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Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates
and from cardiac arrest in infants and children. It is associated with varying degrees of
neurologic sequelae, depending upon the severity and length of HI. Global HI triggers
a series of cellular and biochemical pathways that lead to neuronal injury. One of the
key cellular pathways of neuronal injury is inflammation. The inflammatory cascade com-
prises activation and migration of microglia – the so-called “brain macrophages,” infiltration
of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory
cytokines. In this article, we review the inflammatory and immune mechanisms of sec-
ondary neuronal injury after global HI injury to developing brain. Specifically, we highlight
the current literature on microglial activation in relation to neuronal injury, proinflammatory
and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the
potential use of immunomodulators as neuroprotective compounds.
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INTRODUCTION
Regions of the developing brain become vulnerable to hypoxic-
ischemic (HI) as the neurons develop operating voltage-dependent
ion channels, neurotransmitter receptors, synaptic connections,
and increased mitochondria to supply the ATP for the consequent
increase in energy demand (1). Global HI injury in developing
brain can result from a variety of clinical conditions, including
perinatal asphyxia and cardiac arrest in infants and older children.
Although rates of survival to hospital discharge from in-hospital
cardiac arrest in children has improved significantly over the last
decade, neurologic outcomes remain poor (2).

A cascade of cellular and biochemical responses to the initial HI
insult can lead to secondary neuronal injury after reoxygenation.
One of the crucial but understudied mechanisms of secondary
neuronal injury after global HI is inflammation (3). It is char-
acterized by activation of microglia, the innate immune cells of
brain, migration of peripheral macrophages; release of proinflam-
matory cytokines and chemokines, and phagocytosis of injured
and uninjured neurons. Some evidence suggests that blocking the
inflammatory reaction promotes neuroprotection and has poten-
tial for use in the clinical treatment of ischemic brain injury
(4–8).

Therapeutic hypothermia has been shown to protect the brain
after cardiac arrest in adults and after HI in term newborns (9–
11); it is currently undergoing a multicenter trial for children after
cardiac arrest (12). Although therapeutic hypothermia reduces
mortality and improves early neurologic outcome after HI injury
in neonates, significant neurologic deficits and learning disability
persist into childhood (13, 14). Cell death initiated before the onset
of hypothermia, or possibly after rewarming, will likely recruit
inflammatory processes that can contribute to the low efficacy

of hypothermia in newborns who experience the most severe HI
insult. In a multicenter, randomized trial of induced hypother-
mia for neonatal hypoxic-ischemic encephalopathy (HIE), a rapid
and dramatic rise in levels of proinflammatory cytokines imme-
diately after HI injury was not amenable to induced hypothermia
(15). Adjunct treatment targeted to inflammation and immune
dysregulation may help improve the overall efficacy of therapeutic
hypothermia (16).

In this article, we review current understanding about the
inflammatory and immune mechanisms involved in acute HI
injury of developing brain and the neuroprotective agents that
can curtail inflammation and immune dysregulation. New anti-
inflammatory targets continue to be identified and constitute an
important area for translational medicine (17–22). Overall, the
prospects for safe neuroprotective therapies to improve outcome
after acute HI brain injury remain promising.

HI NEURONAL INJURY IN DEVELOPING BRAIN
A wealth of information on HI brain injury and repair is avail-
able through translational adult stroke research. The immature
brain differs from the adult in its capability to use metabolic fuels,
vulnerability to glutamate excitotoxicity, and oxidative stress (1).
There is an evidence to suggest that age could have a significant
effect on response to cytokines and hence neuroinflammation after
exposure to lipopolysaccharide (LPS) and/or HI (23). Since the
mechanisms of injury and strategies for repair often are very dif-
ferent in the immature as compared with the adult brain, our
pediatric community and researchers need to focus on HI brain
injury and repair in the developing brain (24, 25).

Global HI of brain initiates a cascade of excitotoxicity and
oxidative damage that in turn causes microvascular injury,
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blood–brain barrier (BBB) dysfunction, and postischemic inflam-
mation. These events all exacerbate the initial injury and can
lead to permanent cerebral damage. The modes of secondary
neuronal loss after HI are apoptosis, autophagy, programed necro-
sis, and unregulated necrosis, which arise from cell swelling and
bursting of nuclear and cell membranes (26). Apoptosis is more
prominent in the neonatal brain than in the adult brain after
HI insult (27–29). Also, selective neuronal vulnerability has been
observed in developing brain whereby neuronal injury secondary
to HI is present predominantly in regions that function in sen-
sorimotor integration and movement control. The regions in the
developing brain, which are vulnerable to HI are sensory-motor
cortex, basal ganglia, thalamus, and hippocampus (30). Consid-
erable research has been targeted toward different pathways of
secondary neuronal injury and therapies to counter one or more
such pathways.

