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Abstract: This study investigated the effect of chitosan particle sizes on the properties of car-
boxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes
(75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of
substitution (DS), and water solubility of the CMCh powders were then determined. The CMCh films
prepared with CMCh based on chitosan with different particle sizes were fabricated by a solution
casting technique. The water solubility, mechanical properties, and water vapor transmission rate
(WVTR) of the CMCh films were measured. As the chitosan particle size decreased, the yield, DS,
and water solubility of the synthesized CMCh powders increased. The increase in water solubility
was due to an increase in the polarity of the CMCh powder, from a higher conversion of chitosan into
CMCh. In addition, the higher conversion of chitosan was also related to a higher surface area in the
substitution reaction provided by chitosan powder with a smaller particle size. As the particle size of
chitosan decreased, the tensile strength, elongation at break, and WVTR of the CMCh films increased.
This study demonstrated that a greater improvement in water solubility of the CMCh powders and
films can be achieved by using chitosan powder with a smaller size.
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1. Introduction

Currently, demands for the development of new functional materials with biocompat-
ibility and biodegradability are continuously increasing, which has led to an increase in
the utilization of biopolymers as compared to synthetic conventional polymers [1,2].

Among biopolymers, chitosan is an attractive material, owing to its biocompatibility,
antimicrobial activity, cheapness, and low toxicity. It has been widely used in the pharma-
ceutical industry (e.g., drug delivery carrier) [3,4], for biomedical applications (e.g., wound
dressing) [5,6], the cosmetic industry (e.g., encapsulation of essential oils) [7], and the food
packaging industry (e.g., antimicrobial film) [8]. Chitosan is a biopolymer in the category
of polysaccharides, and comprises glucosamine and N-acetylglucosamine linked by β (1–4)
bonds. Chitosan is obtained by the deacetylation of chitin, for which the abundant renew-
able sources are the shells of crustaceans and mollusks [3,9]. However, chitosan is insoluble
in neutral water (pH ~7) owing to the presence of amino groups (–NH2) in the chitosan,
in which this functional group remains unprotonated in neutral water [10]. Therefore, an
improvement of water solubility of chitosan is required prior to its application.

The conversion of chitosan into carboxymethyl chitosan (CMCh) is a facile and alter-
native means to address the unsatisfied insoluble chitosan, in which the chemical structure
of chitosan becomes more polar. Therefore, the CMCh can be dissolved in water over a
wide range of pH, which provides a convenient use of CMCh in various applications [11].
In addition, CMCh has antimicrobial activity, biocompatibility, and low toxicity, which
has been incorporated into biopolymers (e.g., starch and cellulose) to enhance the mechan-
ical/thermal properties and antimicrobial activity of blend films in the development of
active food packaging [12–15]. Moreover, CMCh has attracted considerable attention as a
tool for postharvest life extension by CMCh coating [16]; a fixative for Eau de Cologne [17];
and for blend films with soy protein isolate [18], rice starch [19], antioxidant and moistening
materials [20], and edible inks [21].

The CMCh can be synthesized in sodium hydroxide (NaOH) solution, and the effect
of NaOH solution with different concentrations on the degree of substitution (DS) has been
studied by Abou-Zied et al. [22]. They reported that the DS increased with respect to the
concentration of the NaOH solution up to 50% (w/v), but it decreased at above 60% (w/v) of
NaOH solution [22]. Furthermore, the properties of synthesized carboxymethyl cellulose
prepared from the cellulose with different particle sizes were investigated by Yeasmin and
Modal [23]. They found that DS, yield, viscosity, and water solubility increased as the
cellulose particle size decreased [23]. In addition, Chaiwong et al. reported that water
solubility of CMCh was dependent on the molecular weight of chitosan used as a starting
material. That is, the water solubility of CMCh increased with the decreasing molecular
weight of chitosan [20].

In this context, we attempted to study the effect of chitosan particle sizes on the yield,
DS, water solubility, and change in a reactive functional group of the synthesized CMCh,
which have not yet been investigated elsewhere. In addition, we also determined the
water solubility, mechanical properties, and water vapor transmission rate (WVTR) of the
CMCh films.

