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Abstract: (1) Carthamus Tinctorius L. (safflower) is extensively used in traditional herbal medicine. (2)
The aim of this study was to investigate the bioactive properties of polyphenol extracts from flowers
of Carthamus Tinctorius (CT) cultivated in Italy. We also evaluated the properties of two bioactive
water-soluble flavonoid compounds, hydroxy safflor yellow A (HSYA) and safflor yellow A (SYA),
contained in Carthamus Tinctorius petals. (3) The total polyphenol content was 3.5 ± 0.2 g gallic acid
equivalent (GAE)/100 g, flavonoids content was 330 ± 23 mg catechin equivalent (CE)/100 g in the
flowers. The extract showed a high antioxidant activity evaluated by oxygen radical absorbance
capacity (ORAC) and 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assays. In addition,
flower extract, SYA, and HSYA were able to reduce the susceptibility of low-density lipoprotein
to copper-induced lipid peroxidation. In order to investigate the bioactive properties of flower
extract, SYA, and HSYA we also studied their modulatory effect of oxidative stress on human dermal
fibroblasts (HuDe) oxidized by tert-butyl hydroperoxide (t-BOOH). The CT extract at concentrations
ranging from 0.01–20 µg GAE/mL of polyphenols, exerted a protective effect against t-BOOH triggered
oxidative stress. At higher concentration the extract exerted a pro-oxidant effect. Similar results have
been obtained using HSYA and SYA. (4) These results demonstrate a biphasic effect exerted by HSYA,
SYA, and flower extracts on oxidative stress.
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1. Introduction

Previous studies have demonstrated healthy promoting properties of seed of Carthamus tinctorius
L. (safflower), a traditional herbal medicine used across Asia [1–4]. Carthamus tinctorius L. seeds are
known as a source of α-linoleic acid and have been used to obtain cooking oil in Europe [4]. The word
tinctorius essentially means ‘for dyeing’ in English. The flowers of safflower have been used historically
as a colorant in food and as dye in the clothing industry. Bioactive compounds such as polyphenols
account for the colour and taste of safflower [2]. The phenolic composition and antioxidant activity
of safflower seeds and petals has been previously studied [4,5]. Gallic acid was the most abundant
phenolic acid in Carthamus tinctorius L. flowers, other phenolic compounds are chlorogenic acid,
syringic acid, quercetin-3-galactoside, and epicatechin [5]. Moreover, quinochalcone C-glycosides have
been described in safflower, the most representative are the water soluble compounds hydroxy safflor
yellow A (HSYA), safflor yellow A (SYA), and hydroxy safflor yellow B [4–6]. The bioactive properties
of HSYA, used in Chinese medicine for treatment of cerebrovascular and cardiovascular disease, have
been previously studied [7–10]. Anti-inflammatory properties [8] and neuroprotective effects have
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been reported [10]. Among molecular mechanisms, antioxidant activity has been described [7,11].
Moreover, HSYA significantly inhibits abnormal proliferation of tumor cell in the culture, without
affecting normal endothelial cell growth [12]. HSYA reduces also apoptosis in pancreatic β-cells by
attenuating oxidative damage and JNK/c-Jun signaling pathway [13]. Previous studies have shown
that also SYA exerts an inhibitory effect of oxidative stress and apoptosis [14].

The aim of this study was to investigate the functional properties of extracts obtained by the
flowers of Carthamus Tinctorius L. cultivated in Italy. We evaluated polyphenol and flavonoid levels and
antioxidant properties using different experimental approaches. Recent studies on cells in the culture,
demonstrate a biphasic effect exerted by several polyphenols on oxidative stress, acting as antioxidants
at low concentrations but pro-oxidant at higher concentrations [15,16]. In order to investigate whether
safflower extracts also exert a biphasic effect on oxidative stress, we used HuDe cells as an experimental
model. The modulatory effect of HSYA and SYA on oxidative stress, was also studied.