INFLAMMATION AND IMMUNE DYSREGULATION AFTER
ACUTE INSULT TO THE BRAIN
For many years, the brain was considered an immune-privileged
organ, but advances in neuroimmunology have challenged this
dogma and helped to expand our understanding of the immune
processes that occur in healthy and diseased brain (31). It is well
accepted that the brain and immune system are engaged in bidi-
rectional crosstalk. Microglia, the resident innate immune cells
of the brain, elicit inflammatory responses under neuropatho-
logic conditions such as perinatal HI encephalopathy, infection,
and traumatic brain injury, as well as in autoimmune and neu-
rodegenerative disorders (32). Also, growing evidence indicates
that, like in peripheral organs, inflammatory cells play a crucial
role in remodeling and repair after an acute insult to the brain.
The neuroinflammatory response after acute HI brain injury is
characterized by activation of microglia; migration of periph-
eral macrophages, monocytes, and neutrophils; and release of
cytokines and chemokines by the inflammatory cells (33).

MICROGLIA – INNATE IMMUNE CELLS OF BRAIN
Microglia are resident macrophages of brain and are known to
actively remove cellular debris during normal development and
under pathologic conditions. They were first identified as innate
cells of the central nervous system (CNS), distinct from neurons
and other glia, by Nissl in 1899. Many years later, in the early part of
the 20th century, del Rio Hortega confirmed this distinction using
silver carbonate staining methods (34) and proposed that these
cells were primarily of hematopoietic origin. Microglia consti-
tute 10–15% of the total glia within the brain (35) and are present
throughout the brain. Some areas are more heavily populated than
others, and white matter generally contains fewer microglial cells
than does gray matter (36). Microglia are highly ramified cells, and
under non-pathologic conditions, they have a small cell body with
long and densely branched processes.

ROLE OF MICROGLIA IN DEVELOPING BRAIN
Although microglia are highly active during pathologic conditions,
they are also active under physiologic conditions as they survey the
microenvironment and the status of neurons and participate in
housekeeping and remodeling within the CNS (37). In developing

brain, highly active neurogenesis forms large numbers of neu-
rons every minute, vastly exceeding the ultimate requirements of
an adult. Consequently, many neurons undergo apoptosis dur-
ing early infancy and childhood (38). Microglia have a func-
tional role in the phagocytosis of cell debris and in the release
of trophic factors in developing brain. They also are involved with
synaptic pruning in the developing brain, thereby influencing its
maturation (37, 39–42).

ROLE OF MICROGLIA IN HI INJURY OF DEVELOPING BRAIN
Microglia fulfill a variety of tasks after HI of the brain. They
engulf cellular debris, lipids, and apoptotic cells. They also pro-
mote cytotoxicity through release of proteases and proinflam-
matory cytokines, activation of respiratory burst, and N -methyl-
d-aspartate (NMDA)-mediated excitotoxicity. These mechanisms
not only scavenge the HI damaged neurons but they can also affect
viable neurons. Much of our current knowledge of inflammation,
particularly microglial activation, after HI injury of developing
brain comes from the Vannucci model, in which HI is induced in
postnatal rats and mice by exposure to low oxygen and carotid
ligation (43, 44).

TIME COURSE OF MICROGLIAL ACTIVATION AFTER HI
Hypoxia–ischemia and intra-cerebral administration of excitotox-
ins such as NMDA result in a fast and robust microglial reaction in
the developing brain (45). One of the earliest studies of microglial
activation after HI brain injury in a rat model of developing brain
described microglial activation within 2 h after HI injury (6). In
another study, microglia exhibited a time-dependent, differential
upregulation of MHC and CD4/CD8 immunomolecules from day
1 to day 28 post-injury (46).

Whereas early neuronal cell death undoubtedly activates
microglia, a key question is whether activated microglia con-
tribute to delayed cell death of other neurons. Co-culture studies
of microglia and oxygen-glucose-deprived neurons have shown
that stressed neurons activate microglia, which release proinflam-
matory cytokines. These cytokines then induce neuronal damage
(47). However, uncertainty persists about the extent to which neu-
ronal and non-neuronal cells communicate in vivo as they do
in vitro, especially under pathologic conditions involving mul-
tiple cell types. Nevertheless, the concept that the proinflamma-
tory cytokines released by active microglia contribute to ongoing
secondary neuronal injury has gained support from the neuropro-
tective effects seen with therapies targeting microglial activation
(4–8, 17–22).

