with very low birth weight, from 
infancy to adolescence, showed they had significantly worse motor performance than 
term-born children in Movement Assessment Battery for Children (d = −0.65 (95% CI, 
−0.70 to −0.60; P < .001) [4].

EPT births occur during a vulnerable time of brain development. Disturbances 
in the maturation of the brain, including altered myelination, synaptic development 
and cortical organization lead to different brain development than term-born children 
[5,6]. Between 24 and 40 weeks of gestation the cerebellum increases five fold in 
volume. The underdevelopment of cerebellum, with loss of volume in children born 
EPT can be caused by different mechanisms including inset of hemosiderin, hypoxia 
and reduced excitatory input leading to atrophy [7]. The development of grey matter 
can be disturbed by diffuse white matter injury, intraventricular haemorrhage (IVH) or 
independently, including inflammation and hypoxia. Dysmaturation, loss of function of 
dendrites and loss of interneurons have been described causing signal disturbance 
and dysmaturation of the folding of the cortex [8].

The use of advanced magnetic resonance imaging (MRI) techniques has made it 
possible to study alterations in the global and local cerebral development of preterm 
infants. Volumetric measurements performed at term age and through adolescensens 
have also shown global and regional differences in brain volumes between children 
born EPT and at term [9–11]. A study by Dewey et al showed that children who were 
born very preterm, and had later motor impairment, had smaller brain volumes at 
term age and at seven years of age than children born very preterm with normal 
motor function [12].

repository with complete data for this partic-
ular data set underlying the results for this 
manuscript, why we share it in the supporting 
information. This data can be publicly shared. 
Due to the small and unique study population 
we are unable to share detailed description of 
the individuals perinatal characteristics - com-
bination of gestational age, birthweight and sex 
- since the extremely preterm individuals could 
be identified. Additional data can be requested 
from ulrika.aden@ki.se

Funding: The research was supported by 
grants from the Swedish Medical Research 
Council, the regional agreement on medical 
training and clinical research (ALF) between 
Stockholm County Council and the Karolinska 
Institutet, the Swedish Order of Freemasons in 
Stockholm, the Swedish Medical Society, the 
Swedish Brain Foundation, Region Stockholm 
(clinical research appointment), Sällskapet 
Barnavård, the Jerring foundation. The funders 
had no role in study design, data collection and 
analysis, decision to publish, or preparation of 
the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.

mailto:ulrika.aden@ki.se


PLOS One | https://doi.org/10.1371/journal.pone.0326041 June 13, 2025 3 / 13

However, there is increasing awareness that prematurity is characterized by widespread abnormalities throughout 
the brain and that these involve neural networks. We are not aware of any studies that have compared the relationship 
between motor networks in the brain and motor performance in children born EPT and at term when they reach late 
childhood.

This study had three aims. First, we wanted to explore if there was difference in motor performance at 12 years of 
age in children born EPT and at term. Our second aim was to study whether the volumes of motor networks and regions 
differed between those groups when they underwent brain scans at 10 years of age. Third, we investigated whether 
there were differences in the motor networks and regions of the brain in children born EPT who did or did not have motor 
impairment at 12 years of age.

We had three hypotheses. First, children born EPT would have worse motor performance at 12 years than term-born 
peers. Second, that the areas of the brain involved in motor function would be smaller at 10 years of age in children born 
EPT than children born at term. Third, that children who were born EPT and had motor impairment would have smaller 
brain volumes in the networks and regions involved in motor performance, than those EPT without motor impairment at 12 
years of age.

Materials and methods

Participants

We invited 108 children born EPT in Stockholm, Sweden to participate in this national study. These participants constitute 
a regional subgroup of the national EXPRESS cohort (Extremely Preterm Infants in Sweden Study). They were all born 
before 27 weeks of gestation, between 1 January 2004 and 31 March 2007 (Fig 1). Of these, 107/108 had undergone 
an MRI brain scan at term age. Cranial ultrasounds were performed during the neonatal period and any cases of IVH 
and periventricular leukomalacia were diagnosed. At 10 years of age, the children were invited to undergo a MRI of the 
brain between 01/06/2015 and 18/04/2016. At 12 years of age between the years 03/06/2016 and 09/10/2019 their motor 

