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Web technology has transformed our lives, and has led to a paradigm shift in the

computational sciences. As the neuroimaging informatics research community amasses

large datasets to answer complex neuroscience questions, we find that the web

is the best medium to facilitate novel insights by way of improved collaboration

and communication. Here, we review the landscape of web technologies used in

neuroimaging research, and discuss future applications, areas for improvement, and the

limitations of using web technology in research. Fully incorporating web technology in

our research lifecycle requires not only technical skill, but a widespread culture change;

a shift from the small, focused “wet lab” to a multidisciplinary and largely collaborative

“web lab.”
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1. INTRODUCTION

The internet is ubiquitous and infiltrating every aspect of our lives by way of the web browser.
Desktops, tablets, and cell phones have web browsers, but also televisions, game consoles,
wristwatches, cars, glasses, and even refrigerators can effortlessly display all the information that
resides on the internet. Information that, in theory, includes nearly all scientific knowledge.

The web browser has transformed our scientific practices, by giving us access to an almost
infinite information resource. It provides a flexible and immediate platform for publishing research
products. It gives us access to powerful computing platforms and databases. It enables us to
collect large amounts of data from many people (e.g., citizen science). It is absolutely essential for
communication and scientific collaboration. And above all, its main strength is its transportability;
science, particularly in computational fields such as neuroimaging, can be performed anywhere
(given a speedy internet connection).

Scientific collaboration is becoming increasingly important as computing technology enables
us to rapidly collect and analyze data. The result of this data deluge is that we have an increased
need for interdisciplinary, collaborative research. A combination of scientists with domain
specific knowledge and those with a intimate grasp of computer science, data wrangling, and
statistics/machine learning are needed to fully capitalize on the potential of large datasets.

We have witnessed enormous leaps of scientific knowledge that were a direct result of large
scale collaborations, like the Human Genome Project, the Large Hadron Collider, ITER (research
in nuclear fusion), and LIGO (to measure gravitational waves) to name a few. And it was
primarily because of a large scientific collaboration at CERN where one of the most transformative
technologies of the late 21st century was born: the World Wide Web.
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Around the same time as the invention of the web came
the invention of functional magnetic resonance imaging (Ogawa
et al., 1990) in 1990, which revolutionized neuroscience research
on brain-behavior relationships. Enabled with the ability to image
brain function, neuroimaging researchers have been collecting
vast amounts of data to answer more complex questions
about the relationship between brain structure and function.
And as a result, neuroimaging researchers are collecting large
amounts of data, and encountering the same roadblocks and
bottlenecks that come with any “big data” science. Here, we
propose that by more deeply incorporating web technology
into the lifecycle of neuroimaging research, we can not only
accelerate neuroscience discoveries but also develop and test
novel neuroscience questions. In the following sections, we
discuss the paradigm shift that web technology brings to the
scientific research lifecycle in terms of two main principles:
collaboration and communication.

In addition, the use of web technology should have an impact
on today’s reproducibility crisis (Collins and Tabak, 2014). It
has become clear in several fields of the life sciences that our
current research practices are not best adapted to the production
of robust and replicable results. Web technologies with their
capacity to scale are key for the emergence of solutions to
this crisis.

2. COLLABORATION

2.1. Data Sharing and the Web
One may remember the first attempts at data sharing in
functional neuroimaging, the fMRI data center (Van Horn and
Gazzaniga, 2013), and the difficulty of getting and reusing data
sent over on compact discs or DVDs. Creating a culture of data
sharing has many advantages: it can lead to more rapid scientific
discovery for basic science and clinical research, can improve
data quality, reduce costs, and improve reproducibility, and is in
some cases a requirementmade by funding agencies (Poline et al.,
2012; Poldrack and Gorgolewski, 2014; Madan, 2017a). Some
researchers argue that it is an ethical imperative (Brakewood and
Poldrack, 2013) to maximize a subject’s contributions, especially
in clinical trials (Bauchner et al., 2016). But just because the data
is shared, it doesn’t mean the data can be found.

First and -possibly- foremost, browsers are the doors to the
four principles of FAIR (Findable, Accessible, Interoperable,
and Reusable), a set of guidelines developed by stakeholders in
academia, industry, and funding agencies to promote data reuse
(Wilkinson et al., 2016). We review them briefly here in the
context of the web technology:

1. Findable: In order for scientists to discover data that may be
of use for their research questions, datasets need to be indexed
within a central database server, with appropriate metadata
such that search engine algorithms can efficiently perform
queries, and most importantly, with a browser-based user
interface for researchers to submit queries and display results.

2. Accessible: the standard HTTP protocol used by browsers
and web servers is open, free, and can provide authentication
if needed.

3. Interoperable: all browsers speak the same language,
regardless of their base operating system. Data description
should adopt standards and convention to enable reuse
across datasets, for instance through linked data technologies
(Berners-Lee, 2009).

4. Reusability requires critically a community effort, to define
relevant metadata and to standardize metadata reporting. This
can be streamlined with web interfaces.

A key feature of the FAIR principles is that when possible they
should be applicable not only to humans, but also to machines.
For instance, datasets should be findable by “bots” by being
tagged with the appropriate machine-readable metadata.

Neuroimaging groups have developed web portals that make
it easy for other researchers to query, explore, contribute, and
share both raw data and derived data. The COINS web platform
(Scott et al., 2011) provides data management tools, an intuitive
user interface, and was built with an emphasis for PHI security
and multisite collaborations. The LORIS platform (Das et al.,
2012) includes a web portal for data management and data
quality control with neuroimaging viewers. The LONI Image
Data Archive (LONI-IDA) is a long-term, centralized, HIPAA-
compliant relational database archive for researchers to upload
and share their data (Van Horn and Toga, 2009); as of this
writing, the LONI-IDA has provided over 50 million downloads
and over 1 million uploads to the archive. Web application
such as these reduce the technical overhead to find, share, and
aggregate data, and should ideally become standard practice for
all large data collection efforts in neuroimaging.