Little is known about the morphologic and functional changes
that microglia undergo over time after acute, global, HI develop-
mental brain injury, or about the regional distribution of active
microglia in relation to selective neuronal vulnerability. Also, the
duration of the proinflammatory response beyond the period of
acute injury is not clearly defined. Acute inflammation can also
be shifted to a chronic inflammatory state and/or adversely affect
brain development (48).

Activated microglia play an equally important role in
the restorative and reparative processes after neuronal injury
(49). Neuroprotective therapies targeted toward microglia could
potentially be a double-edged sword if used without appropriate
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information on time course of the proinflammatory and restora-
tive responses after acute, global HI.

MICROGLIAL ACTIVATION AND WHITE-MATTER INJURY AFTER HI
Apart from secondary neuronal injury after HI, microglia have
been found to play a crucial role in oligodendrocyte injury
and disturbance in myelination through a cytokine-mediated
mechanism in neonatal hypoxic rats (50). Likewise, overpro-
duction of local cytokines by activated microglia has been
reported to induce axonal injury after hypoxia in developing
rats (51). Microglia contribute to white mater injury in imma-
ture, developing brain (52). In studies of perinatal brain injury,
intrauterine inflammation has shown to cause white-matter injury
through microglial activation (53). Perinatal HI injury in preterm
brain is associated with a T-helper-type immune response (54).
Perinatal inflammation, which triggers neuroinflammation is
also believed to predispose the immature brain to HI injury
(55, 56).

MICROGLIAL ACTIVATION AND BBB INTEGRITY AFTER HI
Under normal conditions, the BBB is important for maintaining
micro-environmental homeostasis in the brain and its so-called
immune-privileged status by preventing the entry of T lympho-
cytes (57, 58). In a combined in vivo and in vitro study of the
relationship between microglial activation and BBB under HI
conditions, increased BBB disruption was associated with acti-
vated microglia. However, this association was inhibited by the
anti-inflammatory action of minocycline, which is known to
inhibit the release of matrix metalloproteinase (MMP)-9 and
breakdown of collagen and laminin in the vascular basement
membrane (59).

MICROGLIAL PROLIFERATION AND MIGRATION AFTER INJURY
Microglia have a remarkable ability to multiply and migrate
in response to neurologic injury (60, 61). Microglial prolifer-
ation has been implicated in the onset and/or progression of
ischemic brain injury (62). Active microglia express receptors
for a variety of molecules, such as interleukin (IL)-3, IL-6, and
granulocyte-macrophage colony-stimulating factor, which play an
important role in microglial proliferation (63). In vivo studies
of the cell proliferation markers Ki67 and bromodeoxyuridine
have confirmed that microglia can proliferate in a developing
brain environment (64). A rapid increase in number of microglia
at the site of injury is related to influx of peripheral mono-
cytes and movement of innate microglia from other parts of the
brain (65).

ROLE OF ASTROCYTES
Astrocytes express a wide variety of receptors of innate immunity
(66). In response to HI, there is reactive astrogliosis with release
of MMPs, which degrade BBB and facilitate entry of peripherally
derived immune cells (67, 68). Through toll-like receptors, astro-
cytes, on one hand promote inflammation and on the other end,
facilitate tissue repair (66, 69). In response to ischemia, astrocytes
not only potentiate excitotoxicity through inducible nitric oxide
synthase (iNOS) but also release a myriad of cytokines, many of
which have dual proinflammatory and anti-inflammatory effects
(70–74).