Fig 1. Flow-chart of the study population.

https://doi.org/10.1371/journal.pone.0326041.g001

https://doi.org/10.1371/journal.pone.0326041.g001


PLOS One | https://doi.org/10.1371/journal.pone.0326041 June 13, 2025 4 / 13

performance was examined using the Movement Assessment Battery for Children – Second Edition (MABC-2) [13]. The 
Swedish Medical Birth Registry was used to identify 77 term-born children who were matched to the EPT cohort by age, 
postcode and country of origin. They formed the control group and were also invited to undergo the same MRI scans and 
motor performance assessments at 10 and 12 years of age, respectively. Children born EPT, who were diagnosed with 
cerebral palsy, were excluded from the study. The regional ethics committee in Stockholm approved the study and written, 
informed parental consent was obtained for all participants.

Background characteristics

Background descriptive data were collected from the Swedish Medical Birth Registry. Variables included gestational age, 
birth weight, sex and other relevant variables included in Table 1. Education level from the mother and age at assessment 

Table 1. Characteristics and magnetic resonance imaging findings for the whole study population. 

Preterma

(n = 42)
Term
(n = 25)

Perinatal

Birth weight (grams), mean ± SD 835 ± 151 3717 ± 435

Gestational age at birth, weeks, median (range) 25.6 (23.1-26.6) 40.0 (38.0-41.6)

Male sex, n 21 12

Small for gestational age, n 3 0

Antenatal steroids, n 39 0

BPD, oxygen at age 36 weeks, n 14 0

Intraventricular haemorrhage I-II, n 14 0

Intraventricular haemorrhage III-IV, n 2 0

Mechanical ventilation (days), median (range) 6 (0-55) 0

Necrotizing enterocolitis Bell´s grade 2–3, n 7 0

Patent ductus arteriosus, treated with ibuprofen, n 26 0

Patent ductus arteriosus, surgical ligation, n 12 0

Retinopathy of prematurity, lase treatment, n 6 0

Sepsis, n 29 0

Magnetic resonance imaging at term age

Normal white matter, n 23 25

Mild white matter abnormality, n 17 0

Moderate white matter abnormality, n 1 0

Gray matter abnormality, n 1 0

Cerebellar injury, hemosiderin/atrophy n 3/1 0

Magnetic resonance imaging at 10 years

Discrete white matter abnormality, n 22 2

Cerebellar injury, n 0 0

Intracranial volume, mean ± SD 1380.3 ± 88.8 1442.8 ± 107.9

Age at scan, median (range) 9.9 (9.0-11.4) 10.2 (9.0-11.6)

Sociodemographic data

Maternal education ≥ University level, n 28 14

Fisher’s exact test were used to identify differences in categorical data between the groups, the student’s t-test were used for continuous data were 
mean is presented and The Mann–Whitney U test were median is presented. Significant values defined as p < 0.05. SD, standard deviation; BPD, 
bronchopulmonary dysplasia. Sepsis defined as positive blood cultures or clinical picture of sepsis in association with elevated C-reactive protein or 
leukocyte count. aOne child born extremely preterm did not have MRI scans at term age.

https://doi.org/10.1371/journal.pone.0326041.t001

https://doi.org/10.1371/journal.pone.0326041.t001
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were collected at the follow up at 12 years in a questionnaire. Socioeconomic status was estimated using maternal educa-
tion level, categorized as higher if they had university education. These variables were examined as potential covariates in 
the statistical analyses. Specifically, birth weight and sex were included as covariates in the group comparisons.

Outcome measures

The children’s motor performance was assessed using the MABC-2 [13], which is a standardized tool with high validity 
and reliability. It contains three domains: manual dexterity, aiming and catching and balance. Age-specific standard scores 
and percentiles are calculated from the raw scores of the three domains and these are added together to provide a total 
score. We analysed the total MABC-2 scores and domains and converted these into percentiles. This enabled us to 
identify the children born EPT who had motor impairment, which was defined as ≤5th percentile according to the reference 
population in the manual [13].

MRI acquisition

Neonatal MRI brain scans were performed at term age in all but one of the children born EPT. Details of the MRI scanning 
protocol have previously been published [14].