The accessibility (FAIR-ness) of derived data is key to
meta- and mega- analyses. A prominent example is the
ENIGMA project (Thompson et al., 2014), which disseminated
standardized analysis scripts to be able to co-analyze (e.g., a
mega-analysis) a set of individual center’s results, by sharing
derived data rather than raw data. A mega-analysis strategy is
especially optimal in cases where raw data sharing is not feasible.
For task and resting state fMRI, the NeuroVault (Gorgolewski
et al., 2015) web application enables scientists to upload fMRI
statistical maps (e.g., derived data) in the standardized MNI
space, and link to their publications; this platform includes both
volume and surface-based visualization, and can enable more
accurate meta- and mega-analyses. For diffusion imaging, the
Automated Fiber Quantification (AFQ) package (Yeatman et al.,
2012) has an associated web-viewer (Yeatman et al., 2018) and
vault1 to easily share derived AFQ data in a standardized format.
Building software that returns derived data in standardized
formats and lowers barriers to sharing these derivatives with
the neuroimaging community will facilitate meta- and mega-
analyses in future years.

In the past, sharing data was a technical challenge (Van Horn
and Gazzaniga, 2013); now, it is easier to share data even if
the data are not part of a large consortium. The OpenNeuro
web application enables researchers to upload and share their
neuroimaging data as long as the data follow a community-
developed standard to organize and describe neuroimaging

1http://afqvault.org

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2019 | Volume 13 | Article 3

http://afqvault.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Keshavan and Poline Wet Lab to Web Lab

datasets called the Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016). Adopting standards for how
data are stored enables sharing by reducing the overhead
needed to curate heterogeneous datasets, and therefore
promotes interoperability and reusability of data (Tenopir et al.,
2011). Examples of standardized data formats outside of the
neuroimaging field include the Open Geospatial Consortium
(Castronova et al., 2013) and the Ecological Metadata
Language (Fegraus et al., 2005).

In general, the FAIR principles do not stipulate how data
sharing should be incentivized. The adoption of FAIR principles
requires financial support as well as community adoption. While
the OpenNeuro project has been funded by the NIH2, the BIDS
standard that it relies upon is, importantly, starting to be adopted
by a wide community. The standard has recently been endorsed
by the International Neuroinformatics Coordinating Facility
(INCF)3, and is recommended by several journals. Funding
agencies (e.g., theWellcome Trust4) are increasingly asking that a
wider set of research products are shared with the community to
increase reuse andmaximize the funding impact on research. The
set of tools that facilitate the conversion of small datasets to BIDS
format is also growing (see the BIDS starter kit5), which may
mitigate the need for long-term funding. Concurrently, training
material to educate researchers to adopt the BIDS format is being
actively developed by ReproNim (e.g the “FAIR data” module6).

In the genomic community, the Bermuda principles
(Contreras, 2011) led to the establishment of few large
public databases, but the brain imaging community has
been less unified. This led to a variety of large or small
initiatives, such as ADNI (Mueller et al., 2005), BIRN (Keator
et al., 2008), BrainMap (Laird et al., 2011), INDI (Mennes
et al., 2013), OpenfMRI (Poldrack et al., 2013), OMEGA
(Niso et al., 2016), OpenNeuro (Gorgolewski et al., 2017a),
Schizconnect portal(Wang et al., 2016), Healthy Brain
Network (Alexander et al., 2017) to name a few [for more,
see (Eickhoff et al., 2016)], and more recently the funder-based
National Data Archive. Specialized tools to discover these
resources and their content are improving fast [see for instance
Scicrunch (Grethe et al., 2014)].

Efforts have begun in the neuroimaging community to create
centralized resources to find openly released neuroimaging
datasets. A very simple yet valuable collection was collaboratively
compiled on the social coding platform Github7. OpenMorph,8

(Madan et al., 2018), is a curated list of open access datasets
that can be used to study brain morphology. It includes sample
sizes, types of MRI modalities, the associated publications and a
link to each project’s web portal to download the data. Anyone

2https://www.braininitiative.nih.gov/funded-awards/openneuro-open-archive-
analysis-and-sharing-brain-initiative-data
3https://www.incf.org/node/295
4https://wellcome.ac.uk/funding/guidance/guidelines-good-research-practice
5https://github.com/bids-standard/bids-starter-kit
6http://www.reproducibleimaging.org/module-FAIR-data/00-Introduction-to-
Module/
7https://www.github.com
8https://github.com/cmadan/openmorph

can contribute to this collection by creating a GitHub9 account
and editing the document. The DataLad (Halchenko et al.,
2018) project has developed a crawler to index the data from
various scientific data portals for a unified interface from which
to download these datasets from the command line interface
on their computers. DataLad also hosts a web application to
interactively explore the various datasets that have been indexed.
We hope to see more aggregation of open neuroimaging datasets
in the future, with accessible web interfaces to query and explore
all our resources.