2. Materials and Methods

2.1. Reagents

All cell culture reagents were obtained by Euroclone (Euroclone, Italy). All chemical reagents were
obtained by Sigma Aldrich (Sigma, St Louis, MO, USA). HSYA and SYA compounds were purchased
from Chem Faces (CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan,
Hubei 430056, China). The fluorescent probe 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA)
(C400) was supplied by Invitrogen (Invitrogen, Carlsbad, CA, USA).

2.2. Preparation of Extract

Carthamus Tinctorius (CT) was kindly supplied by Terra e Vita, Recanati (MC), Italy. The flowers
were washed and the petals were dried in an oven for 5 h at 40 ◦C. Five grams of the powdered sample
was incubated with 100 mL ultra-filtered water at 80 ◦C for 10 min in a water bath shaker.

Subsequently after centrifugation (10 min at 1000 g), the supernatant was filtered with 0.22 µm
filters, 30 mm diameter [17].

2.3. Total Phenolic Composition

Total phenolic content (TPC) was evaluated following the Folin–Ciocalteu assay [18]. Briefly,
20 µL of extract were used. 0.1 mL of Folin–Ciocalteu phenol reagent and 0.3 mL sodium carbonate
solution (20%) were added to tubes. After incubation for 40 min at 37 ◦C, absorbance was evaluated at
765 nm using a double-beam UV–Vis spectrophotometer (Shimadzu UV-2401 PC - Kyoto 604-8511
Shimadzu Corporation, Kyoyo, Japan). Blank samples were prepared using 20 µL of water and treated
as described above. Gallic acid (GA) was used to develop a 0.1–1.3 mg/mL standard curve. The
experiments were carried out in triplicate and TPC are expressed as milligrams of GA equivalent per
100 g of dry weight (mg GAE/100 g dw).

2.4. Total Flavonoids Evaluation

Total flavonoid content (TFC) was quantified according to the method of Kim et al. [19]. Briefly,
500 µL of extracts were used. 150 µL of NaNO2 (5%) was added to tubes. At the end of incubation
(10 min) at room temperature, 150 µL of 10% AlCl3 were added and samples were further incubated for
10 min at room temperature. After that, 2 mL of NaOH (4%) were added. After incubation for 15 min,
absorbance was evaluated at 415 nm against the blank using a double-beam UV–Vis spectrophotometer.
Catechin was used as standard for the calibration curve (0–150 µg/mL). All the experiments were done
in triplicate and the results are expressed as milligrams of catechin equivalent (CE) of 100 g of dry
weight (mg CE/100 g dw).
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2.5. Antioxidant Activity

2.5.1. Oxygen Radical Absorbance Capacity (ORAC) Assay

The antioxidant activity of CT extracts or HSYA and SYA was determined using an oxygen radical
absorbance capacity (ORAC) assay [20]. This assay is based on the ability of the antioxidants to
prevent loss of fluorescence signal of the fluorescent probe Fluorescein by scavenging peroxyl radicals
generated by thermal decomposition of 2,2′-azobis (2-methylpropionamide) dihydrochloride (AAPH).
The reaction was carried out in 75 mM sodium phosphate buffer (pH 7.4) and the final reaction mixture
was 200 µL. 150 µL of 0.08 mM Fluorescein and 25 µl of CT extract, HSYA, and SYA were added to
each well of a 96-well black polystyrene microplate. The mixture was preincubated for 10 min at 37 ◦C
before adding 25 µL of 150 mM AAPH solution, using a multichannel pipette.

Fluorescence emission intensity was recorded every 5 min for 3 h at λ ex 485/λ em 530 nm in a
Multi-Mode Microplate Reader SynergyTM HT (BioTek Instruments, Inc., Winooski, VI, USA). A blank
sample containing PBS, Fluorescein, and AAPH was prepared. Trolox (from 5 to 300 µM) was used to
calibrate the assay. Samples were analyzed in triplicate. The final ORAC values were calculated using
the net area under the decay curves (AUC).