At 10 years of age, the children born EPT underwent MRI brain scans using a Sigma 3.0-T MR scanner (GE Health-
care, Illinois, USA) at the Karolinska University Hospital, Stockholm, Sweden. The MRI protocol included a sagittal 3D-T1 
weighted with a BRAVO SPGR sequence: time to inversion was 400 ms, field of vision was 240 × 240 mm2; flip angle was 
12°; voxel size was 1 × 0.938 × 0.938 mm3 and slice thickness was 1.0 mm.

MRI processing and atlas-based segmentation

The assessment and scoring of the MRI images by a neuroradiologist have previously been described at term age14 and 
at 10 years of age [15].

The brain was segmented into 45 anatomical regions per hemisphere, according to an anatomic atlas, the AAL atlas 
[16]. The T1 weighted 3-dimension MRI images were pre-processed, as previously described including reorientation, 
removal of non-brain tissue and neck cropping [17]. The Linear Image Registration Tool FSL FLIRT (FMRIB, John Rad-
cliffe Hospital, Oxford, UK) was used for AAL atlas co-registration to the native space of each child, using affine regis-
tration. A script written in MATLAB (MathWorks, Massachusetts, USA) was used to calculate the atlas volumes and is 
available to share upon request. The MRI images of each step were visually inspected.

Based on previous reports [18–21] we defined the motor execution network (precentral gyrus and postcentral gyrus) 
and the motor imagery network (precuneus, supplementary motor area, superior frontal gyrus, precentral gyrus). The 
volume of each brain region was determined by summing the volume of their components. We also included the thalamus, 
basal ganglia, and cerebellum, as they are part of the areas involved in the motor performance.

The whole structure of the cerebellum of each 3D MRI image was manually segmented with ITK-SNAP software [22]. 
Manual segmentation was performed due to deficiencies in automatic segmentation. Specifically, we observed that cere-
bellar boundaries were often poorly delineated or partially missing in a substantial number of cases, resulting in unreliable 
volume estimates (S1 Fig). These issues prompted us to perform manual segmentation to ensure anatomical accuracy 
and consistency across subjects. A quantitative evaluation of the segmentation was performed using the Dice Coefficient 
[23]. The agreement calculation was based on the segmentation of 10 subjects by two of the authors (LB, NP). The agree-
ment was 0.94 ± 0.004, which exceeded the definition of excellent agreement (> 0.75).

Statistical analysis

SPSS 26.0 (IBM Corp, New York, USA) was used for the statistical analysis. The chi-square test, Fisher’s exact test or the 
chi-square test for trends were used to identify differences in categorical data between the groups. The Mann–Whitney 
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U test or the student’s t-test were used for continuous data. We compared children born EPT and at term in neurodevel-
opmental assessment and intracranial volume at 10 years and we also compared children born EPT with and without 
motor impairment. The general linear model was used to examine differences in motor networks and regions between 
the groups when the covariates were controlled for. Variables were included in the final regression models if there was 
evidence from a clinical perspective that they might be associated with the dependent variables, or they were variables 
that were significant in a univariate test with a p-value< 0.1 or significant between groups. Finally birth weight and sex was 
chosen as covariate also due to co-linearity. Because of the colinearity in certain variables of interest, a single variable 
was selected based on its strength of primary significance with the dependent variable. If the intracranial volume between 
two groups was significantly different we added it as a covariate. Intracranial volume was also correlating with birth weight, 
and because of colinearity between intracranial volume and birth weight we selected only one variable based on its 
strength of primary significance with the dependent variable. Assumptions about the requirements were met by the analy-
ses. Statistical significance was a two-sided p value of less than 0.05.

Results

General characteristics

The study comprised 42 children born EPT and 25 children born at term (Fig 1). Six children born EPT were excluded 
from the cerebellum analysis, one due to a cyst and atrophy at term age and five due to poor image quality. The char-
acteristics of the whole study group are presented in Table 1 and the characteristics of the children born EPT, with and 
without motor impairments, are shown in S1–S4 Tables. There were significant differences in birth weight and days on 
mechanical ventilation between the children with and without motor impairment in total motor and manual dexterity perfor-
mance (S1 and S2 Tables).