2. Results and Discussion
2.1. Chemical Structure

The FT-IR spectra of chitosan and the CMCh powders obtained from various chitosan
particle sizes are shown in Figure 1. The characteristic peaks of chitosan powder were
observed at 3000–3600, 2879, 1599, 1401, and 1160–1000 cm−1, which were attributed to
–OH stretching, C–H stretching, N–H bending, C–H bending of CH2 group, and C–O
stretching, respectively [24,25]. The absorption bands of CMCh powders obtained from
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chitosan with higher particle sizes (75–850 µm) were relatively similar to that of chitosan.
The intensity of these characteristic bands clearly increased with the decrease in chitosan
particle size, indicating an increase in reactive functional groups (e.g., –OH and –NH2
groups) in the CMCh powders. Particularly, the observation of strong peak intensity in the
vicinity of 1599 cm−1 might correspond to the vibration of the COO– group overlapped
with the original N–H bond of chitosan, which might imply that there was some con-
version of chitosan to carboxymethyl chitosan. Notably, a new peak at 1741 cm−1 was
detected in the spectrum of CMCh 75 µm, which is related to the C=O stretch of carboxylic
group [12,26,27]. This confirms that the chitosan with a smaller particle size was highly
converted to carboxymethyl chitosan.

Figure 1. The FT−IR spectra of chitosan and CMCh powders prepared from chitosan with different
particle sizes.

2.2. Morphology of Chitosan and CMCh Powders

The morphology of chitosan and CMCh chitosan powders with different particle
sizes was analyzed using the stereo microscope and SEM. As shown in Figure 2, chitosan
powders are relatively opaque, and have a slightly rough surface and irregular shape
particles. Conversely, CMCh powders are relatively transparent due to the reduction in
crystallinity after chemical modification, which is in agreement with our previous study
by XRD result [12]. In addition, CMCh powders have rougher surfaces compared to
chitosan. Likewise, SEM images (Figure 3a,b) showed that the surface morphology of
CMCh powders was rougher than that of chitosan powers. This was due to the damage on
chitosan surfaces and the weakening of chitosan structures, which caused the reduction
in chitosan crystallinity [28,29]. This allowed the carboxymethylization, and resulted in
the formation of the bulky groups (–CH2COOH) on chitosan surfaces, which is consistent
with the studies of Mohamed et al. [30] and Sabaa et al. [31]. The average particle sizes of
chitosan and CMCh powders were measured by SEM and are summarized in Table S1,
in the Supplementary Materials. The width of CMCh particles was greater than that of
chitosan particles, due to the effects of the formation of the bulky groups (–CH2COOH) on
their surfaces. In contrast, the length of CMCh particles was smaller than that of chitosan
particles due to the effects of the chemical reaction during surface modification, which led
to chain scission.
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Figure 2. The morphology and physical appearance of chitosan and CMCh powders prepared from
chitosan with different particle sizes.



Molecules 2021, 26, 6013 5 of 16

Figure 3. Cont.



Molecules 2021, 26, 6013 6 of 16

Figure 3. SEM images of chitosan and CMCh powders prepared from chitosan of different particle sizes: (a) 70× and
(b) 1000× magnifications.
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2.3. Yield of CMCh Powders

The yield of CMCh powders prepared from chitosan powder with different particle
sizes is shown in Figure 4. Notably, the conversion of chitosan into CMCh was strongly
dependent on chitosan particle sizes. As the particle size decreased, the yield of CMCh
powders increased, indicating an increase in the content of CMCh. This was related to
the surface areas of the chitosan used in the synthesis, in which the chitosan with smaller
particle sizes provided greater surface areas. An increase in the surface area of chitosan
caused potential collisions between chitosan particles and reactants, which resulted in an
increase in the yield of CMCh synthesized from the chitosan with smaller particle sizes.
This phenomenon is consistent with the investigations of Rahman et al. [32] and Yeasmin
and Mondal [23], who found that the yield of carboxymethyl cellulose (CMC) increased
with the decreases in cellulose particle size. In addition, some research groups reported that
the yield of CMCh was also dependent on the solvent, concentration of NaOH, reaction
temperature [33], and molecular weight of chitosan [20].