Data about CT extract were expressed as Trolox equivalents (mmol TE/100 g dw). For SYA and
HYSA we calculated the Trolox index as reported by Martinet et al. [21]:

Trolox index = Delta AUC sample × [Troloxconcentration]/Delta AUC Trolox × [sampleconcentration] (1)

2.5.2. 2-Diphenyl-1-picrylhydrazyl (DPPH) Radical-Scavenging Assay

The antioxidant activity of extracts was also determined using a 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical-scavenging assay [22]. Aliquots of extracts (50 µL) were added to 1 mL of DPPH
solution (5 mM) and the absorbance (ABS) was determined at 517 nm after 15 min of incubation. All
samples were analyzed in triplicate. We calculated the percentage of scavenging and the inhibitory
concentration (IC50). IC50 is the concentration of an antioxidant which exerts a 50% inhibition of
free radical activity. EC50 (effective concentration) values and antiradical power (ARP) have been
also evaluated:

Scavenging (%) = [(ABSCTRL − ABSsample)/ABSCTRL] × 100 (2)

EC50 = IC50 (µg/mL)/DPPH (µg/mL) t = 0 (3)

ARP = 1/EC50 (4)

2.5.3. Evaluation of the Formation of Conjugated Dienes

Human low-density lipoproteins (LDL) were isolated from plasma by ultracentrifugation [23].
Lipid peroxidation and formation of conjugated dienes was followed monitoring changes in absorbance
at 234 nm of LDL (1 mg/mL) during oxidative stress induced in vitro with copper (5 µM), in the absence
or in the presence of CT extract. Increasing concentrations of HSYA and SYA (0–60 µg/mL) were used.
The effects of safflower extracts were evaluated in the range of polyphenols (0–17 µg GAE/mL). The
kinetic was studied for 4 h into 96-well plates. The lag time was calculated from the oxidation curve
and percentage of inhibition rate was calculated:

Inhibition (%) = [(lag timesample − lag timeCTRL)/lag time CTRL] × 100 (5)

2.6. Cell Culture and Treatment

HuDe cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% (v/v)
heat inactivated fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin, 100µg/ml streptomycin,
10 mM non-essential amino acids. Cells were grown at 37 ◦C in a humidified atmosphere containing
5% (v/v) CO2.
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2.6.1. Cell Viability

The effect of safflower extract on cell viability was evaluated using the methyl thiazolyl tetrazolium
(MTT) assay [24]. Briefly, HuDe cells were seeded at a density of 5 × 103 cells/well into a 96-well
plate and incubated at 37 ◦C in an atmosphere of 5% CO2. After plating overnight, 100 µL of CT
aqueous extract containing increasing concentrations of polyphenols (0–150 µg GAE/mL), HSYA, or
SYA (0–150 µg/mL) were added to the cell media. Cells were then incubated at 37 ◦C for 48 h. Then,
100 µL of MTT solution (5 mg/mL) was added to each well. The absorbance was measured at 540 nm
with a Multi-Mode Microplate Reader SynergyTM HT (BioTek Instruments, Inc.).

Moreover, we evaluated the effect of safflower extract, HSYA, or SYA on Lactate Dehydrogenase
(LDH) release. LDH release, a good indicator of cellular damage, was measured with a commercially
available LDH assay kit as previously described [25]. Absorbance was read at 340 nm in a Multi-Mode
Microplate Reader SynergyTM HT (BioTek Instruments, Inc.).

2.6.2. Intracellular Reactive Oxygen Species (ROS) Levels

The formation of ROS in cells treated in different experimental conditions was evaluated using
H2DCFDA as a probe [26]. H2DCFDA was dissolved in dimethyl sulfoxide (DMSO) as stock solution
and kept frozen in −20 ◦C. Cells (25 × 103 cells/well) were seeded 24 h before treatment with CT extract,
HSYA, or SYA. After 48 h of treatment with CT extract, HSYA, or SYA at the same concentrations used
in the test of viability, the medium was removed, and samples were washed with PBS. Then, cells were
pre-treated for 45 min at 37 ◦C with the fluorescent probe 10 µM as final concentration. At the end of
the incubation, H2DCFDA was removed and the fluorescence of the cells from each well was measured
and recorded on a fluorescence plate reader at λex/λem (485/535 nm). Multi-Mode Microplate Reader
SynergyTM HT (BioTek Instruments, Inc.). The effect of CT extract, HSYA, or SYA was also studied in
cells oxidized using 50 µM tert-butyl hydroperoxide (t-BOOH).