Motor assessment

There were significant differences in motor performance at 12 years of age between the EPT and term groups. Median 
total MABC-2 score was 71 (range: 32–99) in the EPT group compared with 83 (range: 59–96) in the control group 
(p < 0.001). Median score for children born EPT was 23 (8–39) and for term born children 29 (15–35) in manual dexterity 
(p = 0.001). Median scores in aiming and catching were 16 (8–31) for children born EPT and for term born children 19 
(11–28), (p = 0.01). Median score in balance for children born EPT was 28 (8–36) and for term born children 35 (20–36), 
(p = 0.001, Table 2). The standard scores differed accordingly (Table 2).

Table 2. Results of MABC-2 for children born extremely preterm and term born when they reached 12 years of age. 

MABC-2 Preterm (n = 42) Term (n = 25) P-value

Total test score, median (range) 71(32-99) 83(59-96) <0.001

Total standard score, median (range) 8(2-16) 11(6-15) <0.001

Manual dexterity component score, median (range) 23(8-39) 29(15-35) 0.001

Manual dexterity standard score, median (range) 8(2-15) 10(4-100) 0.001

Aiming and catching component score, median (range) 16(8-31) 19(11-28) 0.01

Aiming and catching standard score, median (range) 8(2-18) 10(4-15) 0.02

Balance component score, median (range) 28(8-36) 35(20-36) 0.001

Balance standard score, median (range) 9(1-14) 14(6-14) 0.001

Mann–Whitney U test were used for continuous data. Significant values was defined as p < 0.05.

https://doi.org/10.1371/journal.pone.0326041.t002

https://doi.org/10.1371/journal.pone.0326041.t002
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Brain volumes of motor networks

Comparing the brain volumes of the motor networks showed that the children born EPT had significantly smaller volumes. 
Mean of the motor execution network was 88.3 ± 5.7 in children born EPT and 94.3 ± 5.7 in children born at term, p < 0.001. 
In the motor imagery network mean was 142.2 ± 9.1 in children born EPT and 151.8 ± 9.2 in term-born children, p < 0.001. 
The basal ganglia, thalamus and cerebellum were also smaller in children born EPT with mean 27.9 ± 1.8, 12.9 ± 0.8, 
130.8 ± 13.6 respectively, compared to the term-born group with mean 29.8 ± 1.8, 13.8 ± 0.8, 144.6 ± 11.3 respectively after 
correction for multiple comparisons and adjusted for intracranial volume (p < 0.001). The cerebellum was the most signifi-
cantly affected area (Table 3).

Notably, 13 of the EPT children had a Total MABC-2 score equal to or below the 5th percentile, aligning with one of the 
diagnostic criteria for developmental coordination disorder (DCD) [3].

Children born EPT with motor impairments in aiming and catching had significantly smaller volume in the basal ganglia 
with mean 27.1 ± 1.5 compared to children born EPT with normal aiming and catching with mean 28.3 ± 1.8, p = 0.049. 
Mean of motor execution network in children born EPT with motor impairments in aiming and catching was 85.8 ± 4.8 com-
pared to children born EPT with normal aiming and catching with mean 89.5 ± 5.7, p = 0.049. Children born EPT with motor 
impairments in aiming and catching had significantly smaller volume in the motor imagery network with mean 138.3 ± 7.8 
compared to children born EPT with normal aiming and catching with mean 143.9 ± 9.2, p = 0.049. Mean of the cerebellum 
in children born EPT with motor impairments in aiming and catching was 120.8 ± 6.9 compared to children born EPT with 
normal aiming and catching with mean 135.2 ± 13.6, p=<0.001 (Table 4 and Fig 2). Cerebellar volume remained significant 
different between the groups when adjusting for birth weight and sex in a linear regression model, p = 0.02 (η2 = 0.17).

Discussion

This study showed the relationship between extreme prematurity, motor brain networks and regions and motor perfor-
mance. There were three main findings. First, the MABC-2 results at 12 years of age showed that children born EPT had 
both lower component and standard scores on the MABC-2 compared with the term born control group.