ROLE OF PROINFLAMMATORY AND ANTI-INFLAMMATORY
CYTOKINES AND CHEMOKINES AFTER HI INJURY OF
DEVELOPING BRAIN
Cytokines and chemokines released by active microglia in response
to an acute neurologic insult take part in innate immune response;
modulate influx of peripheral immune and inflammatory cells
into the brain; contribute to secondary neuronal, oligodendro-
cyte, and axonal injury; and ultimately promote tissue repair and
recovery (75) (Figure 1). In the brain, cytokines and chemokines
are expressed on the neurons and glia (76). There is increased
chemokine gene expression and release in the developing brain
after HI (77). Cytokines and chemokines released by peripheral
immune cells contribute to neuroinflammation (78, 79) and their
inhibition or deficiency is associated with reduced injury (80–82).
TRAIL (tumor necrosis factor-related apoptosis inducing ligand)
is expressed primarily on microglia and astrocytes and it has been
shown to participate in neonatal brain injury after inflammation
and HI (83). Elevated levels of IL-6 and IL-8 in the cerebrospinal
fluid of term newborns have been correlated with an increased
degree of encephalopathy and poor neurodevelopmental outcome
(84). Reactive oxygen species (ROS) and nitrogen metabolites
generated within the active microglia induce the release of proin-
flammatory cytokines. In a study of mixed astroglial/microglial
cultures, stimulated microglia produced NO in a time-dependent
manner (85). Following HI injury, hydrogen peroxide (H2O2) lev-
els rise significantly (86) and cause extensive damage to iron-rich
developing brain (87). In fact, microglial exposure to continu-
ous H2O2 leads to pleiotropic and biphasic effects (88). Since the
effects of cytokines are influenced by one another and majority of
cytokines have pleiotropic and cell-specific effects, the final effect
of individual cytokines is difficult to establish (89–93).

MICROGLIAL ACTIVATION AFTER ISCHEMIA – HARMFUL OR
HELPFUL?
Microglia function as CNS macrophages and help clear debris
and invading pathogens. When activated in response to a vari-
ety of stimuli and triggering events such as HI, proinflamma-
tory and cytotoxic pathways are initiated that can contribute
to secondary neuronal injury. Conversely, stimulation of pro-
liferating microglia after cerebral ischemia by MCSF leads to
release of insulin-like growth factor (IGF), a neurotrophic fac-
tor with neuroprotective properties (103). In a rodent model of
focal cerebral ischemia, time-lapse imaging showed that microglia
exert neuroprotection by rapidly engulfing apoptotic neurons and
motile polymorphonuclear cells (104). In a study of rodent cere-
bral ischemia, intra-arterial injection of microglia prevented the
ischemia-induced decline of brain-derived neurotrophic factor
(BDNF) in hippocampus and offered neuroprotection (105). Sim-
ilarly, in a rodent model of acute neonatal stroke, inhibition of
microglia with liposomal clodronate led to elevation of levels of
cytokines and chemokines and exacerbation of injury (103). There
is growing evidence that microglia activated by injured or dying
neurons mediate a decrease in neuronal damage and promote
tissue regeneration and repair (106). In response to injury, acti-
vated microglia ensheath damaged neurons and remove excitatory
input through the displacement of afferent synapses (107). Much
of our current understanding of the difference between helpful
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FIGURE 1 | Cascade of inflammatory pathway in brain after acute HI.
Resting microglia get activated to M1 type through classical pathway and
M2 type through alternate pathway. M1 microglia release inflammatory
cytokines, which cause disruption of blood–brain barrier (BBB). The BBB
disruption promotes infiltration of macrophages, which further release
inflammatory cytokines. Active microglia and macrophages release reactive
oxygen species (ROS) and reactive nitrogen species (RNS), which
contribute to the secondary neuronal injury. M2 microglia release trophic
factors, which contribute to the neuronal repair. TNF-α, a potent
proinflammatory cytokine contributes to peripheral immune cell recruitment
and proliferation in the brain, neuronal apoptosis, oligodendrocytes, and

axonal injury after HI (94). IL-1β blocks oligodendrocyte proliferation (95) and
elevates levels of circulating IL-6, another potent cytokine that contributes
to early neurologic deterioration after brain ischemia (95, 96). Matrix
metalloproteinases (MMPs) disrupt the BBB and allow peripheral leukocyte
infiltration (97). Macrophage colony stimulating factor (MCSF), released
mainly by macrophages, T cells, B cells, and microglia, induces proliferation,
migration, and activation of microglia and regulates the release of
proinflammatory cytokines from macrophages (98, 99). MCP-1, a
chemokine secreted by active microglia and astrocytes in response to injury
(100), mediates the migration of microglia, monocytes, and lymphocytes to
the site of injury in the CNS (101, 102).

and harmful microglial phenotypes is derived from literature on
acute neuroinflammation after stroke and chronic neuroinflam-
matory conditions like Alzheimer’s disease (108, 109). The innate
immune response is characterized by activation of microglia to an
M1 phenotype and the subsequent proinflammatory response fol-
lowed by resolution, and alternative activation to an M2 phenotype
that leads to anti-inflammatory signaling (M2a), the clearance of
ROS and reactive nitrogen species (RNS) (M2b), and wound heal-
ing (M2c) (110). Depending on the type of insult, the phenotype
of microglial activation switches over time from M1 to M2 or
vice versa (111). The differences between M1 and M2 microglial
phenotypes are shown in Table 1. The M1 phenotype is associated
with greater neuronal death than is the alternatively activated M2
phenotype (112); therefore, there is a growing interest in inhibiting
the M1 phenotype.