Figure 4. Effect of chitosan particle sizes on yield of CMCh powders.

2.4. DS and Water Solubility of CMCh Powders

The carboxymethylation of carbohydrate polymers (e.g., cellulose, starch, and chi-
tosan) has been extensively investigated. This is due to its facile modification achieved
through the acid-catalyzed reaction [34], in which the DS of carboxymethylation depends
on the concentration of base [35–37], amount of acid [28], type of solvent [38], nature
of polymeric materials [23], reaction temperature [39,40], reaction time [39,40], and mi-
crowave radiation (power) [41]. Due to a higher polarity, increases in DS generally result
in improved water solubility in the biopolymers [42]. In this study, the effect of chitosan
particle size on the DS and water solubility of CMCh is shown in Figure 5. Notably, the DS
and water solubility of CMCh were dependent on the chitosan particle size. The CMCh
powder with smaller particle sizes had a higher DS due to the larger surface areas generated
by smaller particles, which led to a greater conversion of chitosan into CMCh. A similar
influence of particle size on the DS of CMC has also been reported by Rahman et al. [32] and
Yeasmin and Mondal [23]. The higher DS implied an increase in the polarity of the CMCh
powders, as reflected by the larger number of polar groups (–OH, –NH2, and –COOH) and
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explained by the FT-IR results. Therefore, the CMCh prepared from the chitosan powder
with smaller particle sizes easily dissolved in water, which led to a higher water solubility
(from 88.9 to 95.5%). As a consequence, the DS and water solubility of the CMCh powder
with smaller particle sizes were greater than the powder with larger particle sizes.

Figure 5. Effect of chitosan particle sizes on degree of substitution and water solubility of CMCh powders.

2.5. Morphology of CMCh Films

The fractured surface of the CMCh films that were prepared with CMCh based on
chitosan powders with different particle sizes is shown in Figure 6. All CMCh films
exhibited a continuous phase without internal pores. Notably, the roughness of the CMCh
films increased as the chitosan particle size increased. This roughness could be attributed
to the imperfect solubility of CMCh powders during the film forming process, which may
result in the deterioration of mechanical properties when affected by a larger particle size
and a lower surface area.

Figure 6. Cont.
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Figure 6. Morphology of CMCh powders.

2.6. Mechanical Properties of CMCh Films

The mechanical properties of polymeric materials are dependent on several factors,
including intermolecular forces (i.e., H-bond), molecular weight (chain length), and the
degree of crystallinity (ordered packing arrangement) [43,44]. Tantala et al. [45] reported
that the CMCh film prepared from the chitosan with higher molecular weight (polymer)
has a higher tensile strength than those prepared from the chitosan with lower molecular
weight (oligomer) [45]. In this study, the effect of chitosan particle size on the mechanical
properties of the CMCh films is shown in Figure 7. Obviously, the tensile strength and
elongation at break of the CMCh films were strongly dependent on the chitosan particle
size. As expected, the CMCh film prepared from the chitosan with a smaller particle size
showed a higher tensile strength and elongation at break. As mentioned earlier, the powder
with smaller particle sizes had a higher surface area in the substitution reaction, which
led to a higher conversion of chitosan to CMCh, as reflected by a higher DS. This resulted
in an increase in the intermolecular force between molecules of CMCh [46], leading to an
enhancement of their mechanical properties. Conversely, the crystallinity of the CMCh
film decreased due to the chemical reaction (i.e., NaOH) and the formation of bulky groups
(–CH2COOH) on the chitosan chains. Therefore, the CMCh prepared from the chitosan
with a smaller particle size has a lower crystallinity than that of the CMCh film, owing
to a higher number of bulky groups. This led to the enhancement of the conformation
flexibility (i.e., elongation at break) of the CMCh films [47]. This result is consistent with
Suriyatem et al. [12] who reported that the introduction of CMCh into rice starch (50%)
increased the tensile strength and elongation at break of rice starch. In addition, this
result is in agreement with Rachtanapun et al. [28] who found that the tensile strength
and elongation at break of carboxymethyl bacterial cellulose film increased with DS and
intermolecular force.