Second children born EPT had significantly smaller volumes in the motor execution network, the motor imagery net-
work, basal ganglia, thalamus and cerebellum than their term-born peers at 10 years of age. Third, children born EPT with 
motor impairment in aiming and catching had smaller volumes, mainly in the cerebellum, than children born EPT without 
motor difficulties in aiming and catching. These findings not only highlight differences in brain structure and motor perfor-
mance, but also suggest potential neuroanatomical correlates of DCD in EPT children. The observed reductions in motor 
area volumes may reflect a structural vulnerability underlying the motor impairments characteristic of DCD.

EPT births occur at a vulnerable time of brain development and the extrauterine environment affects brain growth [6]. It 
is well known that prematurity leads to altered regional and global brain volumes, compared to term birth, as these have 
been seen on MRI scans [24,25]. In addition, it has been shown that reduced brain volumes of grey matter (d = −0.62; 

Table 3. Comparison of the brain volumes of the motor networks in cm3 at 10 years between children born extremely preterm and term born. 

Brain region mean ± standard 
deviation

Preterm (n = 42) Term (n = 25) P-value* P-value 
Benjamin-Hochberg

Thalamus 12.9 ± 0.8 13.8 ± 0.8 <0.001 <0.001

Basal ganglia 27.9 ± 1.8 29.8 ± 1.8 <0.001 <0.001

Cerebellum 130.8 ± 13.6 144.6 ± 11.3 0.001 0.001

Motor execution network 88.3 ± 5.7 94.3 ± 5.7 <0.001 <0.001

Motor imagery network 142.2 ± 9.1 151.8 ± 9.2 <0.001 <0.001

*General linear model with intracranial volume as the covariate. Significant values defined as p < 0.05.

https://doi.org/10.1371/journal.pone.0326041.t003

https://doi.org/10.1371/journal.pone.0326041.t003
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CI −0.48 to −0.76; p < 0.001), white matter (d = −0.53; CI −0.40 to −0.67; p < 0.001) and cerebellum (d = −0.74; CI −0.56 
to −0.92; p < 0.001) persist throughout childhood in individuals born very preterm [10]. However, very few studies have 
explored the impact of EPT birth on the development of the brain into late childhood. Kvanta et al reported smaller white 
matter volumes in children born EPT compared to term-born peer at 10 years of age [26]. Some of our findings were con-
sistent with other studies, but most studies included children born at more than 28 weeks of gestation and did not include 
infants born EPT. Grunewaldt et al reported that children born with an extremely low birth weight, below 1,000 grams, 
demonstrated reduced volumes of cerebellum and thalamus compared to term-born controls at 10 years of age. Mean 
volumes of the cerebellum and thalamus were 22.64 cm3 and 13.66 cm3 respectively in the preterm group, and 26.9 and 
14.92 cm3 in the control group at 10 years of age [27]. Another study by Lax et al showed brain volumes in the thalamus 
were smaller in children born preterm (mean 11.3 cm3) compared to term-born controls at around 8 years of age. Children 
born preterm also had smaller basal ganglia volumes than children born at term age [28]. These studies were in line with 
our results. They suggest that the brain development in children born EPT with smaller volumes than term-born peers are 
consistent with impaired growth and that these persist in late childhood [28].

Table 4. Comparison of brain volumes of motor networks in cm3 at 10 years of age in children born extremely preterm, with and without motor 
problems, as measured by the MABC-2, at 12 years of age. 

Brain region  
mean ± standard  
deviation

Total MABC-2 ≤5th centile (n = 13) Total MABC-2 >5th centile (n = 29) P-value 
unadjusted

Thalamus 12.8 ± 0.8 13.0 ± 0.8 0.34

Basal ganglia 27.5 ± 1.8 28.1 ± 1.8 0.34

Cerebellum 126.0 ± 10.3 132.9 ± 14.5 0.49

Motor execution network 87.1 ± 5.8 88.9 ± 5.6 0.37

Motor imagery network 140.2 ± 9.3 143.1 ± 9.0 0.34

MABC-2 manual dexterity ≤5th 
centile (n = 10)

MABC-2 manual dexterity >5th 
centile (n = 32)

Thalamus 13.0 ± 0.9 13.0 ± 0.8 1.00

Basal ganglia 27.9 ± 2.0 27.9 ± 1.8 0.97

Cerebellum 130.7 ± 11.7 130.8 ± 14.3 0.53

Motor execution network 88.4 ± 6.3 88.3 ± 5.5 0.98

Motor imagery network 142.3 ± 10.1 142.2 ± 8.9 0.98

MABC-2 Aiming and catching ≤5th 
centile (n = 13)