2.7. Statistical Analysis

The data from cell experiments are representative of five independent experiments and the data
are shown as the mean ± SD. The Student’s t-test was applied and differences were considered to be
significantly different if p < 0.05 (Origin, OriginLab Corporation, Northampton, MA, USA).

3. Results

3.1. Total Polyphenols, Total Flavonoids, and Antioxidant Properties

Total polyphenols and total flavonoids in Carthamus Tinctorius (CT) were 3.5 ± 0.2 g GAE/100 g
and 330 ± 23 mg CE/100 g, respectively. The total antioxidant activity of Carthamus Tinctorius evaluated
by an ORAC assay was 130.2 ± 12.3 mmol TE/100 g.

As shown in Table 1, Trolox index values were in the order HSYA > SYA.
Using DPPH, we obtained an IC50 value of 13.4 ± 1.0 µg GAE/mL for CT extract. IC50 and EC50

values were lower for HSYA compared with SYA (Table 2). ARP was in the order HSYA > safflower
extract > SYA (Table 2).

Table 1. Trolox index values for hydroxy safflor yellow A (HSYA) and safflor yellow A (SYA). * p <

0.005 vs. HSYA; ◦ Data from literature [21].

Compound Trolox Index

TROLOX 1.0 ± 0.2
HSYA 7.1 ± 0.3
SYA 2.1 ± 0.1 *

Quercetin ◦ 10.7
Kaempferol ◦ 10.2
Ferulic acid ◦ 3.5
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Table 2. Comparison of values of antiradical activity evaluated by 2-diphenyl-1-picrylhydrazyl (DPPH)
of Carthamus Tinctorius (CT) extracts, hydroxy safflor yellow A (HSYA) and safflor yellow A (SYA):
IC50, EC50, and antiradical power (ARP). * p < 0.05 vs. CT extract; # p < 0.05 vs. HSYA.

Sample IC50 EC50 ARP

CT extract 13.4 ± 1.0 (µg GAE/mL) 0.17 ± 0.01 (µg GAE/µg DPPH) 5.9 ± 0.2

HSYA 7.3 ± 1.2 * (µg HSYA/mL) 0.09 ± 0.01 * (µg HSYA/µg DPPH) 11.1 ± 0.8 *

SYA 30.3 ± 2.9 *# (µg SYA/mL) 0.38 ± 0.06 *# (µg SYA/µg DPPH) 2.6 ± 0.2 *#

3.2. Kinetics of LDL Oxidation

LDL oxidized by copper ions showed a lag time of 30 ± 2 min. A significant increase in lag time
was observed in LDL oxidized in the presence of the CT extract (Table 3) (Figure 1). The protective
effect was dependent on the concentration of polyphenols. A significant increase in lag time was also
observed in LDL oxidized in the presence of HSYA or SYA (Table 3) (Figure 1).

Table 3. Lag time and percentage of inhibition of conjugated dienes formation in Cu++—triggered LDL
oxidation in the absence or in the presence of increasing concentrations of Carthamus Tinctorius (CT)
extracts, hydroxy safflor yellow A (HSYA) and safflor yellow A (SYA). Phenolic concentrations of CT
extract are expressed as µg gallic acid equivalent (GAE)/mL. * p < 0.05 vs. LDL oxidized in the absence
of polyphenols (control).

