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Simple Summary: Only 13 to 50% of patients with metastatic melanoma respond to new commercial-
ized therapies. The reason why the same chemotherapeutic treatments yield different responses in
patients can be attributed to the degree of multidrug resistance (MDR) developed by the host tumor
cells. For instance, the glycolytic metabolism of cancer cells enhances the intratumoral accumulation
of lactic acid, decreases intratumoral pH and potentiates MDR. Lipid nanoparticles (LNC) have been
widely exploited as carriers of MDR reversing molecules. In this study, we proposed to modify LNC
with novel copolymers to impart stealth properties and to improve tumor cell entry. Modified-LNC
showed in vitro pH-responsive properties characterized by an enhanced cellular uptake under acidic
conditions. Moreover, surface modification led to an increased biological effect by protecting the
nanocarrier from opsonization by complement activation. These data suggest that pH-sensitive LNC
are promising nanocarriers to target metastatic melanoma.

Abstract: Despite significant advances in melanoma therapy, low response rates and multidrug
resistance (MDR) have been described, reducing the anticancer efficacy of the administered molecules.
Among the causes to explain these resistances, the decreased intratumoral pH is known to potentiate
MDR and to reduce the sensitivity to anticancer molecules. Nanomedicines have been widely
exploited as the carriers of MDR reversing molecules. Lipid nanocapsules (LNC) are nanoparticles
that have already demonstrated their ability to improve cancer treatment. Here, LNC were modified
with novel copolymers that combine N-vinylpyrrolidone (NVP) to impart stealth properties and
vinyl imidazole (Vim), providing pH-responsive ability to address classical chemoresistance by
improving tumor cell entry. These copolymers could be post-inserted at the LNC surface, leading
to the property of going from neutral charge under physiological pH to positive charge under
acidic conditions. LNC modified with polymer P5 (C18H37-P(NVP21-co-Vim15)) showed in vitro
pH-responsive properties characterized by an enhanced cellular uptake under acidic conditions.
Moreover, P5 surface modification led to an increased biological effect by protecting the nanocarrier
from opsonization by complement activation. These data suggest that pH-sensitive LNC responds to
what is expected from a promising nanocarrier to target metastatic melanoma.

Keywords: nanomedicine; pH-sensitive; MDR cancer; tumor cell internalization; N-vinylpyrrolidone;
vinylimidazole

1. Introduction

In recent years, cancer treatments have evolved considerably with the rise of new
strategies for targeting the tumor microenvironment. Thus, targeted therapies and mono-
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clonal antibodies have improved the prognosis and survival of many cancer patients. De-
spite these significant advances, low response rates and multidrug resistance (MDR) have
been described for certain molecules, reducing their efficacy. For instance, in metastatic
melanoma, it has been reported that only 13 to 50% of patients respond to these new
therapies with, sometimes, a delay of more than three months [1,2]. The reason why the
same chemotherapeutic treatment yields different responses in patients can be attributed
to the degree of resistance developed by the host tumor cells [3].

MDR is associated with a wide range of pathological changes at different cellular and
tissular levels. In a previous study, we found some differences in B16F10 and SKMel28
melanoma vasculature that could potentiate therapy resistance [4]. Moreover, MDR can be
associated with somatic mutations. For instance, the most recurrent ones in chronic sun-
induced damage (CSD) and non-CSD melanoma affect genes in key signaling pathways
involved in proliferation (BRAF, NRAS and NF1), growth and metabolism (PTEN and KIT),
cell identity (AT-rich interaction domain 2 (ARID2)), resistance to apoptosis (TP53), cell
cycle control (cyclin-dependent kinase inhibitor 2A (CDKN2A), and replicative lifespan
(telomerase reverse transcriptase (TERT)) [5].

Among the various hypotheses explaining MDR, recent data have suggested that the
tumor microenvironment could play a key role in this therapeutic resistance [6]. The origi-
nality of the tumor microenvironment is based on its composition with various cells, such
as endothelial or immune cells and cancer-associated fibroblasts, which may be involved in
MDR [4,7]. However, many other physiological characteristics (hypoxia, acidity, . . . ) can
modify both tumor therapy and tumor progression [8,9]. Thus, changes in the pH of the
tumor microenvironment can modify the efficacy of several anticancer chemotherapies. In
fact, the glycolytic metabolism of cancer cells potentiates the intratumoral accumulation of
lactic acid, decreases intratumoral pH [10] and potentiates MDR by reducing the sensitivity
of tumor cells to anticancer molecules [11].

Nanomedicines have been widely exploited as the carriers of MDR reversing
molecules [12]. Moreover, when properly formulated in terms of chemical composition and
physicochemical properties, nanomedicines in themselves can help overcome MDR even
without carrying a load of chemosensitizers [3]. Among them, lipid nanocapsules (LNC)
can offer interesting perspectives for MDR cancer treatment because they have intrinsic
characteristics, which are perfectly poised to address classical chemoresistance [13]. Based
on the phase inversion process [14], LNC formulation is solvent-free and produces nanoob-
jects with a monodisperse and monitor size. Their structure is intermediate between that
of polymer nanocapsules and liposomes and similar to that of lipoproteins because of their
oily core, which is surrounded by a surface-active membrane of polyethylene glycol (PEG,
660 Da). Interestingly, this surfactant can inhibit drug efflux through inhibition of P-gp
as it has been reported with etoposide- or paclitaxel-loaded lipid nanoparticles in in vitro
and in vivo studies [15–18]. This original and groundbreaking work on LNC [15,16] has
paved the way for other works showing the efficacy of ferrocifen-loaded LNC against MDR
tumors [19–26], especially in malignant glioma models.