MABC-2 Aiming and catching >5th 
centile (n = 29)

P-value 
adjusted*

Thalamus 12.6 ± 0.7 13.1 ± 0.8 0.052

Basal ganglia 27.1 ± 1.5 28.3 ± 1.8 0.04 0.50

Cerebellum 120.8 ± 6.9 135.2 ± 13.6 <0.001 0.02 (η2 = 0.17)

Motor execution network 85.8 ± 4.8 89.5 ± 5.7 0.04 0.48

Motor imagery network 138.3 ± 7.8 143.9 ± 9.2 0.049 0.53

MABC-2 Balance ≤5th centile (n = 8) MABC-2 Balance >5th centile 
(n = 34)

Thalamus 13.2 ± 0.6 12.9 ± 0.9 0.36

Basal ganglia 28.3 ± 1.4 27.8 ± 1.9 0.42

Cerebellum 126.9 ± 12.3 131.6 ± 13.9 0.43

Motor execution network 89.7 ± 4.5 88.0 ± 5.9 0.39

Motor imagery network 144.5 ± 7.3 141.6 ± 9.5 0.37

*General linear model with birth weight and sex as a covariate. Significant values defined as p < 0.05. η2 = Partial Eta Squared.

https://doi.org/10.1371/journal.pone.0326041.t004

https://doi.org/10.1371/journal.pone.0326041.t004
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Our study found that children born EPT with motor impairments in aiming and catching had significantly reduced vol-
umes in the areas of the brain involved in motor performance. However, differences where only seen in cerebellum when 
we adjusted for birth weight and sex. Catching a ball is a fundamentally complex motor skill and demonstrates skills that 
are crucial for executing complex movements [29]. This test requires the interaction between visual and motor systems 
and spatiotemporal coordinated movements before the ball is caught [30]. A review from Cameron et al demonstrated that 
these functions can be affected when an individual is born EPT and this could be because the developmental trajectory of 
the brain is altered [31]. Areas of the brain involved in motor performance have been reported to be reduced in individuals 
born EPT [12,27,32].

The observed association between impaired aiming and catching and reduced volumes supports the view that 
these structures play a crucial role in visuomotor integration. Aiming and catching require accurate visuospatial pro-
cessing and coordination of eye–hand movements, which depend on functional connectivity between visual, motor 
execution, and motor imagery networks. The cerebellum contributes to error correction and coordination, while the 
basal ganglia are involved in motor learning and action selection. Our findings suggest that reduced volumes in these 
regions may impair the integration of visual and motor signals, leading to poorer performance in complex motor tasks 
such as ball handling [32].

We believe that this was the first study to explore the motor networks, basal ganglia, thalamus and cerebellum of the 
brains of children born EPT and motor outcomes in late childhood. Dewey et al reported smaller brain volumes in the 
thalamus, basal ganglia and cerebellum and motor impairment when children who were born very preterm reached seven 
years of age [12]. The volumes of the cerebellum and thalamus have also been shown to correlate with motor perfor-
mance at 10 years of age in children born with extremely low birth weights [27]. The connectivity of the preterm brain has 
shown to be altered in relation to motor performance. A functional MRI study by Wheelock et al showed weaker associa-
tions between MABC-2 motor scores and connectivity between both the basal ganglia and thalamus and the motor net-
work when children born preterm reached 12 years of age. This suggests that there is an alternative network architecture 
that supports motor function in children born preterm [33].

The basal ganglia and thalamus are found deep in the grey matter of the brain and they are important structures as 
they modulate motor performance. MRI studies have shown that the volumes of the basal ganglia and thalamus were 

Fig 2. Comparisons of mean volume differences in cm3 in regions related to motor networks between children born extremely preterm who 
did, and did not, display motor impairment in the aiming and catching test.

https://doi.org/10.1371/journal.pone.0326041.g002

https://doi.org/10.1371/journal.pone.0326041.g002
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smaller in children born very preterm when they reached term age than those born at term [34]. This may be explained 
by dysmaturation in the brain, due to preterm birth, since the development of these structures occur in the third tri-
mester [34,35]. Our study found that the volume of the basal ganglia was reduced in children who were born EPT and 
had impaired aiming and catching. Thompson et al reported findings that were in line with our results. They found that 
the structural connectivity in the motor tracts involving the basal ganglia were related to motor performance when chil-
dren born very preterm reached seven years of age. This demonstrated weak connectivity in the corticostriatal and 
 thalamo-cortical tracts in very preterm children [36].