More generally, platforms like Zenodo (https://zenodo.org),
Dryad https://datadryad.org/, and the Open Science Framework
https://osf.io give researchers generous storage for their datasets
and assign digital object identifiers (DOIs) to datasets. This
means that researchers who primarily collect data can get credit
via citations, potentially alleviating concerns about “research
parasites” (Longo and Drazen, 2016) that prevent some from
openly sharing data. Our scientific culture is in part a roadblock
to data sharing (Tenopir et al., 2011). Ideally, moving away from
placing importance on only the first and last authors during
grant and career reviews may incentivize data sharing and large
collaborations. It is clear that technical challenges are not the
only barrier to data sharing; we discuss the social and ethical
challenges with data sharing in the “pitfalls” section. For an
overview of the resources on data sharing, data analysis, and data
collection, see Figure 1.

2.2. Collaborative Work and the Web
2.2.1. Collaborative Data Analysis Through the Web
Data, albeit the foundation of most work, is only the first
element of a research project. The reusability of other research
products such as software, libraries, scripts, and pipelines or
workflows, has traditionally been poor, with the exception of a
few neuroimaging software packages [e.g., SPM (Friston et al.,
1994), FSL (Smith et al., 2004), and Freesurfer (Fischl, 2012)].
With a greater ease of dissemination and search of these objects,
research is entering a phase of accelerated efficiency, providing
building blocks for fast construction of a new analysis. Todays
researcher in neuroimaging is able to search for and download
an entire software environment in a Docker10 container and
launch complex pre-processings and analyses. Neurodocker
(Kaczmarzyk et al., 2018) makes it possible in a single command
line to create an environment with all necessary software specific
version for an analysis. Reprozip (Chirigati et al., 2016) makes
it possible to trace all the dependencies of a single command
and create reusable packages that rerun the exact command,
even on a different system. fMRIprep (Esteban et al., 2019) and
MRIQC (Esteban et al., 2017) provide environments for fMRI
preprocessing or MRI quality control. Work that may have taken
a post-doc or a graduate student a few months can take now a
few days if not a few hours. This order of magnitude acceleration
factor has been made possible because (1) these projects are
often highly collaborative and often will have inputs from tens

9https://www.github.com
10https://docker.com
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FIGURE 1 | Overview of discussed collaborative scientific web tools. General resources for data sharing include. (1) Zenodo https://zenodo.org; (2) Dryad: https://

datadryad.org/; (3) OSF: https://osf.io; Neuroimaging specific data sharing resources include (4) COINS (Scott et al., 2011) (5) LORIS (Das et al., 2012) (6) LONI-IDA

(Van Horn and Toga, 2009) (7) NeuroVault (Gorgolewski et al., 2015) For general data analysis: (8) Project Jupyter (Ragan-Kelley et al., 2014; Kluyver et al., 2016) To

access cloud resources with Jupyter notebooks, try: (9) Binder https://mybinder.org/; (10) Colaboratory https://colab.research.google.com/notebook; (11) Azure

Notebooks https://notebooks.azure.com; For neuroimaging specific cloud computing, see (12) OpenNeuro (Gorgolewski et al., 2017a), https://openneuro.org; (13)

CBRAIN (Sherif et al., 2014) (14) BrainLife (Hayashi and Pestilli, 2017), https://brainlife.io; (15) BrainCode (Vaccarino et al., 2018), https://www.braincode.ca/; For data

analysis with citizen science, see (16) Zooniverse (Simpson et al., 2014), https://zooniverse.org; and for neuroimaging-specific projects, see: (17) Brainspell (Badhwar

et al., 2016), https://brainspell.org; (18) BrainBox (Heuer et al., 2016), http://brainbox.pasteur.fr; (19) Mindcontrol (Keshavan et al., 2017a), https://mindcontrol-hbn.

herokuapp.com; (20) braindr (Keshavan et al., 2018), https://braindr.us; For behavioral experiments, web services such as (21) psiTurk (Gureckis et al., 2016), https://

psiturk.org; (22) expfactory integrate with Amazon mTurk. (Sochat et al., 2016), https://expfactory.org.

of individuals leveraging social coding platforms (e.g., Github),
and (2) the communication of the technologies and repositories
through web based platforms.

Cloud computing provides unlimited, scalable, computing
resources (provided enough financial resources), but can be
difficult to interface with because it requires specialized
expertise. Through web interfaces, cloud computing can be
made accessible such that domain specific researchers can
reap its full benefits. OpenNeuro (Gorgolewski et al., 2017a),
currently hosted on Amazon Web Services, enables researchers
to upload BIDS-compatible datasets and then run analyses
via BIDS-Apps (Gorgolewski et al., 2017b) on the AWS
cloud for free, given that the data is publicly shared after a
certain grace period. The Canadian Brain Imaging Research
Platform (CBRAIN) web platform (Sherif et al., 2014) can
bring together heterogeneous data sources and compute grids
into one, secure web interface. The BrainLife11 (Hayashi and
Pestilli, 2017) web application is in development to provide

11https://brainlife.io

researchers with an intuitive interface to cloud computing
resources, enable data sharing, and the publishing of results
with clear provenance. The Brain-Code (Vaccarino et al., 2018)12

web portal and data management/analysis platform aims to
foster collaboration and data discovery across various clinical
brain disorders.

The Jupyter project (Ragan-Kelley et al., 2014; Kluyver
et al., 2016) has been actively developing a web-based scientific
notebook interface for various programming languages (Julia,
Python, R, and more). Researchers can interact with various
programming kernels on a web interface that can be deployed
locally, or on the cloud. The resulting notebook can be shared
as a website, with not only code displayed but also the
resulting figures, and associated documentation that is formatted
in Markdown, which can also render equations. The Jupyter
notebook comes with the ability to write interactive widgets, such
as javascript-based sliders that let users explore various parameter
spaces of the functions they write. Interactive plotting libraries,

12https://www.braincode.ca/
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like Plotly13 can be integrated within the Jupyter notebook,
enabling researchers to create rich, interactive data visualizations.
The Binder14 project, as of this writing, provides a free service
to host instances of Jupyter notebooks on the cloud. Azure
notebooks15 and Google Colaboratory16 also provide similar
notebook hosting services. Currently, Colaboratory provides
access to GPUs instances, which are incredibly useful for
deep learning projects. Services that enable easy deployment
of notebooks and their associated computing environments
will vastly improve the transportability of research objects;
we therefore encourage neuroinformatics researchers to take
advantage of these web services.