These last years, much progress has been motivated in stimuli-responsive nanocarriers,
which could adapt to the intrinsic physicochemical and pathological factors to increase
the specificity of drug delivery. Currently, numerous nanocarriers have been engineered
with physicochemical changes in responding to external stimuli, such as pH, due to the
nature of low pH inside the organelles (e.g., lysosomes and endosomes) of cancer cells
and in the tumor microenvironment, a way to overcome multidrug resistance. Indeed,
positively charged nanocarriers generally exhibit a higher cell uptake due to increased
electrostatic interactions between engineered nanomaterials and the negatively charged
cell membrane [27–29]. Therefore, considering this beneficial surface charge effect and the
acidification of the tumor microenvironment caused by glycolysis metabolism of tumor
cells [30], pH-responsive nanocarriers have been developed, allowing to increase cellular
uptake and/or trigger the drug release into the tumor environment. Several polymers have
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been proposed as protonation agents to create these pH-responsive carriers [31,32] as vinyl
imidazole (Vim) used for biomedical application purposes [33,34].

In this study, poly(N-vinylpyrrolidone) (PNVP) [35], which has been reported to
prolong the circulation time of nanocarriers, was randomly copolymerized with Vim
(data not shown). Thus, a new class of copolymers was developed by specific RAFT
polymerization [36], combining the promising stealth properties of PNVP with a pH-
responsive ability due to Vim and end-capped by a lipophilic C18H37- alkyl chain able to
be post-inserted at the surface of LNC. A library of copolymers of various compositions
and molar masses was then used to decorate LNC (Figure 1), and the physicochemical
characteristics of the modified LNC were studied. Afterward, the impact of such decoration
on in vitro cell toxicity was evaluated. Furthermore, the cell uptake of modified LNC
was monitored on two melanoma cell lines (B16F10 and SKMel28) in a range of pH
values. Finally, in acidic conditions, the internalization pathways of these nanovectors
were assessed in these two cellular models.

Figure 1. Decoration of LNC by C18H37-P(NVP-co-Vim) copolymers.

2. Material and Methods
2.1. Formulation and Characterization of Nanoparticles
2.1.1. Blank Formulation of LNC (BLK)

Lipid nanocapsules were formulated as described [14] by mixing under magnetic
stirring 20.2% w/w caprylic-capric acid triglycerides (Labrafac WL 1349, Gatefossé S.A.,
France), 17.2% w/w hydroxystearate-PEG (Kolliphor® HS 15, BASF, Ludwigshafen, Ger-
many), 8% w/w NaCl (Prolabo, France), 1.5% w/w lecithin (Lipoid S75-3, Lipoid GmbH,
Ludwigshafen, Germany) and 35.58% of Milli-Q water. Three cycles of heating and cooling
between 60 and 90 ◦C were carried out to obtain the phase inversion. Ice-cold Milli-Q
water 23.72% w/w was added at the last inversion temperature leading to the formation of
lipid nanocapsules.

2.1.2. Fluorescent LNC Formulation

To formulate fluorescent LNC, a fluorescent probe, DIA (4-(4-(dihexadecylamino)styryl)-
N-methylpyridinium iodide; λexcitation = 456 nm; λemission = 590 nm, Fisher Scientific,
Illkirch-Graffenstaden, France), was used. Prior to formulation, DIA was incorporated in
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Labrafac at a concentration of 7.92 mg/g, then the same formulation process as above was
used to formulate LNC.

2.1.3. Polymer Post-Insertion

LNCs and polymers from Table 1 were coincubated for 2 h at 60 ◦C under mag-
netic stirring with a final polymer concentration of 1 mM. The mixture was then cooled
down for 20 min in an ice bath under magnetic stirring. As a control, to obtain unmod-
ified LNC (BLK), the same protocol was applied using the same dilution factor without
polymer solution.

Table 1. Characterization of NVP and Vim-based copolymers determined by 1H NMR in
N,N-dimethylformamide (DMF) at 80 ◦C (DP: degree of polymerization; Mn: number average
molecular weight).

Entry Copolymer Composition DP Mn (g·mol−1)

P1 C18H37-PNVP49 49 5900
P2 C18H37-P(NVP15-co-Vim5) 20 2600
P3 C18H37-P(NVP22-co-Vim8) 30 3600
P4 C18H37-P(NVP35-co-Vim10) 45 5300
P5 C18H37-P(NVP21-co-Vim15) 36 4200

2.1.4. Size and Zeta Potential Measurements

The mean diameter (Z-average) and polydispersity index (PDI) of LNC were measured
using the dynamic light scattering (DLS) method at a backscatter angle of 173◦. Zeta
potential was measured using the laser Doppler microelectrophoresis technique with a
Malvern Zetasizer® apparatus (Nano Series ZS, Malvern Instruments S.A., Malvern, UK)
at 25 ◦C. Measurements were performed in 1 mM phosphate buffer Na2HPO4 (Merk,
Darmstadt, Germany) + NaH2PO4 (Sigma-Aldrich, Schnelldorf, Germany) at different pH:
7.4, 6.8, 6.5, 6. LNC was 10 times diluted. Experiments were conducted 4 times with a
measured average value calculated from 3 runs, with 12 measurements by a run for size
and 20 measurements by run for zeta potential.

