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Abstract
Using the North American Rheumatoid Arthritis Consortium (NARAC) candidate gene and
genome-wide single-nucleotide polymorphism (SNP) data sets, we applied regression methods and
tree-based random forests to identify genetic associations with rheumatoid arthritis (RA) and to
predict RA disease status. Several genes were consistently identified as weakly associated with RA
without a significant interaction or combinatorial effect with other candidate genes. Using random
forests, the tested candidate gene SNPs were not sufficient to predict RA patients and normal
subjects with high accuracy. However, using the top 500 SNPs, ranked by the importance score,
from the genome-wide linkage panel of 5742 SNPs, we were able to accurately predict RA patients
and normal subjects with sensitivity of approximately 90% and specificity of approximately 80%,
which was confirmed by five-fold cross-validation. However, in a complete training-testing
framework, replication of genetic predictors was less satisfactory; thus, further evaluation of
existing methodology and development of new methods are warranted.
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Background
Rheumatoid arthritis (RA) is an autoimmune disease
causing inflammation and soft-tissue swelling of mainly
diarthrodial joints. The disease can lead to considerable
loss of mobility due to pain and joint destruction. Over
the past decade, an improved understanding of the patho-
physiology of the disease has had a big impact on RA ther-
apy, mainly through the use of so-called disease-
modifying antirheumatic drugs [1].

Complex human diseases such as RA have complicated
genetic architectures [2]. Single-gene association studies
indicate that each genetic predictor alone has very weak
power to predict the disease status. However, the high her-
itability identified in many human diseases indicates that
the overall genetic contribution to risk is substantial. One
alternative to traditional modeling is to create an ensem-
ble of models that capture the inherent heterogeneity and
interactions that underlie the complex genetic architecture
of common diseases. For example, random forests algo-
rithms combine many decision trees, each of which is a
weak prediction model, by randomly selecting the sample
and predictors for building each tree to obtain an
improved overall prediction [3]. The random forests (RFs)
method is capable of handling high-dimensional data
such as genome-wide single nucleotide polymorphism
(SNP) genotypic data and is known to be resistant to
uninformative predictors.

We explored the predictive ability of RFs analysis to iden-
tify genetic associations with RA and their interactions
with other genetic loci in the North American Rheuma-
toid Arthritis Consortium (NARAC) candidate gene and
genome-wide linkage data sets. Furthermore, we per-
formed cluster analysis using the phenotypic data to iden-
tify clinically distinct subgroups of RA patients, which
may represent a pathophysiologically heterogeneous
patient population. Subsequently, such phenotypic sub-
groups were used to identify additional susceptibility
genes.

Methods
Data
The phenotype (NAPHENO) and candidate gene (CAND-
GENE.DAT) data were provided by the North American
Rheumatoid Arthritis Consortium [4] and consist of 839
RA cases from sib-pair families and 855 unrelated con-
trols. SNPs with missing data of 15% or greater were
excluded from the analysis, resulting in a total of 17 SNPs
from 13 genes (PTPN22, CTLA4, HAVCR1, IBD5,
SLC22A4, IL3, IL4, SUMO4, MAP3K71P2, DLG5,
CARD15, RUNX1, and MIF) being considered. The miss-
ing genotypes were estimated using the proximity calcu-
lated by RFs on the training subjects [3].

In this study, we generated two replicate data sets in which
the subjects were independent within samples and were
dependent across samples. This approach ignores depend-
encies between the data sets that in general lead to infla-
tion of type I error in the replication set. However, we feel
that this approach is justified to simplify the confirmatory
analyses using the available data. The data set was split
into two replication data sets by randomly selecting a case
from each affected sib pair for one of the data sets and the
remaining case contributing to the second data set, with
the controls almost evenly divided into the two data sets.
Data set 1 includes 398 cases and 427 controls, while data
set 2 includes 387 cases and 428 controls. It should be
noted that due to the relatedness between the replication
and the analysis data sets, the confirmation from the sec-
ond data set should be interpreted with caution.

The data from the genome-wide linkage panel (a total of
5742 SNPs, excluding chromosome Y SNPs) were availa-
ble for 1998 individuals from families with RA patient
(NAILL01–NAILL25). For families with two or more sib-
lings, one was randomly selected from each family for
data set 1, and the second subject was then randomly
selected from the remaining of samples for data set 2. The
singletons were randomly divided into the two data sets.
Each of the data sets consists of 740 unrelated subjects.
The analysis of the replication data set should be consid-
ered exploratory.