2.2.2. Collaborative Writing on the Web
In the past, collaboratively preparing manuscripts might only
have been possible with those in a scientist’s immediate
vicinity. With the web browser, email drastically improved
the collaborative writing process, but it is still a slow, serial
process of emailing documents back and forth. Google Docs17

was a breakthrough web application that parallelized the
manuscript preparation process by enabling multiple authors to
simultaneously write, edit, comment, and even chat with each
other. Version control, tracking changes, and generous free cloud
storage means researchers are much less likely to lose their work.
Microsoft Word, the most widely used software for preparing
manuscripts, offers an “edit in the browser” feature for realtime
collaborative editing18. For reference management, Paperpile19

interfaces nicely with Google Docs. For those who prefer to
prepare manuscripts with LaTeX, services such as Overleaf20 and
Authorea21 compile latex on the cloud, removing the technical
overhead of setting up latex locally and compiling the document.
Collaborators who are less familiar with LaTeX can now easily
contribute to these manuscripts. See Table 1 for a summary of
collaborative writing web applications.

GitHub22, “the social coding platform”, has simplified and
improved the collaborative writing of software. Github provides
a visual representation of the somewhat complicated git version
control system. GitHub repositories contain the full codebase
for a project, all the changes that have been made, and who
made them (via git). Users can“Fork” GitHub repositories, which
makes a copy of the code to their account. They can then make
changes to the code and send the changes back to the original
repository via “Pull Requests,” which begins a discussion thread
for others to comment on the code (called a code review).
GitHub also provides an “Issues” page for each repository, where
users can discuss any issues and ask the community for help.
Continuous integration software testing can be automatically run

13www.plot.ly
14https://mybinder.org/
15https://notebooks.azure.com
16https://colab.research.google.com/notebook
17https://drive.google.com
18https://support.office.com/en-us/article/collaborate-on-word-documents-
with-real-time-co-authoring-7dd3040c-3f30-4fdd-bab0-8586492a1f1d
19https://paperpile.com/
20https://www.overleaf.com
21https://www.authorea.com
22https://www.github.com

TABLE 1 | Summary of collaborative tools for writing manuscripts and code on

the web.

Name URL Comment

Google Drive https://drive.google.com Write manuscripts,

spreadsheets, etc

Office 365 https://office.com Write manuscripts

MS Word online.

Paperpile https://paperpile.com Reference

manager for

google docs

Overleaf https://overleaf.com Write manuscripts

(LaTEX)

Authorea https://authorea.com Write manuscripts

(LaTEX, HTML)

GitHub https://github.com Write code

GitLab https://gitlab.com Write code

Travis-CI https://travis-ci.com Test code (links to

GitHub/Lab)

Circle-CI https://circleci.com Test code (links to

GitHub/Lab)

on the cloud once changes to the code are pushed to GitHub, by
web-hooks to services like Travis CI23 and Circle CI24, which
provide a generous free tier for open source projects. GitHub
repositories can also host static websites; this is extremely useful
for hosting code documentation. GitLab25 is an open source
alternative to GitHub, which can be deployed by researchers in
cases where they need a private git web application. Many open
source neuroimaging tools are built collaboratively on GitHub,
such as Nipype26 (Gorgolewski et al., 2011) , Dipy27 (Garyfallidis
et al., 2014), and Nilearn28 (Abraham et al., 2014), to name a
few. By developing open source neuroimaging software packages
on social coding web interfaces, researchers are able to engage a
much larger community of contributors than would have been
possible in the earlier days of the web.

2.2.3. The Web for Mass Collaboration: Citizen

Science and Crowdsourcing
The web browser is particularly well suited for citizen science
and crowdsourcing; this is becoming necessary as neuroimaging
datasets grow, and data analysis bottlenecks arise when massive
amounts of data need visual inspection. In the astronomy
community, the Galaxy Zoo (Lintott et al., 2008) web application
was successful at engaging citizen scientists in visually classifying
galaxies. This project evolved into a more general citizen science
platform called the Zooniverse (Simpson et al., 2014), which
enables researchers from any domain to engage citizen scientists
in annotating their data. In the neuroscience field, EyeWire (Kim
et al., 2014) and Mozak (Roskams and Popović, 2016) have

23https://travis-ci.org
24https://www.circleci.com
25https://gitlab.com
26https://www.github.com/nipy/nipype
27https://www.github.com/nipy/dipy
28https://www.github.com/nilearn/nilearn
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gamified the tracing of neurons. The EyeWire project was able
to engaged over 100,000 citizen scientists from all over the world
to collaboratively trace the neurons of the human retina. Such
a massive engagement of collaborators would not have been
possible without the web browser.