Figure 7. Effect of chitosan particle sizes on tensile strength and elongation of CMCh films.
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2.7. Contact Angle of CMCh Films

As shown in Figure 8, the dynamic water contact angle of the CMCh film was re-
markably dependent on the chitosan particle size. As the chitosan particle size decreased,
the water contact angle of CMCh films decreased. In addition, the water contact angle
of all CMCh films decreased with time (from 0 to 20 s). This implies that the CMCh film
prepared from CMCh-based chitosan powder with a smaller particle size has a more hy-
drophilic character than that of the CMCh film, due to the high number of COOH groups
on the larger surface area of CMCh prepared from chitosan powder with a smaller particle
size. This contact angle result is consistent with the FT-IR, DS, and water solubility of
CMCh powders.

Figure 8. Dynamic contact angle measurement of the CMCh films (a) and contact angle images of a
10 µL water droplet on the surface of the CMCh films with times (b).

2.8. Water Solubility and Water Vapor Transmission Rate of CMCh Films

As shown in Figure 9, the chitosan particle size used to synthesis CMCh strongly
affected the water solubility of the CMCh films. The water solubility of the CMCh films
increased (94.3–97.9%) as the particle size of the chitosan used in the synthesis of the CMCh
powder decreased. This was related to the polarity or the hydrophilicity of the CMCh films.
Essentially, the polymeric films with a higher polarity have a higher chemical affinity with
water molecules, such that water can be initially adsorbed on the surface and diffused into
the polymeric films. Finally, the polymeric moieties of the films are dissolved. Therefore,
when the CMCh film prepared from the chitosan with the smaller particle size (75 µm)
was exposed to water, a larger amount of –COOH groups (on the surface of the CMCh
film) and H-bonding (between the CMCh chains) became separated due to competition
among the water molecules [48,49]. Accordingly, the CMCh film with a higher polarity
(prepared from chitosan with a smaller particle size) was easily deformed and dissolved in
water. This result is consistent with the FT-IR results, DS, and water solubility of the CMCh
powders. In addition, this finding is also similar to that of the study of Tantala et al. [50],
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who stated that the water solubility of CMCh films was dependent on the DS, irrespective
of the plasticizers. Notably, the water solubility of CMCh films was higher than that of
the CMCh powders due to the influence of the hydrophilic character of the plasticizer
(glycerol) containing the CMCh film.

Figure 9. Effect of chitosan particle sizes on water solubility and water vapor transmission rate of
CMCh films.

Generally, water vapor permeation of polymeric films strongly depends on several
factors, such as the polarity or hydrophilicity, intermolecular forces, and degree of crys-
tallinity [43,51]. In addition, the molecular weight of chitosan affects the WVTR of the
CMCh film, as the CMCh film prepared from the chitosan with higher molecular weight ex-
hibits a lower WVTR compared to those prepared from the chitosan with a lower molecular
weight [45]. In this study, the effect of chitosan particle sizes on the WVTR of CMCh films
is illustrated in Figure 9. The CMCh film prepared from chitosan with the largest particle
size (850 µm) exhibited the lowest WVTR value of 8.8 g/day·cm3. As the chitosan particle
size decreased, the WVTR of the CMCh films increased from 8.8–18.3 g/day·cm3. The
increase in the WVTR of the CMCh films is due to an increase in the hydrophilicity of the
CMCh film, which is caused by the presence of abundant −COOH and −OH groups, as
explained by the FT-IR, DS, and contact angle results. The water vapor molecule can easily
react with such polar groups (dissociation) and penetrate into the CMCh films, because no
CMCh films have any internal pores, as indicated in the SEM images (Figure 6). Therefore,
the CMCh film prepared from CMCh with a higher DS exhibited a higher WVTR, which
confirmed that the CMCh films had become more hydrophilic in character. This finding is
consistent with the analysis of Rachtanapun et al. [52], who reported that the CMC films
with a higher DS showed a higher WVTR.

