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Abstract
Background/Aims: Hypocretin promotes wakefulness and 
modulates REM sleep. Alterations in the hypocretin system 
are increasingly implicated in dementia. We evaluated rela-
tionships among hypocretin, dementia biomarkers, and 
sleep symptoms in elderly participants, most of whom had 
dementia. Methods: One-hundred twenty-six adults (mean 
age 66.2 ± 8.4 years) were recruited from the Emory Cogni-
tive Clinic. Diagnoses were Alzheimer disease (AD; n = 60), 
frontotemporal dementia (FTD; n = 21), and dementia with 
Lewy bodies (DLB; n = 20). We also included cognitively nor-
mal controls (n = 25). Participants and/or caregivers com-
pleted sleep questionnaires and lumbar puncture was per-
formed for cerebrospinal fluid (CSF) assessments. Results: 
Except for sleepiness (worst in DLB) and nocturia (worse in 
DLB and FTD) sleep symptoms did not differ by diagnosis. 
CSF hypocretin concentrations were available for 87 partici-
pants and normal in 70, intermediate in 16, and low in 1. 
Hypocretin levels did not differ by diagnosis. Hypocretin lev-

els correlated with CSF total τ levels only in men (r = 0.34;  
p = 0.02). Lower hypocretin levels were related to frequency 
of nightmares (203.9 ± 29.8 pg/mL in those with frequent 
nightmares vs. 240.4 ± 46.1 pg/mL in those without; p = 0.05) 
and vivid dreams (209.1 ± 28.3 vs. 239.5 ± 47.8 pg/mL; p = 
0.014). Cholinesterase inhibitor use was not associated with 
nightmares or vivid dreaming. Conclusion: Hypocretin lev-
els did not distinguish between dementia syndromes. Dis-
turbing dreams in dementia patients may be related to low-
er hypocretin concentrations in CSF.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

Disturbed sleep in dementia may result from cell loss 
in neuronal populations affecting circadian rhythms, ho-
meostatic sleep regulation, and autonomic and respira-
tory functions [1]. The neurobiological substrates for 
these dysfunctions remain incompletely understood, 
with recent attention focusing on hypocretin-1 (orexin 
A). Hypocretin is a hypothalamic peptide that promotes 
wakefulness and regulates REM sleep, and hypocretin de-
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ficiency is the biomarker for sleepiness and REM-related 
phenomena, including vivid dreaming and hallucina-
tions, in narcolepsy type 1 (NT1). Animal models indi-
cate that hypocretin may impact β-amyloid 1–42 (Aβ42). 
In particular, higher hypocretin may prevent phagocyto-
sis of Aβ42 by microglia, exogenous administration of 
hypocretin increases Aβ42 in brain interstitial fluid, and 
reductions in hypocretin signaling via hypocretin recep-
tor antagonists or in receptor knockout animals reduce 
Aβ42 [2–4].

Consistent with this animal literature, human studies 
have generally, although not universally [5], concluded 
that patients with Alzheimer disease (AD) or mild cogni-
tive impairment (MCI) with subsequent conversion to 
AD have higher hypocretin levels than controls [6, 7], 
than patients with non-AD dementia syndromes [8], or 
than people with other nondementing neurologic diseas-
es [9]. However, studies examining associations between 
hypocretin and cerebrospinal fluid (CSF) AD biomark-
ers, such as Aβ42, have shown mixed results [6, 8–12] to 
date. CSF τ is more consistently associated with higher 
hypocretin [5, 6, 10], with evidence of effect modification 
by gender [11].

We examined CSF hypocretin across 3 dementia types 
(AD, dementia with Lewy bodies [DLB], and frontotem-
poral dementia [FTD]) and controls to examine associa-
tions between CSF-derived hypocretin and AD biomark-
ers. Because hypocretin deficiency is so strongly associ-
ated with excessive daytime sleepiness and abnormal 
dreaming experiences in NT1, we also examined relation-
ships between hypocretin and patient/caregiver-reported 
sleepiness, sleep quality, and dream experiences.

Materials and Methods

Participants were recruited from our tertiary referral, universi-
ty-based medical center [13–16]. Age-matched normal-cognition 
(NC) subjects were prospectively recruited for a biomarker study, 
which included detailed neuropsychological, imaging, and CSF 
biomarker analyses [13].