2.1.5. Stability

LNC was kept at 4 ◦C, stability in size, PDI, and zeta potential evaluated at days 0, 7,
14, 21. Experiments were repeated 3 times using the method described above.

2.1.6. Endosome Buffering Effect

The buffering capacities of the different polymers alone and post-inserted into LNC
were measured by acid–base titration according to the method described by Zhong et al. [37].
1 mL of 0.1 mM polymer solution and 1 mL of post-inserted LNC was adjusted initially to
pH 11 with 0.1 M NaOH. Then, the solutions were titrated to reach pH 3 by adding 0.1 M
HCl. After each addition of 25 µL of HCl, pH was measured with a pH meter. Endosome
buffering capacity was evaluated as the HCl amount to modify the solution pH from 7.4
to 5.1.

2.2. Cell Culture

The SK-Mel 28 human melanoma cell line, obtained from ATCC (LGC Promochem,
France), and B16F10 mice melanoma cell line (gift from University of Brussels) were
grown in Roswell Park Memorial Institute (RPMI) 1640 medium (Lonza, Verviers, Belgium)
supplemented with 10% heat-inactivated FBS (Lonza), 1% antibiotic and antimycotic
solution (Sigma-Aldrich) and 1% non-essential amino acids (Lonza). Cell lines were
cultured and maintained at 37 ◦C in a humidified atmosphere with 5% CO2. To obtain
pH-modified media, a complete culture medium was maintained for 24 h at 37 ◦C in a
humidified atmosphere with 5% CO2. Media was then buffered to pH 7.4; 6.8; 6.5, and 6
using a NaH2PO4 2 M solution.
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2.3. Resazurin Cell Viability Assay

B16F10 and SK-Mel 28 cells were cultured in a 96-well plate at the density of 5 × 104

cells/well and incubated for 24 h. Cells were then treated with 100 µL/well of media
containing either post-inserted LNCs at a concentration range of 10 µg/mL to 1000 µg/mL
or polymers at the corresponding concentration contained in post-inserted LNCs (0.025 µM
to 2.5 µM). After treatment, cells were washed with PBS. Cytotoxicity was determined
by evaluating cell viability via indirect quantification of living cells using resazurin assay
(Sigma-Aldrich). Briefly, 100 µL of resazurin (22.5 µg/mL) was added to each well, and
the plates were incubated for 3 h under a humidified atmosphere with 5% CO2. The fluo-
rescence intensity was then measured at 544 nm excitation/599 nm emission wavelengths
using a Fluoroskan Ascent™ microplate fluorometer (Fisher Scientific). Experiments were
repeated six times with three replicates per experiment.

2.4. Fluorescence-Activated Cell Sorting (FACS): Internalization

The uptake of unmodified LNC (BLK LNC) and modified LNC at different pH was
measured by flow cytometry analysis. Cells were seeded onto 6-well plates at the density of
5 × 106 and 2.50 × 106 cells/well for B16F10 and SK-Mel 28, respectively. Then, cells were
incubated for 24 h and were then treated for 2 h with 2 mL medium at different pH (7.4, 6.8,
6.5, 6) with fluorescent LNCs at a concentration of 250 µg/mL. Cells were washed with PBS,
collected after trypsinization and washed twice with PBS. To discriminate cell membrane
adsorbed or internalized LNCs, cells were resuspended in 2.5 mg/mL trypan blue to
quench extracellular fluorescence. Analyses were performed with a BD FACSCanto™ II
flow cytometer (BD Bioscience, San Jose, CA, USA). Experiments were repeated four times
with three replicates per experiment.

2.5. Fluorescence-Activated Cell Sorting (FACS): Internalization Pathway

To study the internalization pathways of pH-responsive LNC, different inhibitors
were used. Cells were seeded onto 6-well plates at the density of 5 × 106 cells/well for
B16F10 and 2.5× 106 for SK-Mel 28 and incubated for 24 h. The cells were then treated with
inhibitors for 30 min at 37 ◦C. Then, 1 mmol/L 5-(N,N-dimethyl)amiloride hydrochloride
(DAM), 10 mg/mL methyl-β-cyclodextrin (MβC) and 50 µmol/L chlorpromazine (chlorpr.)
were used to inhibit macropinocytosis, lipid RAFT and mediated endocytosis pathways,
respectively [38]. 10 µg/mL phorbol 12-myristate (PMA) (Sigma-Aldrich) was used for
inhibition of the caveolin endocytosis pathway [39]. Cells were then treated for 2 h at 37 ◦C
with 2 mL medium at pH 6 containing fluorescent LNC modified with polymer P5, at a
concentration of 250 µg/mL. To discriminate active from passive internalization, cells were
treated with fluorescent LNC and incubated 2 h at 4 ◦C. Cells were then washed with PBS,
collected after trypsinization and washed twice with PBS. To discriminate adsorbed and
internalized LNC, cells were resuspended in 2.5 mg/mL trypan blue to quench extracellular
fluorescence [40] and exclude dead cells. Analyses were performed with a BD FACSCanto™
II flow cytometer (BD Bioscience). Experiments were repeated five times with three
replicates per experiment.