REGULATION OF MICROGLIA
Microglia are kept under check through neuronal–glial cross talk.
Chemokine receptors and corresponding ligands allow interac-
tions between neurons and microglia and control proinflamma-
tory responses of microglia under physiologic conditions (113).

CD200/CD200R1, fractalkine (CX3CL1)/CX3CR1, SIRPα/CD47,
and heat shock protein 60 (HSP60)/TREM2 are cell–cell inter-
action molecules that regulate microglia (114–117). After injury,
disruption of these interactions from neuronal damage may cause
activation of microglia to the proinflammatory M1 phenotype.
Modifications of these neuronal–glial regulatory interactions have
been shown to attenuate neuronal damage in models of focal
cerebral ischemia and chronic neuroinflammation (118–122).
Neuronal–glial interactions and their role in secondary neuronal
injury after global HI injury in developing brain are understudied
and warrant evaluation. Modifications of these regulatory interac-
tions in developing brain after global, HI injury could potentially
open new avenues of neuroprotection.

ROLE OF PERIPHERAL INFLAMMATORY AND IMMUNE CELLS
IN THE DEVELOPING BRAIN AFTER HI
Studies from adult rodent models of focal HI suggest that, in addi-
tion to innate inflammation, the peripheral immune system may
have a role in the etiology of neuronal damage. More precisely,
several studies have shown that acute brain injury from focal
ischemia is associated with a massive activation of the peripheral
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Table 1 |The M1 (classical) and M2 (alternate) phenotypes of microglia.

Classical activation (M1) Alternative activation (M2)

Identification

markers

Proinflammatory

cytokines

Identification

markers

Anti-inflammatory

cytokines

MHCII IFNγ Arg-1 IL-10

CD16 (FcγR III) I1-1β CD68 (ED1) TGF-β

CD32 (FcγR II) TNFα Fizz1 (Relmα) IL-4

CD80 (B7-1) I1-6 Ym-1 IL-13

CD86 (B7-2) CXCL10 CD206 (MR) IGF-1

CD40 (TNFR) ROS Dectin-1

RNS

MMP9

MMP3

Arg, arginase; Fizz1, resistin-like molecule alpha; IFN, interferon; IL, interleukin;

MHC, major histocompatibility complex; MMP, matrix metalloproteinase; MR,

mannose receptor; RNS, reactive nitrogen species; ROS, reactive oxygen species;

TGF, transforming growth factor; TNFR, tumor necrosis factor receptor.

immune system, with rapid mobilization of immune effector cells
from the spleen (123, 124). These mobilized effector cells can
invade the brain and aggravate the existing injury (123). In a
study of preterm sheep in which global HI was induced with the
umbilical cord occlusion method, the authors showed mobiliza-
tion of peripheral immune cells from spleen and reduction of
splenic size. These changes were unrelated to splenic HI injury and
occurred in parallel with marked injury and functional loss of the
preterm brain (125). Yilmaz and co-authors showed that T lym-
phocytes, but not B lymphocytes, contribute to inflammatory and
thrombogenic responses, brain injury, and neurologic deficit asso-
ciated with experimental stroke in rodents (126). Though studies
have shown that activated microglia outnumber the peripherally
derived macrophages at the site of infarct (127, 128), inhibition
of macrophages has shown to reduce infarct volume (129–131).
These reports indicate that infiltrating mononuclear inflammatory
cells play a significant role in neuroinflammation and may be nec-
essary for the activation of microglia. Suppression of peripheral
immune and inflammatory cells through splenectomy reduces cel-
lular infiltration into the brain and interaction with the activated
microglia at the site of ischemic injury, resulting in decreased dam-
age (123). A severe, global HI injury following cardiac arrest would
not only induce necrosis and apoptosis in brain but also might
exert different effects in peripheral immune organs like spleen,
which is influenced by the autonomic nervous system. There-
fore, additional studies are warranted to determine the role of
the peripheral immune system in whole-body HI (Figure 2).

ANTI-INFLAMMATORY AND IMMUNOMODULATORY
THERAPIES FOR NEUROPROTECTION AFTER HI BRAIN
INJURY
Preconditioning, salvaging, and repair are three main modes of
achieving neuroprotection (132).