The RF method is not particularly efficient at imputing
missing data for large number of SNPs. Therefore, we
applied an extension of the expectation-maximization
(EM) algorithm implemented in HelixTree (Golden Helix
Inc., Bozeman, MT) to impute the missing genotypes for
the genome-wide linkage data set. In a simulation study,
this method achieved outstanding performance of impu-
tation accuracy above 95% with missing rate ranging from
1% to 10% (Sun et al., unpublished data).

Association analysis
The association between each candidate gene SNP and RA
status was tested using all samples. Two methods were
used for the candidate gene data set to adjust for the
degree of relatedness among the affected siblings, a gener-
alized estimating equations (GEE) method with likeli-
hood ratio statistics (SAS 8.2, SAS Institute Inc., Cary, NC,
USA, 1999) and Risch and Teng's statistic [5]. Results from
the Risch and Teng's statistic and GEE likelihood ratio
were consistent so that only results from the GEE analysis
are reported. SNPs with an association with RA at p < 0.05
were also analyzed in a multiple SNP model.

For the genome-wide data set, single-SNP associations
with RA were assessed using a χ2 test when all three geno-
types were observed and the least frequent genotype
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observation was more than five. In situations in which
these criteria were not met, Fisher's exact test was used to
test the association. The p-values were then used to rank
the significance of all SNPs.

Identification of phenotypic subgroups among RA patients
An unsupervised clustering analysis was carried out on the
RA cases using the detailed phenotypic data (demo-
graphic and disease-related clinical and laboratory varia-
bles) to identify clinically distinct subgroups of RA
patients. For the purpose of the analysis, the phenotypic
variables were dichotomized using a threshold of the 75th

percentile for AgeOnset (≥50), TenderJtCt (≥13), Swollen-
JtCt (≥13), JAMScore (≥52), SeverityLH (≥5), and Severit-
yRH (≥5). DRB1_1 and DRB1_2 marker variables were
combined and dichotomized on the basis of the presence
or absence of RA-associated epitopes (*01 and *04 alle-
les). Patient self-reported American Rheumatism Associa-
tion (ARA) sub-scores and the overall ARA score were not
included in the analysis. All other clinical measurements,
except BMI (51% missing), were used in the analysis.

Clustering analysis was carried out using modified 'Jac-
card' coefficient (proportion of non-zero pairs that are
similar between subjects) as the distance measure [6].
Multidimensional scaling (MDS) of the distance matrix
was used to visualize and identify sub-groups in the
patient population. After identifying subgroups of RA
patients characterized by clinical and laboratory pheno-
types, we further investigated whether the SNPs were asso-
ciated with the sub-groups. Specifically, we attempted to
predict the different subgroups within RA cases using the
SNP data from the candidate gene study.

RA classification using RFs
In addition to the conventional association analysis meth-
ods that were used in the study to identify RA susceptibil-
ity loci, we also used RFs [3]. The method was used for
classification or prediction of cases and controls using the
SNP data, and five-fold cross-validations (CVs) were used
to evaluate classification accuracy. The receiver operating
characteristic (ROC) curve was calculated based on the
vectors of sensitivity and specificity for each of the five

CVs. The values of area under curve (AUC) from the five
CVs were averaged to compare the predictive ability and
stability.

All of the 17 candidate gene SNPs and the 5742 SNPs
from the genome-wide linkage panel were included in the
RFs model. RFs were also applied using selected subsets of
SNPs as predictor variables. These subsets were selected
on the basis of their ranking on the importance measure-
ment implemented in the RFs package. The SNPs that
were highly ranked were selected for the RFs model.

All statistical analyses were performed using the R statisti-
cal software package (version 2.1.0) from R Project http:/
/www.r-project.org/. The R package for Random Forests
(randomForest 4.5.-15) was installed and utilized follow-
ing the instructions.

Results
Candidate gene analysis of RA status
The SNPs associated with RA status at p < 0.05 are summa-
rized in Table 1. The PTPN22*rs2476601 and
SUM04*rs237025 loci showed the strongest association
to RA among the significant ones. In the multivariate
model, which included all five associated SNPs, PTPN22
and CTLA4 were found to be independently associated (p
< 0.05) with RA with a modest effect.