2.6. Confocal Microscopy

Confocal imaging of internalized cells was performed using a confocal laser micro-
scope (TCS SP8, Leica, Switzerland), equipped with a 50 mW diode laser. SK-Mel 28
melanoma cells were seeded onto 8-well polymer µ-slides (ibidi, GmbH, France) at the
density of 25 × 104 cells/well and incubated for 24 h. The cells were then treated for
2 h with 300 µL of the medium at different pH (7.4, 6.8, 6.5, 6) with fluorescent LNC at a
concentration of 250 µg/mL. Cells were washed with PBS and fixed in 4% paraformalde-
hyde for 20 min at 4 ◦C. Cells were then washed with PBS, and nuclei were stained with
4′,6-diamidino-2-phenylindole 3 µM DAPI (Sigma-Aldrich). Finally, cells were washed
with PBS, and Fluoromount™ aqueous mounting medium (Sigma-Aldrich) was added to
the slide. All images were collected with a Leica TCS SP8 AOBS confocal laser scanning
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microscope (Leica Microsystems, Wetzlar, Germany) equipped with an HC PL APO CS2
63x/NA 1.40 oil objective with 2x numerical zoom and 40x/NA 1.30 oil objective and
gateable hybrid detectors (GaAsP). Images were acquired in the format 1024 × 1024 pixels,
the bit depth of 8, and a scan speed of 400 Hz. DAPI and DiA were excited with a 405
nm diode laser (50 mW) and the 488 nm line from an argon laser (40 mW), respectively.
Z-series optical sections were collected with a step size of 1 µm using a Super Z Galvo Type
H stage and were displayed as maximum z-projections using the LAS X software.

2.7. Complement Activation

Complement activation was determined by measuring the lytic capacity of normal
human serum after exposure to the LNC, according to Passirani et al. [41]. Briefly, normal
human serum (NHS) (provided by the Etablissement Français du Sang (Angers, France))
was diluted in Veronal-buffered saline containing 0.15 mM Ca2+ and 0.5 mM Mg2+ (VBS++)
and incubated for 1 h at 37 ◦C with an increased concentration of LNC. The suspension was
then diluted in VBS++ (1/25 v/v) and incubated for 45 min at 37 ◦C with sheep erythrocytes
(Labor Dr. Merk) sensitized by rabbit anti-sheep erythrocyte antibodies (Eurobio, Les Ulis,
France). The suspension was centrifuged at 800× g for 10 min. The light absorption of
the supernatant was then read at 405 nm with a microplate reader (Multiskan Ascent,
Labsystems SA, Les Ulis, France). The amount of serum able to lyse 50% of sensitized
erythrocytes (CH50) was calculated for each sample using the formula:

consumption (%) =

(
CH50sample − CH50control

)
× 100

CH50control

To compare the different modified LNC, the complement consumption was plotted as
a function of the surface area. The surface area was calculated using the formula described
previously [41].

2.8. Statistical Analysis

For the statistical analysis, the results were analyzed using a Kruskal–Wallis test
followed by a Dunn’s post hoc test with a Hochberg correction using the R software (R
Foundation, Austria) with the PMCR package [42]. The level of significance was set at
p < 0.05.

3. Results
3.1. Polymer Post-Insertion and Switch Charge Capacities of Modified LNC

The synthesis of a series of hydrophilic NVP and Vim-based copolymers (data not
shown) bearing a hydrophobic aliphatic chain in α-position (C18H37-P(NVP-co-Vim)) has
been performed with different compositions to potentially modulate the surface charge of
the LNC (Table 1, entries P2–P5). For the sake of comparison, we also prepared a PNVP
homopolymer (Table 1, entry P1). After post-insertion of these polymers at the LNC surface,
the size and zeta potential of the modified LNC were analyzed at different pH as reported
in Figure 2. For all conditions (different pH and post-inserted polymers), the PDI observed
was below 0.05 (Figure 2C).

Post-inserted LNC with polymers P3, P4 and P5 showed significant differences in
their mean hydrodynamic diameters, compared to unmodified LNC (BLK) at the same pH
(p value was below 0.05 at pH 7.4 for LNC post-P3 and below 0.01 at another pH for LNC
post-P4 and P5) (Figure 2A). The diameter of this unmodified LNC was around 52 nm,
while all post-inserted objects showed a higher mean hydrodynamic diameter (from 55 to
62 nm). Moreover, this post-insertion was stable over 4 weeks, and no impact of the pH
was observed in terms of size and zeta potential over the studied period (Figure S1). Under
neutral conditions (pH 7.4), the zeta potential of the modified LNC was nearly neutral
(Figure 2B). Surface charges of LNC modified with pH-responsive polymers were directly
linked to the pH: decreased pH led to an increased surface charge of pH-responsive LNC
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up to 17 mV for LNC post-P5 (pH 6). This zeta potential change was confirmed for all LNC
modified with copolymers (P2, P3, P4 and P5). Compared to the pH 7.4 condition, they all
showed a significant difference (p < 0.05) at pH 6.5 and pH 6 with an increase of around
12 mV between pH 7.4 and 6.