The growth of the cerebellum was the brain area that was most affected by being born EPT in this study. This is import-
ant for a wide range of motor control functions, including voluntary limb movements, cerebral-cerebellar interactions, 
controlling corticomotor responses, eye movements, controlling grip forces and timing [37]. The growth of the cerebellum 
mainly occurs during the last trimester and disturbing the normal intrauterine brain growth reduces the volume. Several 
causes for the underdevelopment of the cerebellum have been discussed in the literature. For example, Volpe reported 
that inflammation; infection, hypoxia, blood producers, steroids and undernutrition led to deficits in the cells and the cell 
layers. Other reasons that were discussed were disturbances in the connections with the cerebellum and cerebrum [6]. 
Although studies have shown neuroprotective actions that can help the brain to organize better in children born preterm. 
Charpak et al studied adults that were born preterm and showed that those who hade received kangaroo care until 40 
weeks of age had better organization of white matter and larger volumes of cerebellum, total grey matter and basal nucei 
at 20 years of age [38].

Many of the children born EPT develop motor and cognitive impairments [2] that affect everyday life, including school 
activities, hobbies and interactions with other children. This is why interventions are so important for these children. 
Westendorp et al highlighted the importance of teaching aiming and catching to children with learning difficulties in an 
intervention study. Children who took part in the intervention practiced aiming and catching as part of a group, while the 
control group took part in regular physical activity classes. There were positive associations between improved aiming and 
catching and problem solving in the intervention group, which demonstrated that motor abilities were fundamental to their 
cognitive development [39].

The strengths of this study included the longitudinal design and including children born EPT and at term. The term born 
group was representative (with standard scores of 10–11) as a comparison group in motor performance. The limitations 
included the small number of children, which may have meant that some statistical differences were not detected. We 
acknowledge that the resulting sample size is smaller than what is typically expected in pediatric research. However, this 
study confronts unique challenges, including high attrition rates common in long-term follow-ups and the specific difficul-
ties in obtaining high-quality scans from extremely preterm children, who may have more health and developmental issues 
affecting scan quality and participation.

Manual segmentation of the cerebellum was performed due to limitations observed with the automated segmentation 
methods available at the time of analysis. In particular, automated outputs frequently failed to capture the full extent of 
the cerebellum, with some regions missing entirely or only partially delineated. Additionally, in several cases, non-brain 
tissue was erroneously included in the segmentation. These inconsistencies resulted in unreliable volume estimates and, 
in some cases, rendered the segmentations inappropriate for analysis. To ensure anatomical accuracy and consistency 
across the dataset, we opted manual segmentation of the cerebellum.

While we did not conduct a power analysis due to the exploratory nature of the study and the unprecedented 
challenges in estimating effect sizes within this specific population, the study was carefully designed to maximize 
the insights that could be derived from a smaller, well-defined sample. Our approach aligns with existing litera-
ture that supports the value of qualitative and in-depth analyses in highly specialized cohorts, where the rarity and 
specificity of the data can offer significant contributions to the field. Including more children in the study would have 
been beneficial and strengthened the results. The number of children that did not participate in the follow-up study 
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as 12 years of age was quite high, but this was to be expected due to the amount of time that had elapsed since 
their birth.

Conclusions

Our study showed the long-term effects that EPT birth had on the motor networks in the brain and the impact on motor 
development at 12 years of age. The children born EPT demonstrated reduced brain volumes in their motor networks, 
thalamus, basal ganglia and cerebellum when they were compared to their term-born peers. Children born EPT who had 
impaired aiming and catching had a significantly smaller cerebellum, as well as reduced volume in their motor networks 
and basal ganglia, than children born EPT without the same motor difficulties.
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