Diagnoses of NC and AD were made according to consensus 
[13]. People meeting the consensus criteria for MCI whose CSF 
biomarkers were consistent with pathologic AD were included in 
the AD group. Diagnoses of FTD (behavioral or language variant) 
[17] and DLB [18] were made by a board-certified cognitive neu-
rologist (W.T.H.) with international consensus criteria.

CSF Biomarkers
CSF was collected using a 24-gauge atraumatic needle into 

polypropylene tubes using a modified ADNI protocol without 
overnight fasting [19] and immediately aliquoted, labeled, and fro-
zen at –80  ° C. CSF AD biomarkers, including Aβ42, total τ (t-Tau), 

and τ phosphorylated at threonine 181 (p-Tau181), were measured 
using Alzbio3 kits (Fujirebio, Malvern, PA, USA) in the Luminex 
200 platform [19]. Ratio values of t-Tau/Aβ42 > 0.39 or p-Tau181/
Aβ42 > 0.15 were used as AD cutoffs. When ratios were discordant, 
p-Tau181/Aβ42 was used.

Hypocretin-1 (orexin-A) levels were measured in unextracted 
CSF using a highlysensitive, commercially available, 125-I radio-
immunoassay kit (Phoenix Pharmaceuticals, Burlingame, CA, 
USA) on all participants with sufficient CSF volume available. 
Each run included a positive control from the kit and known low 
and normal reference samples from our biobank. Samples were 
blindly measured in 100-μL duplicates and values were averaged. 
The standard curve range was 10–1,280 pg/mL. We have demon-
strated an excellent interassay correlation (r = 0.79) between sam-
ples measured at our lab and the Stanford University reference lab 
[20]. Hypocretin values were defined as: low (< 110 pg/mL), inter-
mediate (110–200 pg/mL), or normal (> 200 pg/mL).

Sleep Symptom Questionnaires
The Neurodegenerative Disease Sleep Questionnaire (NDSQ) 

[21] was completed by the participant or by the participant and 
caregiver and was it available on a subset of participants. Daytime 
sleepiness was assessed using the Epworth Sleepiness Scale (ESS) 
[22].

Statistical Analyses
CSF biomarkers, ESS scores, and sleep durations on the NDSQ 

were analyzed as continuous variables. For questions assessing fre-
quency of symptoms, responses were dichotomized, with symp-
toms considered present if endorsed at least “sometimes” for 
5-point scales and at least “often” for 4-point scales. “Don’t know” 
responses were considered missing for question-specific analyses. 
For sensitivity analysis, we limited analyses for items responded to 
by the patient alone or by both the patient and the caregiver. Cho-
linesterase inhibitor exposure was determined by medical record 
review and based on taking a cholinesterase inhibitor at the time 
of lumbar puncture, questionnaire completion, or both.

Sleep symptoms were compared across diagnoses by a χ2 or 
Fisher exact test for categorical variables and by a one-way, mixed-
model ANOVA (to control for unequal sample sizes and varianc-
es) for continuous variables. For significant ANOVA results, pair-
wise multiple comparisons were performed via a Tukey test. For 
biomarker interrelationships Pearson correlations were used. 
Sleep symptoms and biomarker associations were examined via a 
t test (correcting for unequal variance). p <  0.05 were considered 
statistically significant.

Results

Participants were 126 adults (58 women) with a mean 
(±SD) age of 66.2 (±8.4) years. Participants’ diagnoses 
were AD (n = 60), FTD (n = 21), DLB (n = 20), or NC  
(n = 25). There were significantly fewer women with DLB 
and FTD (Table 1). Except for reported sleepiness (ESS), 
worse in DLB than in controls, and nocturia, worse in 
DLB and FTD, sleep symptoms did not differentiate di-
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agnostic groups (Table 1). These differences were not 
modified meaningfully by whether the patient had com-
pleted the questionnaire alone or with caregiver assis-
tance (data not shown).

AD participants had significantly lower Aβ42 and sig-
nificantly higher t-Tau and p-Tau181 values than NC and 
the other 2 patient groups (Table 1). Participants with 
FTD had higher t-Tau values than those with DLB or NC. 
Hypocretin (n = 87) was normal in 70, intermediate 
(range 143.8–198.0 pg/mL) in 16 (all 4 diagnoses), and 
low (106.8 pg/mL) in 1 patient (AD). Hypocretin did not 
differ by diagnosis. Across all of the participants, Aβ42 
was negatively correlated with p-Tau181 (r = –0.39; p < 
0.0001) but not with t-Tau (r = –0.16; p = 0.08). The 2 τ 
biomarkers were strongly correlated (r = 0.53; p < 0.0001). 
Hypocretin levels were uncorrelated with Aβ42, t-Tau, or 
p-Tau181 across all groups or in AD only. Among men, 
hypocretin and t-Tau were moderately correlated (r = 
0.34; p = 0.02), particularly for AD (r = 0.68; p = 0.001), 
but hypocretin was unrelated to p-Tau181 or Aβ42. Among 
women, no such associations were noted.