3.2. Buffering Effect of pH-Responsive LNC

The ability of LNC to escape endosomes efficiently was evaluated by studying the
buffering capacities of each polymer and modified LNC through acid–base titration, as
reported in Figure 3A,B. Buffering capacity of the polymers and modified LNC was de-
termined by establishing the amount of HCl needed to go from pH 7.4 to 5.1. BLK LNC,
LNC post-P1 and polymer P1 solution reached pH 3 very quickly. For pH-responsive
LNC (post-inserted with P2, P3, P4, P5) and corresponding polymers, the addition of
HCl solution decreased the pH value progressively. Moreover, the slope of the curves
changed, with a slow decrease in the range of pH 4.5~7. Differences were observed between
pH-responsive polymers: for example, polymer P5 showed a higher buffering capacity
compared to polymer P4. This difference was directly correlated to the amount of Vim
units in the polymers.

3.3. Stealth Properties of LNC

Complement consumption for each LNC was studied, and it increased with LNC
concentration (Figure 4). BLK LNC did not present any activation, whatever the surface
studied, as previously observed [43]. LNC post-inserted with polymers P1 to P4 showed a
similar evolution, slightly higher than that of BLK LNC. For the same contact surface (for
example, at 1740 cm2/mL), LNC post-P5 presented a higher consumption of CH50 units:
44% compared to 20~25% for all other post-inserted LNC and 11% for BLK LNC.

Figure 2. Physicochemical characterization of blank LNC (“BLK”) and LNC post-inserted by C18H37-PNVP49 (“P1”), C18H37-
P(NVP15-co-Vim5) (“P2”), C18H37-P(NVP22-co-Vim8) (“P3”), C18H37-P(NVP35-co-Vim10) (“P4”) and C18H37-P(NVP21-co-
Vim15) (“P5”): hydrodynamic diameter (nm) (A), zeta potential (mV) (B) and polydispersity index (PDI) (C) at different pH:
7.4, 6.8 and 6.5. Results (n = 4) are expressed as mean measure ± standard deviation. Statistical analysis was performed
with Kruskal–Wallis, post hoc Dunn’s, correction Hochberg. For statistical analysis of size, BLK LNC was used as reference,
*** p < 0.001, ** p < 0.01, * p < 0.05.



Cancers 2021, 13, 2028 8 of 17

Figure 3. Endosome buffering effect. Acid–base titration of (A) polymer solution at a concentration
of 0.1 mM and (B) LNC post inserted. Blank LNC (“BLK LNC”) and modified LNC with polymer
C18H37-PNVP49 (“P1”), C18H37-P(NVP15-co-Vim5) (“P2”), C18H37-P(NVP22-co-Vim8) (“P3”), C18H37-
P(NVP35-co-Vim10) (“P4”) and C18H37-P(NVP21-co-Vim15) (“P5”).

Figure 4. Complement consumption at 37 ◦C of blank LNC (“BLK LNC”) (red circle) and LNC post
inserted by C18H37-PNVP49 (“LNC post-P1”), C18H37-P(NVP15-co-Vim5) (“LNC post-P2”), C18H37-
P(NVP22-co-Vim8) (“LNC post-P3”), C18H37-P(NVP35-co-Vim10) (“LNC post-P4”) and C18H37-
P(NVP21-co-Vim15) (“LNC post-P5”).

3.4. Impact of Polymers and Modified LNC on Cell Viability

Due to the heterogeneity between human and murine cell lines, the impact of polymers
on cell viability was evaluated on B16F10, a murine melanoma cell line, and on SK-Mel 28
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cells, a human melanoma cell line. The impact of modified LNC is reported in Figure 5A,C
and the viability of cells treated by polymers alone are reported in Figure 5B,D. No cell
viability reduction was observed for cells treated with polymers (Figure 5B,D). Compared
to blank LNC, post-inserted LNC did not show any significant difference in cell viability
for both cell lines. No significant impact on cell viability was observed at the different
studied concentrations excepted at 1000 µg/mL: viability was reduced to 80% for B16F10
(Figure 5A) and 60% for SK-Mel 28 (Figure 5C).

Figure 5. Cell viability of B16F10 and SK-Mel 28 cell lines treated with polymers and modified
LNC. Cells were incubated with blank LNC (“BLK”) and LNC post-inserted by C18H37-PNVP49

(“P1”), C18H37-P(NVP15-co-Vim5) (“P2”), C18H37-P(NVP22-co-Vim8) (“P3”), C18H37-P(NVP35-co-
Vim10) (“P4”) and C18H37-P(NVP21-co-Vim15) (“P5”) (concentration range: 10–1000 µg/mL) for
24 h: B16F10 (A), SK-Mel 28 (C). In addition, to evaluate the impact of polymers alone, cells were
treated with polymers at concentrations corresponding to the amount of post-inserted polymers into
LNC (0.025 µM–2.5 µM): B16F10 (B), SK-Mel 28 (D). Cell viability was then measured by resazurin
reduction assay. Results (n = 6) are expressed as the means ± SD.