3. Materials and Methods
3.1. Materials

Shrimp chitosan (molecular weight of 1000–1500 kDa) was purchased from Ta Ming
Enterprises Co., Ltd. (Samut Sakhon, Thailand). Acetic acid glacial anhydrous and sodium
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hydroxide (NaOH) were purchased from Merck & Co., Inc. (Darmstadt, Germany). Ethanol
and methanol were purchased from Northern chemical Co., Ltd. (Chiang Mai, Thailand).
Magnesium nitrate (Mg(NO3)2) was purchased from Renkem chemical (Bangalore, India).
Monochloroacetic acid was purchased from Sigma-Aldrich (Burlington, MA, USA).

3.2. Synthesis of CMCh Powders

Prior to the synthesis of CMCh powder, chitosan was ground and sieved using a
Retsch ZM 200 Ultra Centrifugal Mill (Endecotts, London, UK) to obtain various particle
sizes of 75, 125, 250, 425, and 850 µm. Approximately 25 g of the obtained chitosan was
individually suspended in 400 mL of 50% (w/v) sodium hydroxide solution. Then, 100 mL
of isopropanol was added, and the chitosan solution was stirred at 50 ◦C for 1 h. Next, the
solution of monochloroacetic acid (in isopropanol) was gradually added into the chitosan
solution. This mixture was transferred into an ED 56 drying and heating chamber (Binder
Co., Tuttlingen, Germany) and heated at 50 ◦C for 4 h. The solid part of the mixture was
separated by filtering, and 250 mL of 70% (v/v) methanol was added into the solid part and
stirred for 10 min. Meanwhile, the pH of this mixture was adjusted to 7 by adding acetic
acid prior to filtering. This washing process was performed 5 times. Lastly, 250 mL of 95%
(v/v) methanol was added into the solid part and stirred for 10 min. The mixed solution
was finally filtered, and the solid part was dried at 80 ◦C for 12 h in a drying and heating
chamber. The yield of the obtained CMCh powder was calculated using Equation (1):

Yield (%) =
W1

W0
× 100 (1)

where W0 is the weight of chitosan (g), and W1 is the weight of the obtained CMCh (g).

3.3. Preparation of CMCh Films

To prepare the CMCh films, 3 g of the obtained CMCh from chitosan with different
particle sizes was individually added to 100 mL of DI water and stirred at 80 ◦C for 10 min.
Then, an optimal content of 30% (w/v) of glycerol was added in order to improve the
brittleness of the CMCh films. The obtained CMCh solution was cast on the plate and dried
at 40 ◦C for 24 h. The as-prepared CMCh films were stored in a chamber of 52 ± 1% RH
[Mg(NO3)26H2O] at 25 ± 1 ◦C prior to analysis.

3.4. Characterizations
3.4.1. Infrared Spectroscopy

To determine the functional groups of chitosan and CMCh powders, a Frontier Fourier
transform infrared (FT-IR) spectrophotometer (PerkinElmer, Waltham, MA, USA) was used.
The spectra of samples were recorded from 3950 to 450 cm−1.

3.4.2. Morphology of Powders

To study the morphology of chitosan and CMCh powders, a JSM 5910 L LV-Scanning
Electron Microscope (SEM) (JEOL Ltd., Boston, MA, USA), which has an accelerating
voltage of 10 kV, and a Leica S8 APO Greenough stereo microscope (Leica Microsystems,
Wetzlar, Germany) were used.

3.4.3. DS

The functional DS of CMCh was determined using a titration technique. Firstly, 0.2 g
of the obtained CMCh was added to 40 mL of DI water and stirred to obtain a homogeneous
solution. Then, the pH of the CMCh solution was adjusted to ≤2 by adding hydrochloric
acid. Next, the CMCh solution was titrated with 0.1 M sodium hydroxide until reaching
the equivalent point. Finally, the DS of CMCh was calculated using Equation (2):

DS =
161 × A

MCMCh − (58 × A)
(2)
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where MCMCh is the mass of CMCh (g); A was calculated using Equation (3):

A = VNaOH × CNaOH (3)

where VNaOH is the volume of NaOH (mL) used in titration; CNaOH is the concentration of
NaOH (M).