Using all of the 17 candidate gene SNPs, the predictive
ability of the RFs model was estimated by the ROC curve
with five-fold cross validation. The low average AUCs of
data set 1 and 2 (0.59 and 0.54) indicated poor predictive
ability in both data sets. This did not improve by using the
three most important SNPs ranked by the RFs model
(AUCs = 0.59 for both data sets). Furthermore, SNPs
PTPN22*rs2476601 and SUM04*rs237025 are consist-
ently ranked the top two on the variable importance score
in both data sets. Interestingly, both SNPs show strong
associations in the univariate GEE analysis (Table 1).

Candidate gene analysis of subgroups among RA patients
We investigated whether there are phenotypically distinct
subgroups among RA patients. Such subgroups may rep-

Table 1: Summary of significant associations (p < 0.05) between RA and candidate genes

Single-gene model Multiple-gene model

Gene*SNP Carrier-test Genotype-test p-Value OR (95% CI)

PTPN22*rs2476601 <0.0001 <0.0001 <0.0001 2.43 (1.82, 3.24)
CTLA4*CT60 0.0060 0.0172 0.0115 0.72 (0.56, 0.93)
HAVCR1*5509_5511delCAA 0.0339 0.0640 0.0731 0.80 (0.63, 1.02)
SUM04*rs237025 <0.0001 0.0002 0.1044 1.39 (0.94, 2.04)
MAP3K71P2*rs577001 0.0012 0.0017 0.4527 1.14 (0.80, 1.63)
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resent etiologically or genetically distinct entities among
RA patients, and therefore consideration of these sub-
groups in a genetic association study may lead to an
increase in the power to identify susceptibility genes.

Figure 1 shows the separation of the two clusters, for
which a cluster validity algorithm was employed to deter-
mine statistical significance. The empirical distribution of
a cluster validity statistic, within-to-between ratio, was
computed from 10,000 permutations of the partition vec-
tor. The test statistic was defined as the ratio of average
within cluster distances to the average between cluster dis-
tances for a partition vector. The clusters (subgroups A
and B) shown in Figure 1, was calculated to be significant
at p-value 0.01. These phenotypic clusters are correlated
with a set of clinical measures, such as ARA criteria score
[7], which reflect the disease severity.

Using the regression analysis method, we did not identify
significant associations between SNPs and cluster status
among RA patients, or additional SNPs when only severe
cases and controls were analyzed. The RFs model pre-
dicted the two distinct clusters among RA cases with an
overall predictive ability of 0.56 as measured by the AUC

of the ROC curve (Table 2). In addition, we excluded the
"mild" group (subgroup A in Figure 1) in order to sort out
the "severe" group (subgroup B in Figure 1) from the con-
trols. The RFs model was able to predict the two groups
with an overall predictive ability of 0.62 (Table 2). The
three most important SNPs for the prediction were
PTPN22*rs2476601, MAP3K71P2*rs577001, and
RUNX1*rs2268277. RUNX1*rs2268277 was not identi-
fied in our association analysis and our previous classifi-
cation, and therefore could be an additional putative
association.

RFs analysis using genome-wide linkage SNP panel
We examined the predictive ability of RFs using the 5742
genome-wide linkage SNPs. Using the classic training-
testing strategy with five-fold CV and the AUC of the ROC
curves, we found that the RFs model did not build a relia-
ble prediction model for RA status in either data set 1 or
2. However, when we only used SNPs that were highly
ranked on the importance score measure (e.g., the top 500
SNPs), high sensitivities and specificities were consist-
ently obtained in all five CVs for both data set 1 (Figure 2)
and 2 (similar results, not shown). The sensitivities and
specificities were approximately 90% and 80%, respec-
tively. Figure 3 shows the impact of the number of
selected SNP predictors. Using the AUC of the ROC curve
to present the predictive ability of each RFs model, we
found that the overall predictive ability declined when
more than the 500 top ranking SNPs were used to build
the model. When compared to the randomly selected
SNPs in RF modeling, we concluded that the predictive
ability can be significantly improved by selecting the most
important SNPs and the improvement was not due to the
random effects (Figure 3). When we estimated the most
important SNPs only in the training data set for each CV,
the improvement of predictive ability was not as obvious
as in the full data set. This suggests that the size of the data
set may not be sufficient and each training set could not
represent the whole data set. Therefore, the best set of pre-
dictors identified from each training set would not gener-
alize well across the whole data set.