3.5. Cell Uptake of pH-Responsive LNC
3.5.1. pH-Dependent Cellular Uptake

Compared with BLK LNC, LNC post-P5 showed a significant increase of internaliza-
tion at pH 6 and 6.5 for B16F10 cells (Figure 6A) and at pH 6, 6.5, 6.8 for SK-Mel 28 cells
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(Figure 6B). Furthermore, media acidification showed a negative impact on internalization
in both cell lines: at pH 6, a significant reduction (compared to pH 7.4) was observed for
BLK LNC and post-inserted LNC with P1, P2, P3 and P4 polymers (p < 0.01). Interestingly,
this reduction was not observed with the LNC post-P5 (p > 0.05). Figure 6C shows repre-
sentative images of cells after treatment with BLK LNC and LNC post-P5 in various pH
conditions, and cells treated with other modified LNC are reported in Figure S2. A decrease
of fluorescence linked to a decrease of pH was observed for cells treated with BLK LNC.
On the contrary, cells treated with LNC post-P5 showed an increased fluorescence at pH 6.5
and 6. Orthogonal sections showed nanoparticles’ presence in the cytoplasm, characterized
by green fluorescence: nanoparticles in the cell compartment indicated passage through the
cell membrane. Therefore, due to this impressive pH-responsive behavior of LNC post-P5
in terms of cell uptake, this modified LNC has been kept and studied more deeply for the
rest of this work.

Figure 6. LNC internalization in B16F10 (A) and in SK-Mel 28 cells (B,C) assessed by FACS analysis (A,B) and by confocal
imaging (C). Cells were treated in various pH media (7.4, 6.8, 6.5, 6) with 250 µg/mL of fluorescent LNC for 2 h. For cell
uptake assessed by FACS analysis (A,B), data are expressed as a boxplot. Each box represents 50% of the distribution
(interquartile range: 25th percentile–75th percentile). Median is marked as a black line in each box. Extending lines from
boxes show minimum and maximum values. Outlier data are plot as black circles. Statistical analysis was performed on
results (n = 4) with Kruskal–Wallis, post hoc Dunn’s, correction Hochberg, blank LNC (“BLK LNC”) was used as control,
** p < 0.01, * p < 0.05. For confocal imaging (C) of SK-Mel28 cells, after 2 h incubation with blank LNC (“BLK LNC”) and
LNC post inserted by C18H37-P(NVP21-co-Vim15) (“LNC post-P5”), at pH 7.4, 6.8, 6.5 and 6. The cell nucleus was stained
with DAPI (in blue), and the green signal comes from the fluorescent LNC. Scale bars correspond to 10 µm. The objective
used: 63x/NA 1.40 oil with 2x numerical zoom. Orthogonal sections are localized by the dotted lines.
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3.5.2. Internalization Pathways

Taking into consideration the efficient internalization of LNC post-P5 in the cytoplasm
under acid conditions, the cellular uptake mechanism of these modified objects was inves-
tigated at pH 6. Control condition received only LNC post-P5, while other conditions were
pretreated with different uptake inhibitors. DAM inhibits the Na+/H+ exchanger involved
in macropinocytosis [44]. MβC disturbs the formation of both caveolin-coated endocytic
vesicles and clathrin-coated pits [38,45]. This inhibitor is also symptomatic of macropinocy-
tosis, as reported previously [46]. PMA inhibits caveolin-dependent endocytosis [39],
and chlorpromazine inhibits clathrin-dependent endocytosis by blocking the formation of
membrane invaginations [47]. Additionally, to discriminate active from passive pathways,
LNC post-P5 treated cells were incubated at 4 ◦C. Control LNC uptake was considered as
100% of internalization. Results are reported in Figure 7A for B16F10 and Figure 7B for
SK-Mel 28 cells. Both cell lines showed a significant reduction of internalization at 4 ◦C
(p < 0.001). Cellular uptake of LNC post-P5 in B16F10 was significantly decreased (p < 0.05)
by approximately 50% after pretreatments with DAM and MβC. For SK-Mel 28, cellular
uptake was significantly reduced (p < 0.05) by 60% and 80% after pretreatments with DAM
and PMA, respectively. At 4 ◦C, energy-dependent pathways, such as endocytosis and
pinocytosis are blocked. Inhibition of cell uptake observed at this temperature highlighted
active internalization of LNC post-P5 in these melanoma cell lines, rather than diffusion
across the cell membrane.

Figure 7. Internalization pathways of pH-sensitive LNC in B16F10 (A) and SK-Mel 28 (B) at pH 6.
Cells were pretreated for 30 min with 1 mmol/L 5-(N,N-dimethyl)amiloride hydrochloride (DAM),
10 mg/mL methyl-β-cyclodextrin (MβC), 50 µmol/L chlorpromazine (chlorpr.) and 10 µg/mL
phorbol 12 myristate (PMA). Then, they were incubated with 250 µg/mL of LNC post inserted by
C18H37-P(NVP21-co-Vim15) (“LNC post-P5”), fluorescent LNC for 2 h in pH 6 medium, at 37 ◦C.
Control: untreated with inhibitors. 4 ◦C: untreated with inhibitors and incubated with fluorescent
LNC for 2 h, at 4 ◦C. The percentage of fluorescent cells was determined comparatively with control.
Each box represents 50% of the distribution (interquartile range: 25th percentile–75th percentile).
Median is marked as a black line in each box. Extending lines from boxes show minimum and
maximum values. Outlier data are plot as black circles. Results (n = 5) were analyzed with a
Kruskal–Wallis test, post hoc Dunn’s, correction Hochberg. *** p < 0.001, ** p < 0.01, * p < 0.05.
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4. Discussion

Interestingly, this study allowed developing new nanovectors sensitive to the varia-
tions in pH described at the tumor level. This project opens up interesting prospects for
improving the targeting of metastatic melanoma cells resistant to various therapies.