Hypothermia is now standard of care for term HI encephalopa-
thy, so studies focused on adjunct therapies will be added to that
treatment (133). As our understanding has grown regarding the

role that inflammatory and immune cells play in the pathophysiol-
ogy of secondary neuronal injury after HI, so has interest in using
anti-inflammatory and immunomodulatory strategies as neuro-
protective therapies after brain injury. Such therapies range widely
from steroidal and non-steroidal molecules to cannabinoids (CB)
and statins.

CANNABINOIDS
Cannabinoids are diverse chemical compounds, which are either
endogenously produced in body (endocannabinoids) or derived
from cannabis and related plants (phytocannabinoids) or prepared
chemically (synthetic cannabinoids). CB compounds act on cell
surface CB receptors to exert a variety of effects, including potent
anti-inflammatory and immunomodulatory effects. There are two
major subtypes of CB receptors – CB1 and CB2. The CB1 receptors
present on neurons produce the psychoactive effects of non-
selective CBs like tetrahydrocannabinol (134). CB2 receptors are
present on immune cells (135) and are expressed on the surface of
activated microglial cells under pathologic conditions (136–138).
Under physiologic state, CB2 receptors remain dormant, and they
are expressed in the active form on the surface of the immune cells
after an acute insult. CB2 receptor agonists such as cannabidiol
(CBD) exert potent anti-inflammatory and immunomodulatory
actions through a CB2 receptor-G-protein-coupled mechanism
(139, 140). Two orphan G-protein-coupled receptors, possibly
activated by multiple different cannabinoid ligands, have been
recently proposed as novel cannabinoid receptors (141).

Cannabidiol is a major constituent of the cannabis plant, rep-
resenting up to 40% in plant extracts. CBD has shown neuro-
protective effects in adult rodent models of stroke (142–144).
CBD studies have also shown significant neuroprotective effects
in a piglet model of HI (17–21). CB2 agonists reduce microglial
activation, proliferation and migration to the site of injury, and
also reduce release of proinflammatory cytokines and chemokines
like IL-1β, TNFα, MCP-1, and MIP-1α (20). The neuroprotec-
tive effects of CBD are related not only to the anti-inflammatory
and immunomodulator effects but also to serotonergic, antiexci-
totoxic, antioxidant, adenosine receptor agonist, and antiepileptic
effects (18–21). Due to multi-pronged neuroprotective effects,
including but not limited to anti-inflammatory and immunomod-
ulatory effects, CB have gained recent interest in research on devel-
opmental brain injury. Because CBD is a selective CB2 receptor
agonist and lacks CB1-induced psychoactive effects, the poten-
tial for its clinical use seems favorable (145). However, certain
crucial questions that need to be addressed in preclinical set-
ting before considering CBD for clinical trials are dose–effect
relationship, the role of CB2 agonists as adjunct neuroprotective
agents with therapeutic hypothermia, and the role of CB2 ago-
nists as neuroprotective agents through peripheral versus central
immunomodulation.

ANTI-TNF-α
TNF-α is a potent proinflammatory cytokine that plays a key role
in neurotoxicity after ischemia. Anti-TNF-α has been shown to
be neuroprotective in rodent models of focal cerebral ischemia
(146, 147). The challenges with the use of anti-TNF-α have been
solubility and brain penetration. Additionally, TNF inhibitors
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FIGURE 2 | Whole-body hypoxia-ischemia activates central and
peripheral immune components. The whole-body HI not only induces
neuroinflammation and necrosis and apoptosis in brain but also potentially
exerts different effects in peripheral immune organs like spleen, which is
influenced by the autonomic nervous system. Microglial activation after global
HI leads to secondary neuronal injury. The cytokines and chemokines released
by activated microglia, astrocytes, mast cells, and peripheral immune cells
cause secondary neuronal damage, degrade BBB for leukocyte recruitment
from blood stream, and eventually also contribute to tissue repair. Primed and
polarized T cells enter CNS in response to HI, recognize neuronal surface
receptors like major histocompatibility complex, and interact with damaged

neurons for repair. Macrophages and neutrophils also enter the CNS in
response to HI for clearance of debris. Under pathologic conditions,
neurotransmitter and neuroinflammatory substances interact with peripheral
immune system for priming and activating immunologic pathways for
clearance of pathogen and/or debris. Due to cross talk between peripheral
and central immune systems, the effects of peripheral immune organs like
thymus, liver, spleen, gut associated lymphoid tissues and bone marrow on
neuroinflammation, and secondary neuronal injury after whole-body HI need
to be studied. Mic, microglia; N, neuron; A, astrocyte; Mas, mast cell; Mac,
macrophage; Tc, T cell; Neu, neutrophil; T, thymus; TD, thoracic duct; L, liver;
S, spleen; GALT, gut-associated lymphoid tissue; BM, bone marrow.

can have harmful side effects, including lymphoma, infections
(especially tuberculosis reactivation), congestive heart failure,
demyelinating disease, and lupus-like syndrome (148).