We generated two replicate data sets in this study to com-
pare the replicability of variable selection using the RFs
method and the regular SNP association test. In Table 3,
the SNPs identified in both data sets are summarized. In
general, among top ranked SNPs by either Random For-

Two distinct clusters of RA patients in a multidimensional scaling (MDS) plotFigure 1
Two distinct clusters of RA patients in a multidimen-
sional scaling (MDS) plot. The X-axis and the Y-axis rep-
resent the dimensions with the two largest eigenvalues 
generated by the MDS algorithm.

Table 2: Summary of classification accuracy rates for different classification schemes

RFs classification Sensitivity Specificity AUC of ROC

All cases vs. Controls 57. 5% 60.6% 0.59
Cluster A vs. Cluster B 77.1% 36.3% 0.56
Cluster B vs. Controls 67.1% 52.3% 0.62
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ests or the association test, the numbers of shared SNPs
between the two data sets were not significantly greater
than those expected by chance. Only the top 200 SNPs

estimated by RFs had a significant overlap (p-value was
calculated by comparing to the profile of shared SNP
numbers which was generated by 10,000 random draws
from 5742 SNPs), albeit a small number. There are a
number of reasons for the lack of replicability in variable
selection. For example, the limited sample size, the weak-
ness of individual SNP effects, the insufficient SNP cover-
age in the genome, the sampling strategy itself, and over-
fitting can all contribute to the inconsistency across sam-
ples.

Conclusion
As an example of application, we used RFs for the analysis
of the NARAC data sets and found that the candidate gene
SNPs did not predict RA patients and control subjects
accurately. This is despite including SNPs (either as a sub-
set or together with the other candidate gene SNPs) that
have been found to be associated in multiple studies [4,8].
However, using the top 500 SNPs ranked by the impor-
tance score from the genome-wide linkage panel of 5742
SNPs, we were able to accurately predict RA patients and
normal subjects with sensitivity of approximately 90%
and specificity of approximately 80%, which was con-
firmed by five-fold cross-validation and replication across
the two data sets.

The RFs algorithm is known to be more resistant to "over-
fitting" and the noise variables [3] than conventional
regression analysis. In this study, we demonstrated that
the analysis strategy needs to be carefully designed for
high-dimensional analysis. For instance, by using only the
500 highest ranked SNPs (out of the 5742 SNPs) in the
RFs model, the predictive ability was greatly improved
compared to using all SNPs. This indicates that RFs may
not be resistant to too many "noisy" predictors such as the
100,000s of genome-wide SNP markers. For a specific dis-
ease or disease-related trait, only a small portion of all
SNPs might be relevant. Therefore, the signal-to-noise
ratio has to be optimized by reducing the SNP list to feed
into the classification model.

Although we have developed a strategy to generate two
replicate samples that were independent within single
samples but related across the samples, the genetic effects
were not replicated by comparing the most important
SNPs in either RFs or by univariate SNP association tests
using the genome-wide SNPs. Such lack of replicability in
predictive SNPs suggests that the genetic effects may not
be robust when the effect size of each SNP is minimal
and/or the environmental factors or other covariates were
not taken into account in the model. Therefore, in analyz-
ing high dimensional genomic data, it may be essential to
incorporate the non-genetic factors that contribute to the
risk of the disease. In the analyses of predicting common
disease status using the rich genome-wide SNP data, we

Reducing dimensionality can improve the predictive ability of RFsFigure 3
Reducing dimensionality can improve the predictive 

ability of RFs. , Using the most important predictors in 

data set 1; , using the most important predictors in data 

set 2; , using random predictors in data set 1; , using 
random predictors in data set 2.

ROC curve of five-fold CV using RFs with the 500 most important SNPsFigure 2
ROC curve of five-fold CV using RFs with the 500 
most important SNPs. For each CV, a prediction model is 
built by using the training dataset and the ROC curve is gen-
erated by comparing the predicted RA status with the true 
RA status in the testing dataset. Each color curve represents 
prediction accuracy of one of the five CVs.
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believe the machine learning methods such as RFs can
play an important role in understanding the complicated
genetic structures. In addition, further investigations are
needed to optimize the algorithms of the RF approach as
well as to understand the limitations in attempting to
achieve reliable predictive models.
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