Surface modification of lipid nanocapsules is usually done by post-insertion of lipid
polymers composed of double carbon chains, for example, 1,2-dimyristoyl-sn-glycero-
3-phosphoethanolamine (DMPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
(DSPE) [48,49]. In this study, the surface modification of lipid nanocapsules (BLK LNC),
already composed of 15 units of PEG at the surface (Kolliphor® HS 15) (see blue corona
on graphical abstract LNC representation), was realized with the C18H37-P(NVP-co-Vim)
copolymers reported in Table 1 and used as post-insertion agents thanks to a C18 mono
carbon chain. The post-insertion of polymers at the LNC surface was confirmed by an
increase in their hydrodynamic diameter and a change in their surface charge. Surface
charge is a key parameter for stability, circulation time and cellular uptake. As expected,
the zeta potential of the pH-responsive LNC was driven by Vim protonation and increased
according to the Vim content in the polymers (BLK LNC, LNC post-P1 < LNC post-P2 <
LNC post-P3 < LNC post-P4 < LNC post-P5). With a pKa value of our polymers around 6,
following literature [50,51], and an extracellular tumor pH of 6.5 or below [52], Vim groups
are protonated in such an acidic environment, leading to the observed increase of LNC
zeta potential.

Furthermore, the protonation of Vim groups in an acidic environment can bring
buffering property to LNC. The buffering capacity of pH-responsive polymers plays a
key role in preventing degradation of encapsulated therapeutics, such as nucleic acid, for
example, by escaping the endosome through the “proton sponge effect” [53]. Some studies
reported P(Vim) as a polycationic polymer able to efficiently deliver genetic material thanks
to this buffering property [54,55]. Moreover, siRNA or ferrocifen loaded LNC developed in
previous works have already shown a relevant therapeutic efficacy on melanoma tumor
progression [56,57]: surface modification of these nanocarriers with C18H37-P(NVP-co-
Vim) copolymers could, therefore, allow them to escape the endosome and would be
suitable for this delivery application.

Once intravenously injected, a possible neutralization of our LNC by the immune sys-
tem of the receiving host or by natural killer-associated microvesicles could occur. The accel-
erated blood clearance (ABC) phenomenon is one of the pharmacokinetic consequences of
this immune reaction, as observed with pegylated nanocarriers. This phenomenon was not
observed with PNVP that did not potentiate any IgM production after a second intravenous
injection [58,59], making PNVP a promising alternative to PEG. In this study, to predict the
behavior of the modified LNC, their ability to escape complement protein opsonization
was evaluated by CH50 assay as it can mediate interaction with macrophages, resulting in
possible elimination of the nanocarriers from the bloodstream. This method determines
the residual complement activity after incubation with nanoparticles, a high complement
consumption proving its activation. The difference in complement consumption observed
between BLK LNC, and post-inserted LNC can be first explained by the smaller size of
BLK LNC than post-inserted LNC. Smaller objects exhibit increased surface radius, which
limits protein opsonization onto the surface of nanocarriers. Other studies have shown
that bigger LNC led to an increase in complement activation [43]. Compared to all other
modified LNC, LNC post-P5 appeared to induce more complement activation. Interest-
ingly, LNC post-P5 has the same hydrodynamic diameter as LNC post-P4. However, at the
same pH, these nanoobjects showed different zeta potential. In this study, Veronal-buffered
saline at pH 7.4 was used. At such pH, the zeta potential of LNC post-P5 was slightly
positive (~+2 mV), and the other modified LNC were neutral and negatively charged. It
has been shown that nanoparticles with positively charged surfaces induced complement
activation [60]. Thus, the slight increase in the zeta potential of LNC post-P5 could explain
the reduced protection against complement activation compared to the other post-inserted
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LNC. However, compared with the literature [43], complement activation of LNC post-P5
remains weak and should, therefore, not be considered as a complement activator.

The impact on cell viability of LNC decorated with our polymers was evaluated on
two cell lines and did not show any decrease in cell viability. These findings could be
explained by the maximum molar mass of Vim used in the copolymers corresponding to
P5 (1400 g·mol−1) (Table 1). This molar mass is much lower than what was reported by Ve-
lasco et al., who found an IC50 of 0.57 mg/mL for fibroblasts treated with 200,000 g·mol−1

PVim [50]. Furthermore, our data confirm previous studies that suggest that PNVP nanopar-
ticles were nontoxic and well-tolerated by animals [61]. Cellular uptake of LNC by human
SK-Mel 28 and murine B16F10 melanoma cell lines was studied in various pH media
values to investigate the effect on cell internalization by increasing the charged surface.
The reduced internalization caused by media acidification confirmed previous data from
Gündel et al., who observed a reduced internalization of uncharged dextran polymer in
AT1 rat prostate cells under acidic conditions [62]. These results suggest that cell uptake of
nanocarriers can be affected by the extracellular pH of tumors and lead to a reduction of
their therapeutic effect. Interestingly, LNC post-P5 did not show this reduction of inter-
nalization caused by pH. On the contrary, the increase of zeta potential of LNC post-P5,
caused by the acidic environment, improved their cellular uptake. As expected, when
the pH decreased, the increase of LNC post-P5 surface charge contributed to enhancing
the affinity between the negatively charged cell membrane and the positively charged
LNC. These data confirm the interest of these nanovectors in targeting tumor cells, and
particularly those located in the tumor where the pH values are reduced.