The neuroimaging community is just beginning to engage
citizen scientists as a resource in our data analyses. The Brainspell
(Badhwar et al., 2016) web application was developed tomanually
annotate fMRI coordinate tables that were automatically
extracted by Neurosynth https://neurosynth.org (Yarkoni et al.,
2011), which itself is a web application to perform coordinate-
based fMRI meta-analyses. BrainBox (Heuer et al., 2016) and
Mindcontrol (Keshavan et al., 2017a) are web applications to
annotate MRI volumes (e.g., to edit segmentations). Recently, a
mobile-optimized and gamified web application called braindr
(Keshavan et al., 2018) was developed to perform quality control
on images from the Healthy Brain Network initiative. At the time
of this writing, braindr has engaged over 400 citizen scientists
and over 100,000 annotations. Image labels were aggregated
by weighting citizen scientists based on how well their ratings
matched an expertly labeled “gold standard” subset of images. A
deep learning network was then trained from these aggregated
labels to automatically rate image quality to near perfect accuracy.
Hybrid human-computer approaches for quality control seem
the most promising (Esteban et al., 2018), such as “triaging”
image reviews based on machine-learning output probability
scores for Freesurfer image segmentation as in Klapwijk et al.
(2018). Whether citizen science applications can go beyond
quality control and toward more complex tasks like image
segmentation and registration remains to be explored.

The cognitive science and psychology communities often
utilize paid crowdsourcing web platforms like Amazon
Mechanical Turk (mTurk) to run behavioral experiments
with large, diverse populations. The psiTurk (Gureckis et al.,
2016) and ExpFactory (Sochat et al., 2016) frameworks enable
scientists to interface with mTurk and create reusable web-based
psychology experiments. For image processing, the quanti.us
(Hughes et al., 2018) platform can be used to interface with
mTurk to crowdsource the segmentation of biological images.
In neuroimaging, Ganz et al. (2017) showed it was feasible
to crowdsource the detection of Freesurfer (Fischl, 2012)
cortical surface delineation errors on mTurk. We expect to
see more utilization of citizen science, gamification, and paid
crowdsourcing platforms in neuroimaging research, and there
are still many open questions about which strategies (citizen
science vs. paid crowdsourcing) and task designs are better suited
for various analyses, as well as how to properly acknowledge the
contributions of citizen scientists [see (Hunter and Hsu, 2015)
for a proposed method].

2.3. Pitfalls
Even though the benefits of the web browser for scientific
collaborations are evident, using the web for our research comes
with some drawbacks or difficulties. Collaboration requires the
sharing of data, and while some argue that data sharing is an
ethical imperative (Brakewood and Poldrack, 2013; Bauchner
et al., 2016), one must consider the risks of reidentification of our

subjects, particularly for clinical research. True deidentification is
difficult because of linked metadata (Narayanan and Shmatikov,
2008; de Montjoye et al., 2015). For example, in Narayanan and
Shmatikov (2008), researchers identified pseudo-anonymized
Netflix users by linking data with metadata from another website
(IMDB). In de Montjoye et al. (2015), researchers proved
that pseudo-anonymized credit card data could be reidentified
provided just four spatiotemporal points. Research in differential
privacy (Sarwate et al., 2014) might alleviate some of these risks;
regardless, it is important that subjects are made aware of the risk
in the consent process. The Open Brain Consent website29 is a
collaborative effort to provide resources that aid researchers in
the IRB process for sharing data, writing the consent form, and
tools for the anonymization of neuroimaging data.

Legal obligations concerning personal data handling
are evolving and the recent European Union General
Data Protection Regulation (GDPR) will likely change the
requirements for participants control over their personal data.
This will need to be considered at all stages of the research
data lifecycle. While a full discussion on the legal and ethical
aspects of data dissemination and reuse is out of the scope
of this article [see for example (Marelli and Testa, 2018) on
the GDPR] it is clear that legal and regulatory constraints
are going to shape the implementation and use of web based
data dissemination and retrieval tools, and this will require
increased attention and human resources in the future. The
challenge will be to constantly adapt our infrastructures and
practices to the new regulations, which will require continuous
software development.

Another drawback of using web technology for collaboration,
in terms of sharing data, accessing cloud resources for analysis,
and distributing work, is bit rot (Baker et al., 2006; Cerf, 2011).
Bit rot refers to the eventual degradation of information stored
on electronic media; for example, information stored on floppy
disks is likely not accessible for most of us. Web technology is
advancing rapidly: the browsers we use now look nothing like
they did a decade ago. Some websites that were built in the
past do not work with modern browser technology, and most
websites from the past are not available to us anymore. A decade
from now, many of the links presented in this article may no
longer exist. Servers cost money, and domain names are charged
annually. Software needs to be consistently maintained to be
compatible with current technology. Efforts such as the Internet
Archive30 andDigital Object Identifier (DOI) system are working
to preserve the information on the web, and in the case of DOI,
provide persistent links to our research articles. But we need to
work with funding agencies to ensure we have the resources to
maintain scientific output, outside of our research articles, that
depend on web technology.We also need to work with publishers
to ensure our full scientific output, including the web technology
that is used to produce it, can be fully preserved.

Finally, web-based research depends on a stable and fast
internet connection. Such infrastructure may not be available
to scientists in developing countries, which further drives

29https://open-brain-consent.readthedocs.io/en/stable/
30https://archive.org/
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inequalities and will decrease the diversity of our scientific
community. It is important to keep this in mind when designing
web applications, by optimizing websites for slow internet
connections, and building offline support.

3. COMMUNICATION

Scientific work in the public imagination is still often
thought to be a rather solitary activity of independent
individuals, sometimes attracting introverted personalities.
But actual scientific work is largely communication, where
a large proportion of time is spent thinking of the best
way to communicate research to collaborators, to scientific
communities, to the public, and to funders. Different
scientific fields have different levels of interdependencies. A
researcher in a specialized mathematical subfield like non
Riemannian geometry could be mostly working on their
own, but fields like neuroscience or the biomedical sciences
are highly multidisciplinary. The ability to absorb and reuse
research from other laboratories is most often critical for
progress, as the systems studied are both too complex and
too interdependent to be understood by individuals or single
labs. While conferences and in-person meetings are traditional
methods for communicating research, the web now expands
scientific communication to a completely new level, by removing
time delays and scalability constraints. Now, even social
network communication tools are used for the benefit of
scientific communication.