IL-1 ANTAGONISTS
Recombinant human IL-1 receptor antagonist (rhIL-1ra) has been
shown to protect against focal cerebral ischemia in the rat through
its actions on microglia (149). A randomized phase II study of
rhIL-1ra in acute stroke patients showed that it is safe and well
tolerated in acute stroke. In addition, rhIL-1ra exhibited bio-
logic activity that was relevant to the pathophysiology and clinical
outcome of ischemic stroke (150).

MINOCYCLINE
Minocycline is a tetracycline derivative that has been shown
to be safe and effective as an antibiotic and anti-inflammatory
drug for treating systemic inflammatory conditions. Minocycline
crosses the BBB and has demonstrated neuroprotective qualities
in experimental models of post-arrest global HI (7), traumatic

brain injury, stroke, spinal cord injury, and neurodegenerative dis-
eases (151). Minocycline is believed to have anti-inflammatory,
antiapoptotic, and antioxidant effects. It inhibits microglial acti-
vation, T-cell migration, and release of proinflammatory cytokines
and chemokines (151). Minocycline administered either immedi-
ately before or immediately after a HI insult substantially blocked
tissue damage in a rodent model of neonatal HI brain injury
(152). In a model of neonatal stroke, minocycline significantly
reduced the volume of injury at 24 h but not 7 days after tran-
sient MCA occlusion (153). Unfortunately, minocycline has also
been shown to have variable and even detrimental effects in differ-
ent species and models of neurological disorders (151, 154–158).
Although its anti-inflammatory actions are likely to contribute to
its neuroprotective effects, its contrasting effect in mouse and rat
HI models could be related to its reported action on the regula-
tion of prostaglandin pathways (154). Also, long-term minocycline
therapy in chronic neuroinflammatory diseases has proved disap-
pointing due to either minimal or no clinical effects, even worse
effects, and safety concerns (159–161).
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IBUDILAST
Ibudilast is mainly a phosphodiesterase (PDE) inhibitor, but it
also affects the function of lymphocytes, endothelial cells, and
glial cells. In a neuronal-microglial co-culture study, ibudilast sup-
pressed neuronal necrosis that was induced by LPS and interferon-
γ activation of microglia (162). Idibulast acts through phospho-
diesterase 4 (PDE4) receptors and inhibits release of TNF- α by
inflammatory cells and inhibits tyrosine kinase in neutrophils to
mitigate inflammation (163). Currently, there are no clinical trials
on neuroproctective effects of ibudilast.

VITAMIN D
Recent evidence supports the involvement of vitamin D3 in
immunologic processes that protect the nervous system (164).
In the CNS, the active form of vitamin D – calcitriol – acts as
an immunosuppressor. It induces the anti-inflammatory cytokine
IL-4 and transforming growth factor and decreases expression
of proinflammatory cytokines IL-6, TNF, and MCSF (165–169).
Calcitriol decreases expression of MHC class II proteins and cofac-
tor CD4, which play important roles in autoimmune processes
in the nervous system (170). Role of vitamin D in modulat-
ing inflammation and immune dysregulation and ability to offer
neuroprotection in a model of global HI have not yet been well
studied.

STEROID AND NON-STEROIDAL ANTI-INFLAMMATORY DRUGS
Steroid molecules, including sex steroids, inhibit microglia and
prevent release of proinflammatory cytokines. Steroid molecules
also offer neuroprotection through release of neurotrophic factors
from microglia (171). However, we need more basic informa-
tion regarding the mechanisms by which steroids contribute to
neuroprotection before we can predict the conditions in which
hormone treatments may have positive outcomes for brain func-
tion in human beings. Such knowledge will enable researchers
to design the best possible therapeutic approaches. Non-steroidal
anti-inflammatory medications have been shown to curtail neu-
roinflammation associated with Alzheimer’s disease, Parkinson’s
disease, and HI brain injury (170, 172).