These results were confirmed by confocal microscopy. Due to the highest pH-responsive
behavior of LNC post-P5 compared to other post inserted LNC, we investigated the inter-
nalization mechanism of such modified LNC. Interestingly, B16F10 and SK-Mel 28 showed
different mechanism pathways. The B16F10 cell line showed a reduction of cell uptake with
DAM and MβC, suggesting that LNC post-P5 used macropinocytosis, whereas cell uptake
of LNC post-P5 by SK-Mel 28 occurred through a balance between macropinocytosis and
caveolin-dependent endocytosis. Cellular uptake pathways can directly impact the fate
of nanocarriers in the cytoplasm. Compared to macropinocytosis and clathrin-dependent
endocytosis, caveolae-mediated endocytosis is a preferred pathway as the caveosome cellu-
lar compartment is not subject to pH and enzyme degradation as observed in endosomes
and lysosomes. Cell uptake pathways can differ with the cell line. The “proton sponge
effect” of these modified LNC should, therefore, provide the capacity to escape endosomal
degradation if cellular uptake occurs through macropinocytosis and clathrin-dependent
endocytosis pathways.

The MDR phenotype on the membrane level is characterized by three main features;
reduction of the transmembrane diffusion of the hydrophobic drugs, efflux of the mem-
brane entrapped drug molecules by the ABC transporters and impairment of the endocytic
function. Our data suggest that, due to our formulation strategy, pH-sensitive nanovectors
would be able to reverse MDR phenotype to improve cancer treatment. Furthermore, as
previously studied by our group [57,63–65], different post-insertion strategies applied to
LNC offer prospects for obtaining conclusive results about the effective ability of these
nanoparticles to be loaded with the substances of interest, such as DNA, RNA or other
drugs as ferrocifens.

5. Conclusions

The surface coating of nanomedicines by hydrophilic polymers is a common modifica-
tion used to provide prolonged blood residence. With the increased presence of anti-PEG
antibodies in the general human population [66], alternatives to PEG should be considered
as a necessity to develop new classes of stealth nanocarriers. In this study, an innovative
hydrophilic and pH-responsive copolymer bearing a lipophilic chain-end has been used
as an alternative to DSPE-PEG for decoration of LNC, providing them a stealth behavior
in physiological conditions and responsiveness to the acidic tumor environment. These
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modified LNC exhibited good stability over several weeks. In physiological conditions
(pH 7.4), post-inserted LNC showed neutral zeta potential, whereas, under acidic condi-
tions, the zeta potential increased, depending on the polymer composition and on the
pH. LNC modified with polymer P5 (C18H37-P(NVP21-co-Vim15) showed impressively
in vitro pH-responsive properties, characterized by an enhanced cellular uptake under
acidic conditions, making them very promising carriers to target melanoma whose extra-
cellular acidity has been correlated to highly metastatic and invasive tumors [67,68]. In
conclusion, surface modification by polymer P5 would lead to an increased biological effect
by not only protecting the nanocarrier from opsonization by complement activation but
also by a potential increased cellular uptake in the acidic tumor microenvironment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092028/s1, Figure S1: Stability of blank LNC (“BLK”) and modified LNC with poly-
mer C18H37-PNVP49 (“P1”), C18H37-P(NVP15-co-Vim5) (“P2”), C18H37-P(NVP22-co-Vim8) (“P3”),
C18H37-P(NVP35-co-Vim10) (“P4”) and C18H37-P(NVP21-co-Vim15) (“P5”). Stability was assessed by
measuring the hydrodynamic diameter (nm) at pH 7.4 (A) and 6 (B) and zeta potential (mV) at pH 7.4
(C) and 6 (D) every week for 4 weeks. Results (n = 3) are expressed as mean measure ± standard
deviation * p < 0.05. Figure S2: Confocal imaging of SK-Mel 28 cells after 2 h of incubation blank
LNC (“BLK”) and LNC post-inserted by C18H37-PNVP49 (“P1”), C18H37-P(NVP15-co-Vim5) (“P2”),
C18H37-P(NVP22-co-Vim8) (“P3”), C18H37-P(NVP35-co-Vim10) (“P4”) and C18H37-P(NVP21-co-Vim15)
(“P5”) at pH 7.4, 6.8, 6.5 and 6. The cell nucleus was stained with DAPI (in blue), the green signal
comes from the fluorescent LNC. The objective used: 63x/NA 1.40 oil with 2x numerical zoom, white
lines represent two orthogonal sections used to analyze nanoparticle uptake. Scale bars correspond
to 10 µm.
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