3.1. Local Networks Communication
The small or medium size laboratory structure [5–15 people
(Conti and Liu, 2015; Cook et al., 2015)] is still the predominant
basic research structure in universities and research institutes,
and these are mostly set up such that in person meetings
are practical. Nevertheless, it is common that one or several
members of the laboratory are temporarily located in another
institution or building and the meeting will occur through web
video conferences. The number of companies proposing free
or paid services that may include capacity to share documents
has multiplied during the past few years (the authors count at
least 7 web video conference systems as of today, for instance
Zoom31, Webex32, BlueJeans33, Skype34, Google Hangouts35,
appear.in36, GoToMeeting37, etc, as well as project management
systems such as Trello38 or Asana39), allowing for unprecedented
efficiency even in local communication. A key aspect of some
of these communication tools is their capacity to record the
meeting (audio-video) permitting delayed communication and
traceability of discussion points, ideas or decisions, as well

31https://zoom.us/
32https://www.webex.com/
33https://www.bluejeans.com/
34https://www.skype.com/en/
35https://hangouts.google.com/
36https://appear.in
37https://www.gotomeeting.com/
38https://trello.com
39https://asana.com/

as scaling for larger groups. Another key aspect is that the
use of these tools allow a group to immediately scale to
non local members.

3.2. Scholarly Communication
A neuroimaging or neuroscience researcher’s work is heavily
influenced, if not directed by, the search for funding and
progression in academia career. As these mostly still depend on
the quality and number of publications, it is clear that publishing
activity is central to a researcher’s academic life.

The current publishing industry is still very much influenced
by how this activity used to be at the turn of the twentieth
century, at a time when manuscripts had to be manually
typed and printed, and distribution of journals was achieved
through mail. Today, the article remains a standard for
scholarly communication, even though an increasing number of
researchers realize that the actual scholarship may actually reside
in the code and data rather than the article40. Jon Claerbout, a
professor from Stanford University, argues that an article about
a computational result is advertising, rather than scholarship.
The actual scholarship is the full software environment, code
and data, that produced the result (Donoho, 2010). The web
has transformed the industry and is de facto the new media
for scholarly communication, but somehow less rapidly and less
radically than it could have. Most traditional journals are still
shipping some printed copies of their editions, while a very
large number of “on-line only” journals with an open access
policy have emerged with a business model based on article
processing charges (ACP), occasionally generating low quality
content, but a highly profitable business (for a long list of
questionable publishers, see the Beall’s List41). We note that
Beall’s list does not necessarily have the level of granularity
required as it can address general publishers rather than
specific journals.

Even when the web is adopted as the communication media,
the very large majority of the articles are based on HTML
and PDF, with almost none of the modern visualization and
interactive figure components that can be delivered by modern
JavaScript libraries (e.g., D3.js42). In neuroimaging, a number
of open source, browser-based visualization tools have been
developed. Javascript brain viewers like BrainBrowser (Sherif
et al., 2015), papaya.js43, XTK.js44 (Haehn et al., 2014), and
AMI library (Bernal-Rusiel et al., 2017) enable researchers
visualize neuroimaging data in the browser. Interactive, linked
data dashboards have been built as outputs of neuroimaging
software, like ROYGBIV45 (Keshavan et al., 2017b; Klein et al.,
2017), AFQ-Browser46 (Yeatman et al., 2018), and MRIQC has
a web-based viewer to visually inspect outputs (Esteban et al.,

40https://www.researchtrends.com/issue-31-november-2012/force11-gains-
momentum-creating-the-future-of-research-communications-and-e-
scholarship/
41https://beallslist.weebly.com/standalone-journals.html
42https://d3js.org/
43https://github.com/rii-mango/papaya
44https://github.com/xtk/X
45http://roygbiv.mindboggle.info
46https://yeatmanlab.github.io/AFQBrowser-demo
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2017). The Open Anatomy Browser47 (Halle et al., 2017) hosts
a variety of atlases with collaborative viewing. These tools have
greatly simplified the process of building and sharing complex,
interactive visualizations. For example, researchers may deploy
an AFQ-Browser visualization of their data with two simple
commands (afqbrowser-assemble, afqbrowser-publish). These
interactive figures may go much beyond the convenience of a
better view of the result; they allow to test for the potential
robustness or sensitivity with data input or methods in a way
that cannot be provided by static figures. In such a case, some
parts of the scholarship need to be communicated by interactive
figures, but few publishers are able to provide the infrastructure
for hosting such “interactive articles”.

Recently, the rise of documents able to mix code and
narrative such as R-markdown or Jupyter notebooks also provide
researchers with new opportunities for communicating full
fledged research objects. Some publishers already have embraced
these new possibilities. For instance, eLife is working with
Stencila48, designed to be documents that “... are self-contained,
interactive and reusable, containing all the text, media, code
and data needed to fully support the narrative of research
discovery” to foster more reproducible and reusable research,
see eLife. In the near future, systems such as Binder (Jupyter
et al., 2018) will allow not only to publish and review the
computational documents but also provide with a container
and the environment for a fully re-executable publication. The
new web tools are not only key to provide us with ways of
publishing a more complete set of research objects, they also
allow for new review workflows to be implemented. For instance,
Frontiers developed a platform that intended to make the
interaction between reviewers and authors more efficient. Tools
such as https://web.hypothes.is/49 permit readers to annotate
only specific parts of an article and may in the future be re-used
by a review system. Such a review system could associate expert
reviews and open community based reviews.