3.4.4. Water Solubility of CMCh Powders

To measure the water solubility of the obtained CMCh powders, 0.1 g of CMCh was
added into 10 mL of DI water and stirred at 25 ◦C for 30 min. Then, the CMCh mixture
was filtered and dried at 105 ◦C for 24 h. The dried residue was weighed, and the water
solubility of CMCh powder was calculated using Equation (4):

Water solubility (%) =
W0 − W1

W0
× 100 (4)

where W0 is the initial weight of CMCh powder; W1 is the final weight of CMCh powder (g).

3.4.5. Morphology of CMCh Films

To study the morphology and the internal structure of CMCh films, a JSM-IT300
Scanning Electron Microscope (JEOL Ltd., Tokyo, Japan) was used. Prior to SEM analysis,
the film was fractured in liquid nitrogen and vacuum-sputtered with gold.

3.4.6. Mechanical Properties of CMCh Films

A H1KS Universal Testing Machine (Tinius Olsen, Horsham, PA, USA) was used to
investigate the tensile strength and elongation at break of the CMCh films. Ten specimens
of each film were prepared in the form of a rectangular strip (1.5 × 15 cm) and stored at
50% RH and 23 ± 2 ◦C for 24 h prior to measurement, according to ASTM D882-10.

3.4.7. Water Solubility of CMCh Films

To investigate the water solubility of CMCh films, three specimens of each film were
prepared in the form of a square shape (1 × 1 cm). The specimen was weighed, and stored
at 50% RH and 23 ± 2 ◦C for 7 d. After that, the specimen was added to 50 mL of DI water
and agitated for 2 h using a shaker. The residue of CMCh film was separated and dried at
105 ◦C for 24 h, according to ASTM D618-05. Then, the dried residue was weighed, and the
water solubility of CMCh films was calculated using Equation (5):

Water solubility (%) =
W0 − W1

W0
× 100 (5)

where W0 is the initial weight of the CMCh film; W1 is the final weight of the CMCh
film (g).

3.4.8. Contact Angle of CMCh Films

To analyze the hydrophilic properties of CMCh films, the dynamic contact angle of
CMCh films was measured using a DSA30B Drop Shape Analyzer (KRÜSS, Hamburg,
Germany) with sessile water drops (volume 10 µL). The water contact angles of the films
were recorded at 0, 5, 10, 15, and 20 s, and the water contact angle values of each sample
were calculated as the average of five measurements.

3.4.9. WVTR

To investigate the WVTR of the CMCh films, the WVTR test was performed according
to ASTM E96-93. Three specimens of each film were prepared in circular shapes with
a diameter of 8 cm and placed on circular aluminum cups that each contained 10 g of
dried silica gel. Then, each specimen was sealed with the cup using paraffin wax, and the
as-prepared cups were weighed and stored at 50% RH and 25 ◦C for 7 d, during which the
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cups were weighed every day to obtain a slope of weight gain (y-axis) against time (y-axis).
Finally, the WVTR was calculated using Equation (6):

WVTR =
Slope

Film area
(6)

4. Conclusions

The present study showed that the chitosan particle size strongly affected the chemical
and physical properties of the synthesized CMCh powders and the CMCh films. As the
chitosan particle size decreased, the DS, yield, and water solubility of the CMCh powders
increased. These were related to the increase in polarity of the CMCh powder caused
by the larger surface area of the chitosan with a smaller particle size, which was used
in the synthesis of CMCh powder. The CMCh powder, synthesized from chitosan with
a smaller particle size, has a larger carboxyl group (confirmed by FT-IR result), which
resulted in the enhancement of hydrophilicity. Likewise, the water solubility and WVTR
of CMCh films increased as the chitosan particle size decreased. Moreover, the tensile
strength and elongation at break also increased, owing to an increase in intermolecular
forces between the CMCh chains. This study provided a better understanding of the
synthesis of water-soluble CMCh powder and the facile preparation of CMCh films of
varying particle sizes of chitosan, as well as a meaningful insight into the potential uses of
CMCh in the development of novel functional materials for the biomedical, pharmaceutical,
and food packaging industries.

Supplementary Materials: The following are available online, Table S1: The average particle size
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