STATINS
Statins have been shown to reduce infarct size in experimental ani-
mal models of stroke. Statins attenuate the inflammatory cytokine
responses that occur after cerebral ischemia, and their antioxidant
properties ameliorate ischemic oxidative stress in the brain. Addi-
tionally, statins upregulate endothelial nitric oxide synthase and
inhibit iNOS, effects that are potentially neuroprotective (173).
Currently, NeuSTART2 (neuroprotection with statin therapy for
acute recovery trial phase 2) is an ongoing phase 2 random-
ized safety trial, in which ischemic stroke patients are randomly
assigned to placebo or standard dose lovastatin versus short-term
high-dose lovastatin.

PROPENTOFYLLINE
Propentofylline acts by blocking the uptake of adenosine and
inhibiting the PDE enzyme system (174, 175). Adenosine is
released in response to cell damage after ischemic injury and acts
on specific G-protein-coupled receptors on astrocytes, microglia,

and infiltrating immune cells to regulate immune system func-
tion in the brain. Although the effects of adenosine protect neu-
ronal integrity, adenosine might also aggravate neuronal injury by
promoting inflammatory processes (176, 177). A detailed under-
standing of adenosine receptor function in the brain immune
system should help researchers develop novel therapeutic strate-
gies to treat HI-induced brain injury, which is associated with a
dysfunctional immune response.

MELATONIN
In preclinical models of term brain HI, melatonin markedly
decreased microglial activation in association with neuroprotec-
tion (178). A study of melatonin with therapeutic hypothermia in
a piglet model of HI showed a substantial improvement compared
with therapeutic hypothermia alone in preserving brain function
measured by amplitude-integrated electroencephalogram, and
reduced cell death in selectively vulnerable areas (179). There is an
ongoing, prospective, double-blinded, randomized trial of prema-
ture newborns of less than 28 weeks’ gestational age for assessing
neuroprotective role of melatonin in the United Kingdom (MINT
trial, ISRCTN15119574).

Epo
Epo and its receptor (EpoR) are expressed in the developing CNS
and are required for normal brain development (180). Epo inhibits
early mechanisms of brain injury by its anti-inflammatory, antiex-
citotoxic, antioxidant, and antiapoptotic effects on neurons and
oligodendrocytes (181–184). Currently, Epo is undergoing a trial
of neuroprotection in preterm neonates (PENUT trial – preterm
erythropoietin neuroprotection trial).

XENON
Xenon is an odorless, dense noble gas with anesthetic properties.
Xenon’s neuroprotective properties have been demonstrated in
cell culture (185), a rodent model of hypoxia-ischemia (186–190)
and a neonatal pig model of global hypoxia-ischemia, wherein it
can augment hypothermic neuropotection (191, 192). The precise
mechanism of neuroprotection and any possible direct effects on
inflammation remain to be explored.

DELIVERY OF ANTI-INFLAMMATORY AND IMMUNOMODULATOR
NEUROPROTECTIVE AGENTS ACROSS BBB
Anti-inflammatory and immunomodulator agents like CBD
are hydrophobic and, therefore, delivery across BBB becomes
an important consideration for optimal neuroprotective effects
within a safe dose-range. A novel approach is to use alternative
delivery methods like nanoparticles, targeting the inflammatory
system. Nanoparticles, such as polyamidoamine dendrimers have
been shown to concentrate in activated microglia and astrocytes in
the brains of newborn rabbits with cerebral palsy, but not healthy
controls. This nanotechnology approach has shown excellent
results to deliver dendrimer-bound N -acetyl-l-cysteine (NAC)
to microglia to suppress neuroinflammation, using much lower
concentrations than are needed with systemic dosing (193–195).

CONCLUSION
Neuroinflammatory and neuroimmune dysregulation play a key
role in secondary neuronal damage after global HI injury in the
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developing brain. Microglia activated by HI, initiate a cascade of
inflammatory reactions that lead to neuronal damage. Indeed, a
growing number of anti-inflammatory and immunomodulatory
compounds have shown promising neuroprotective effects in pre-
clinical settings. Some of these compounds have even entered
clinical trials for adult victims of stroke. However, substantial
work is needed to improve our understanding of neuroinflamma-
tion after global HI injury in developing brain. The specific issues
yet to be determined in relation to inflammatory and immuno-
logic mechanisms after global HI include the temporal, topo-
graphic, and gender pattern of neuroinflammation, neuronal–
glial regulatory interactions, and their contribution to secondary
neuronal injury, the role of the peripheral immune system in
potentiating secondary brain injury after multi-organ ischemia,
and the development of anti-inflammatory and immunomodu-
latory compounds as neuroprotective agents after HI injury of
developing brain.
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