The web is also transforming how research communities meet
for discussions by creating virtual conferences. A number of
virtual conferences have been successfully organized in the past,
removing the constraints of space and travels, while still allowing
for questions and answer sessions monitored online (see for
instance neuroscience-201850). A recent twitter conference was
recently organized (the Brain Twitter Conference) which could
scale easily to tens of thousands of participants. These events are
much easier to organize in a short time and less costly if not free
for attendees. They also are possible to attend by all researchers
independently of possible travel and funding restrictions and are
only limited by time zone constraints. For example, Chris Madan
advocates using Twitter for science in (Madan, 2017b), and see
his associated blog post51 on this topic.

In the same spirit, global Brainhack events gather locally
groups of neuroinformaticians who collaborate on software

47https://www.openanatomy.org/
48https://stenci.la/
49https://web.hypothes.is/
50https://www.labroots.com/virtual-event/neuroscience-2018
51https://medium.com/@cMadan/on-the-benefits-of-twitter-5af59158e4e2

development projects, and are also sharing courses and seminars
across locations. The latest Brainhack52 event took place
in 16 countries and gathered more than 1000 participants
in 5 different time zones. The University of Washington
hosts various week-long summer schools or“hack weeks” (e.g.,
Astrohackweek, Geohackweek, and Neurohackweek) to promote
education and training, tool development, community building,
and interdisciplinary research by combining pedagogy with
project-based learning (the“hacking”) around a specific domain
(Huppenkothen et al., 2018). They found that this combination
is particularly effective at fostering collaborations and promoting
best practices. Through collaborative web applications like
GitHub, the projects started at these hackweeks have continued
even after the events ended, and have resulted in measurable
scientific output [for details, see Huppenkothen et al. (2018)].
Data analysis challenges hosted by conferences or symposia like
MICCAI53 bring researchers together to solve problems in the
field, even if they cannot be present at the conference, and
these groups collaboratively publish their results [for example see
Commowick et al. (2018) for the results of a multiple sclerosis
lesion segmentation challenge]. A curated list of biomedical
image challenges can be found at https://grand-challenge.org/
challenges/. We expect these types of events to be more frequent
in the future, limiting the ecological, time, and cost impact of
physical travels but offering the capacity for communication of
research at a truly global scale.

3.3. Larger Public Communication
Ultimately, research needs to go beyond the scientists and will
need to be disseminated to the larger public which, through
taxes, is funding a large part of it (Illes et al., 2010). The field of
neuroimaging necessitates costly acquisition devices (MRI, PET,
E/MEG), and has been particularly well funded, not only because
of its potential for neuroscience, but also because the ideas were
communicated well to the public and to funders. Communication
is now largely operated and achieved by social media platforms
such as Twitter, LinkedIn, Facebook, and blog platforms, to name
a few. To read more about the advantages and disadvantages
of social media use for scientific communication, see (Bik and
Goldstein, 2013). Online resources that teach how to effectively
communicate science are provided by the Alda-Kavli Center for
Communicating Science54. To consolidate the current consensus
of knowledge,Wikipedia is probably the best resource; offering an
introduction to functional magnetic resonance imaging through
the consensus writing of many researchers (for example, see the
Wikipedia article for fMRI).

Last, but certainly not least, web based education platforms
are also re-inventing how training is performed in neuroimaging.
The standard in person courses are now often replaced by
on-line material (see ReproNim55, Coursera online courses56,

52http://www.brainhack.org/global2018/
53https://www.miccai.org/
54https://www.aldacenter.org/aklc
55www.repronim.org
56https://www.coursera.org/learn/functional-mri
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EdX online courses57), and a series of YouTube videos by
Jeanette Mumford58) and also Dirk Ostwald59 as examples,
amongst many good online materials. This allows laboratories
to give some inverted classroom type of training by considering
that formal lectures can be taken on-line but exercises or
projects are best solved or supervised with direct interactions.
It should be noted that on-line question and answer forums
such as Neurostars60 (with a tagging system similar to
stackoverflow61), NITRC, and software tool email lists, are
also key for the training of young researchers and boost
efficiency. For a review of scientific web communcation
tools, see Figure 2.

3.4. Pitfalls
There are both limits and dangers associated with relying
too much - possibly almost fully - on web technologies and
browser enabled applications and workflows for research. Web
communication does not necessarily allow the level of in depth
interactions that are required to discuss a specific research
question. In person meetings can be necessary both to organize
projects and to advance the understanding of our scientific
questions. In our experience, in person meetings are better at
providing decision structures and at building trust, which are
both necessary for the management of scientific projects.

Some of the dangers associated with the use of social media
could also propagate to the scientific arena. For instance, while
social media may be a great medium for quickly accessing or
publicizing articles, it may also focus the attention on a specific
cluster of the scientific community. This in turn may create
research networks that are less permeable to different ideas, like a
scientific echo chamber (Kim et al., 2017).

The immediate access to non -or poorly- peer-reviewed
works may also amplify incorrect results that would not stand
scrutiny under peer review. Take for example, a paper posted
on the preprint server arXiv called “Automated Inference on
Criminality using Face Images,” which received a lot of criticism
from the scientific community62. Even though it was not peer
reviewed, and as of this writing has not been published in a peer-
reviewed journal, it nevertheless received a lot of alarmist press
coverage. This can occur within the traditional literature, albeit at
a slower pace. The neuroscience and public health communities
are still contending with the spread of misinformation regarding
a link between vaccines and autism (Del Vicario et al., 2016),
despite the strong evidence to the contrary (Taylor et al., 2014).
Scientific communication is our responsibility as scientists, not
only to the scientific community but to the general public; we
must be cautious of the immediacy of the web.