AD biomarkers were unrelated to sleep symptoms (all 
p values ns), except leg restlessness, which was was asso-

ciated with lower t-Tau values (39.2 ± 14.7 vs. 75.8 ± 
54.6). ESS and hypocretin were unrelated (r = –0.06; p = 
0.66); however, REM-sleep dyscontrol symptoms corre-
lated with hypocretin. Participants with frequent night-
mares had significantly lower hypocretin levels than 
those without (203.9 ± 29.8 vs. 240.4 ± 46.1 pg/mL, t = 
2.01; p = 0.05), and participants having frequent vivid 
dreams showed lower hypocretin levels than those with-
out (209.1 ± 28.3 vs. 239.5 ± 47.8 pg/mL, t = 2.62; p = 
0.014). The directionality of these differences was not 
impacted by whether the caregiver had assisted with 
questionnaire completion, although p values in those 
subanalyses became nonsignificant, likely reflecting 
smaller samples. No other questionnaire items were re-
lated to hypocretin.

Associations between hypocretin and reported dream-
ing were not mediated by cholinesterase inhibitors. Re-
ported nightmares occurred in 10.0% of those receiving 
cholinesterase inhibitors and in 9.4% of those not receiv-
ing them (p = 1.00; Fisher exact test), whereas the corre-
sponding proportions reporting vivid dreaming were 
16.7 and 22.6%, respectively (p = 0.52; χ2 test).

Table 1. Demographic characteristics, sleep symptoms, and biomarker levels

Characteristic AD 
(n = 60)

FTD 
(n = 21)

DLB 
(n = 20)

CTL 
(n = 25)

p value Significant 
pairwise differences

Female gender 29 (48.3) 7 (33.3) 5 (25.0) 17 (68.0) 0.02 CTL > FTD
CTL > DLB

Age, years 65.5 (7.7) 66.3 (9.2) 64.9 (9.8) 69.6 (9.2) 0.52 –
ESS score 6.0 (4.7) 6.9 (6.3) 9.8 (3.7) 4.8 (3.1) 0.04 DLB > CTL
Nightly sleep duration, h 7.7 (1.3) 7.6 (1.1) 8.8 (1.9) 7.6 (0.9) 0.45 –
Vivid dreams 7 (15.9) 4 (22.2) 3 (37.5) 3 (23.1) 0.51 –
Nightmares 3 (6.7) 1 (5.9) 2 (25) 2 (15.4) 0.22 –
Nocturia 10 (20.8) 8 (42.1) 5 (62.5) 1 (7.7) 0.01 CTL < FTD = 

DLB; AD < DLB
Snoring 24 (53.3) 12 (70.6) 7 (100) 6 (60.0) 0.09 –
Sleep onset insomnia 10 (20.4) 2 (11.1) 2 (25.0) 6 (46.2) 0.13 –
Sleep maintenance insomnia 20 (40.8) 10 (52.6) 6 (75.0) 4 (30.8) 0.20 –
Early morning awakenings 14 (28.6) 4 (21.1) 5 (62.5) 5 (38.5) 0.19 –
Leg restlessness at bedtime 2 (4.4) 0 (0) 1 (12.5) 1 (7.7) 0.36 –
Leg restlessness during 

nocturnal awakenings 2 (4.3) 1 (5.3) 2 (25) 1 (7.7) 0.16 –
CSF Aβ42 118.8 (63.1) 271.2 (148.4) 255.5 (90.4) 301.0 (137.5) 0.44a –
CSF t-Tau 93.8 (71.8) 61.0 (36.8) 33.1 (16.6) 37.9 (20.7) 0.01a FTD > DLB = CTL
CSF p-Tau181 50.2 (26.0) 21.8 (13.6) 18.5 (8.0) 24.8 (19.6) 0.31a –
CSF hypocretin 256.8 (59.0) 245.0 (50.5) 240.3 (60.2) 248.1 (53.3) 0.79 –