57https://www.edx.org/course/fundamentals-biomedical-imaging-magnetic-
epflx-fndbioimg2x-0
58https://www.youtube.com/channel/UCZ7gF0zm35FwrFpDND6DWeA
59https://www.youtube.com/channel/UCQ8y5WCi5yAgDFxLmh2MJyg/videos
60https://neurostars.org
61https://stackoverflow.com
62https://arxiv.org/abs/1611.04135

4. CONCLUSION

The way web technologies - and the browser as the window to
these - are transforming scientific activity is still evolving. It is
clear that an important part of research work will be on-line
for the future PhD student, whether to acquire or disseminate
knowledge, conduct an experiment, and collaborate with experts.
This paradigm shift is already apparent with the advent of e-
conferences and the use of social media in the neuroscience
community. Some researchers now mostly rely on their Twitter
feeds to learn about new and interesting studies, delivering more
directed and rapid content than a traditional journal’s table of
contents. The browser brings the potential for massive online
collaboration and more effective communication, but the web
is still mostly an untapped resource in the neuroimaging and
neuroscience fields.

Some scholars argue that we are having a reproducibility
crisis. Many neuroimaging studies are found underpowered, and
have reported possibly inflated effect sizes and unstable results
(Yarkoni, 2009). We believe the browser can help, by connecting
users to large, documented, and shared datasets through web
portals, and by providing interfaces to upload, annotate, share
and publish raw and derived data. This would result in a
much broader pool of data that could be investigated and lead
to more stable results, such as those from meta- or a more
distributed, ENIGMA-style mega- analyses. These efforts should
complete the FAIR principles, moving toward “Interoperable
and Reusable” data, with community-defined documentation and
metadata standards.

Replicating a study is complex because computing
environments are difficult to transport to other systems.
Works produced with tools that are not easily transportable
to the web will be harder to communicate, and potentially less
reproducible or re-usable by others. The analysis of a dataset
performed on a local computer and producing figures as files
on a local disk will need to consider all the hurdles of local
storage, computational environments, and other technological
challenges, to create robust software tools that work on all
computational environments. Difficult installations limit the
capacity to rapidly reuse the results. The web browser can
help: the same analysis developed through a Jupyter notebook
interface and running on the Binder service will be re-usable at
no cost of transfer on either the producer and the receiver side.
Considering the cost for an individual or lab to reproduce an
analysis, collaborate on it, or re-use a component of it, should
be a key question when working on a research project. In many
cases, web technologies are the ideal solution.

We are experiencing a data deluge. As neuroimaging studies
accumulate larger datasets, we encounter many new challenges
in data analysis that we did not have with smaller datasets,
both in terms of our capacity to consolidate datasets originating
from various cohorts acquired on different scanners, and in
terms of the sheer computational power needed to process very
large datasets. Browsers, by interfacing with cloud computing
infrastructures, can provide us access to an almost infinite
resource of compute power. Data analyses that require visual
inspection are unfeasible to scale; the browser provides the
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FIGURE 2 | Overview of discussed scientific communication web resources. General resources for data sharing include (1) D3.js https://d3js.org; 2) Plotly: https://

plotly.com/; General neuroimaging data visualization libraries include

3) XTK (Haehn et al., 2014) 4) BrainBrowser (Sherif et al., 2015) 5) AMI.js (Bernal-Rusiel et al., 2017) 6) papaya.js https://github.com/rii-mango/papaya; 7) Open

Anatomy Browser (Halle et al., 2017) Some neuroimaging packages that release associated web-viewers: 8) AFQ-Browser (Yeatman et al., 2018) 9)

ROYGBIV/Mindboggle (Keshavan et al., 2017b; Klein et al., 2017) 10) MRIQC (Esteban et al., 2017) For scholarly publishing and review: 11) Stencila https://stenci.la;

12) hypothes.is https://hypothes.is; In education: 13) EdX https://www.edx.org/; 14) Coursera https://www.coursera.org/; For neuroimaging-specific courses and

resources: 15) YouTube channels of Dr. Jeanette Mumford and Dr. Dirk Ostwald 16) ReproNim training modules http://www.reproducibleimaging.org/; 17) Neurostars

forum https://neurostars.org; Web resources for learning how to communicate to the general public: 18) Alda-Kavli Learning Center online resources https://www.

aldacenter.org/AKLC

medium to collaborate with not only other experts, but
also citizen scientists. Communicating insights from high-
dimensional datasets is challenging, but the browser can host
interactive data visualizations that can be easily shared. As a
community we need to move toward developing browser-based
tools to efficiently gain insights from large neuroimaging datasets.

The browser was built under egalitarian principles of free
and open information exchange63, but scientific information is
not completely free. Today, traditional scientific publishers are
making unusually high profit margins and a large body of the
literature is behind paywalls (Buranyi, 2017). This prevents text-
mining and creates an unnecessary bottleneck to much needed
meta-analyses (Van Noorden, 2012). In addition, research has
become highly competitive [e.g., the famous adage, “publish or
perish” (De Rond and Miller, 2005)]. Some of this competition is
an impediment to the collaborative nature of research, and the
community as a whole could work much more efficiently and
reduce research cost if free and open principles were extended

63https://webfoundation.org/about/vision/history-of-the-web/

as much as possible (respecting ethical and legal constraints).
In order to advance more efficiently our understanding of the
brain, we need to shift our scientific culture away from silos of
domain expertise to a more collaborative, distributed network of
information exchange; a shift from the wet lab to the web lab.
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