Values are reported as means (SD) or numbers (%). CTL, control. a Aβ42, t-Tau, and p-Tau181 were used to assign an AD diagnosis 
and therefore differ between AD and other groups by definition; this p value is for the 3-group comparison of FTD, DLB, and CTL. Bold 
text indicates statistical significance with p < 0.05.
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Discussion/Conclusions

Although biomarkers differentiated AD patients from 
controls [19], the absence of associations with hypocretin 
was unexpected. Among moderate-to-severe AD pa-
tients, Liguori et al. [6] reported moderate effects (r2 val-
ues of 0.31–0.40) relating CSF hypocretin and p-Tau181 
and t-Tau (but not Aβ42). In a community-based, non-
dementia cohort, Osorio et al. [23] reported more modest 
positive relationships (r2 values of 0.18–0.25) between 
hypocretin, t-Tau, and p-Tau181, with a still weaker rela-
tionship with Aβ42. In lateral hypothalamic postmortem 
analyses, hypocretin immunoreactivity was reduced in 
AD relative to NC, while neuronal counts were robustly 
related to neurofibrillary stage (r2 = 0.45) [24]. From these 
findings, one might expect AD to be associated with a 
greater neurofibrillary tangle count, elevated CSF t-Tau 
and p-Tau181 levels, and decreased CSF hypocretin. Our 
and others’ observation of a positive correlation between 
τ and hypocretin in AD thus suggests a functional up-
regulation independent of neuronal loss. Because CSF t-
Tau levels in AD also mirror biology beyond tangle depo-
sition [25], increased CSF hypocretin may reflect by-
stander effects with clinical consequences. Even stronger 
neuropathologic relationships were noted with hypocre-
tin immunoreactivity in DLB [24], but we detected no 
relationship between τ and hypocretin in DLB. This could 
reflect a small sample, a floor effect associated with low 
CSF t-Tau and p-Tau181 levels in DLB, different biological 
pathways activated in AD vs. DLB, or a stronger gender 
influence because of the DLB male predominance. Wom-
en have been shown to have higher postmortem ventricu-
lar CSF hypocretin levels than men [26]; this occurs in 
both AD and NC and could reflect estradiol’s effects on 
hypocretin receptor expression [27]. Higher hypocretin 
in relation to higher τ was reported in a small-sample 
study comprised mainly of women [10].

We noted relatively few associations between sleep 
symptoms and AD biomarkers and, except for dreaming 
experiences, hypocretin. AD biomarkers show a complex 
relationship to sleep in human studies. For example, 1 
night of experimentally induced slow-wave sleep frag-
mentation in controls elevated CSF Aβ40 [28] and de-
creased Aβ42 [29], suggesting that sleep disruption dys-
regulates the Aβ isoform. Paralleling these results are 
cross-sectional, observational studies demonstrating that 
a poorer self-reported sleep quality [30], a lower acti-
graphically defined sleep efficiency [31], and lower levels 
of slow wave sleep [32] were all associated with altered 
CSF Aβ42. Using neuroimaging, similar associations oc-

curred between subjectively assessed poor sleep and a 
greater PET-based amyloid burden [33], and impaired 
overnight memory consolidation was related to both de-
creased slow-wave activity and prefrontal amyloid bur-
den in a causally dependent manner [34].

In contrast to much of this research, however, Olsson 
et al. [35] reported that a 5-night restriction of 4 h in bed 
had no effect on Aβ isoforms in middle-aged adults, and 
a community-based study showed that Aβ42 levels were 
unrelated to incident AD in 2 cohorts totaling about 1,000 
participants [36]. Among AD patients and patients with 
MCI with likely incipient AD, lower Aβ42 levels were as-
sociated with a longer, not a shorter, sleep duration [9]. A 
complex interaction between actigraphically assessed dis-
turbed sleep measured antemortem and greater postmor-
tem Aβ neuropathology has also been suggested, in which 
sleep per se may not directly mediate associations but 
may operate only within the context of apolipoproteinE4 
[37] risk alleles.

Findings are also inconclusive regarding CSF τ and 
sleep, with some experimental studies in normals show-
ing no effects of sleep deprivation/fragmentation [28, 29, 
35] and several descriptive studies reporting associations 
between poor sleep and higher τ values [6, 30]. An obser-
vational study in a population with no or only very mild 
cognitive impairment demonstrated that a lower spectral 
power in slow-wave (1–4.5 Hz) activity was related to a 
widespread higher τ activity on PET across the amygdala 
and various cortical regions, as well as higher t-Tau and 
p-Tau181 values in CSF (though not Aβ42) [38]. Addition-
ally, mouse models have recently implicated τ deposition 
as a consequence of sleep loss [39].

Although it has been investigated in fewer studies, a 
similar lack of consensus occurs for hypocretin, where 
some reports have suggested higher CSF levels associated 
with poor nocturnal sleep in AD measured both subjec-
tively [7] and polysomnographically [6], findings not re-
ported by others [9, 23, 40]. One study reported that low-
er, rather than higher, hypocretin related to increased 
daytime napping, as assessed actigraphically [40], and to-
tal sleep deprivation had no effect on hypocretin in nor-
mal subjects [29]. Taken together, this literature shows a 
lack of uniformity between various measures of sleep dis-
turbances and AD biomarkers or hypocretin, findings 
that likely vary depending on the biomarker under evalu-
ation, the population studied, and how sleep was mea-
sured.

We found few differences in sleep-related symptoms 
across diagnoses, and perhaps most surprising was their 
lack of differentiation of AD and DLB. An analysis of 
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nearly 4,600 patients on the single NPI sleep item showed 
that DLB patients were reported by caregivers to experi-
ence disturbed sleep more often, and earlier in the disease 
course, compared to AD patients [41]. In the current 
much smaller sample, we found that the DLB patients re-
ported more severe daytime sleepiness than all of the oth-
er groups, compatible with the sleepiness ascribed to the 
condition via diagnostic criteria [42]. Additionally, noc-
turia, both a cause and an effect of poor sleep [43], was 
more common in DLB and is compatible with both worse 
nighttime sleep and daytime sleepiness.

Disturbing dreams accompany many forms of demen-
tia, particularly in cases with prior war exposures leading 
to PTSD [44]. Perhaps paradoxically, early studies (e.g., 
[45]) suggested that the lack of dream recall was an early 
predictor of incipient cognitive decline, and polysomno-
graphic studies indicate that dream recall is less likely 
among more demented patients when awakened from 
REM [46]. Seminal polysomnographic studies of unmed-
icated AD patients have shown graded associations be-
tween a greater severity of cognitive impairment and low-
er amounts of REM (e.g., [47]), findings that may reflect 
disruption of REM cholinergic systems. These findings 
have a new impetus in a 12-year follow-up of elderly par-
ticipants from the Framingham Heart Study, which 
showed that a 1% decrease in the REM percentage in-
creased the incident dementia risk by 9% [48]. We did not 
document altered REM sleep here, but we noted associa-
tions between a biochemical marker related to REM sleep 
regulation and the frequency of adverse dream experi-
ences. This could not be accounted for by cholinesterase 
inhibitors despite the fact that this medication class is of-
ten associated with increased REM [49] and despite re-
ports of increased and distressing dream experiences in 
both case reports [50] and randomized clinical trials [51]. 
Insofar as we know, our data are the first to suggest that 
relatively low hypocretin levels might represent a trans-
diagnostic marker of dreaming across different types of 
dementia. Several small-scale studies (i.e., 15 or fewer pa-
tients) have reported reduced CSF hypocretin in relation 
to poor-quality sleep or increased daytime sleepiness in 
AD [40] or FTD [52], and one reported that increased 
hypocretin corresponded with REM without atonia [53] 
but none reported on abnormal dream experiences 
among those patients. In 26 MCI patients, Liguori et al. 
[7] reported higher, rather than lower, CSF hypocretin 
levels in relation to REM.

Despite novel findings, our study has clear limitations, 
including reliance on patient and/or caregiver reports 
about sleep rather than more objective measures. Also, 

our analyses did not adjust for multiple testing. We did 
not control for time of day of CSF collection, though the 
circadian amplitude of CSF hypocretin is small (11.5 pg/
mL) and not different between those with and those with-
out AD [12]. Dementia severity, dementia duration, and 
presence of an REM sleep behavior disorder might im-
pact these findings and should be evaluated in future 
studies. We acknowledge that our reported associations 
between hypocretin and abnormal dreaming constituted 
relatively small effects, though they are compatible with 
the magnitude of effects seen in other studies involving 
subjective sleep measures in relation to AD biomarkers 
(e.g., [30]). Furthermore, our sample size did not allow a 
detailed assessment of these effects within each diagnosis. 
Within these interpretative constraints, however, these 
data imply that vivid and troubling dreams experienced 
by at least some dementia patients may have their origin 
not in pharmacology but rather in dysregulation of a neu-
ropeptide controlling REM sleep.
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