Sample Concentration Lag Time (Minutes) Inhibition (%)

Ctrl 0 30 ± 2 -

CT extract (µg GAE/mL)

0.34 44 ± 3 * 46 ± 2

1.70 59 ± 2 * 96 ± 1

17.0 90 ± 4 * 200 ± 4

HYSA (µg/mL)

1.2 56 ± 6 * 86 ± 4

6.0 65 ± 2 * 116 ± 1

60.0 >200 * -

SYA (µg/mL)

1.2 29 ± 5 0

6.0 35 ± 6 16 ± 4

60.0 49 ± 4 * 63 ± 2
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Figure 1. Kinetics of LDL oxidation by 5 µM CuSO4 as measured by the formation of conjugated dienes.
Control LDL (�), LDL incubated in the presence of Carthamus Tinctorius (CT) extract (17 µg gallic acid
equivalent/mL (N), or in the presence of 60 µg/mL of hydroxy safflor yellow A (HSYA) (�) or safflor
yellow A (SYA) (•).
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3.3. Effects of Carthamus Tinctorius Extracts on Cells Viability and Intracellular ROS in HuDe Cells

As shown in Figure 2a, no significant modification in cell viability was observed in cells treated
with CT extract at concentrations ranging from 0–150 µg GAE/mL.

No significant modifications in cellular viability were observed also in cells treated with HSYA. A
decrease in cellular viability was demonstrated in cells incubated with SYA at the highest concentrations
(150 µg/mL) (Figure 2b). The study of LDH release confirms these results (data not shown).

A significant decrease in ROS levels was observed in cells incubated with safflower extract
(Figure 3a) at concentrations lower than 20 µg GAE/mL. On the contrary, an increase was observed at
the highest concentration (150 µg GAE/mL) (Figure 3a). As shown in Figure 3b, a decrease in ROS
levels was observed at concentrations of HSYA lower than 60 µg/mL. At the highest concentration of
HSYA or SYA (150 µg/mL), a significant increase of ROS levels was observed.
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(�) (b). Phenolic concentrations of CT extract are expressed as µg gallic acid equivalent/mL. * p < 0.05
vs. cells incubated in the absence of CT extracts or SYA and HSYA.
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Figure 3. Intracellular reactive oxygen species (ROS) formation in HuDe cells treated for 48 h in the
presence of increasing concentrations of Carthamus Tinctorius (CT) extract (a) or hydroxy safflor yellow
A (HSYA) (�) and safflor yellow A (SYA) (�) (b). Phenolic concentrations of CT extract are expressed
as µg gallic acid equivalent/mL. * p < 0.05 vs. cells incubated in the absence of CT extracts or SYA
and HSYA.
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3.4. Effects of Carthamus Tinctorius Extracts on ROS in t-BOOH-Treated Cells

ROS levels were higher in cells treated with 50 µM t-BOOH compared with control cells (2.6 ± 0.1
vs. 1.0 ± 0.1). As shown in Figure 4a, a protective effect against ROS formation was demonstrated in
cells oxidized in the presence of low concentrations of CT extracts (0.1–20 µg GAE/mL). A protective
effect against t-BOOH-induced ROS formation was observed also in cells treated with HSYA at
concentrations ranging from 0.3 to 60 µg/mL. On the contrary, at the highest concentrations of safflower
extract (150 µg GAE/mL), HSYA, or SYA (150 µg/mL) a pro-oxidant effect was demonstrated with a
significant increase in intracellular levels of ROS compared with cells oxidized with 50 µM t-BOOH.
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Figure 4. Intracellular ROS formation in HuDe cells treated with the pro-oxidant tert-butyl
hydroperoxide (t-BOOH) (50 µM) in the presence of increasing concentrations of Carthamus Tinctorius
(CT) extract (a) or hydroxy safflor yellow A (HSYA) (�) and safflor yellow A (SYA) (�) (b). Phenolic
concentrations of CT extract are expressed as µg gallic acid equivalent/mL. * p < 0.05 vs. cells treated
with t-BOOH in the absence of CT extracts or SYA and HSYA.

4. Discussion

The medicinal properties of safflower have been recently reviewed [2,3]. Among mechanisms
potentially involved in the protective roles, both anti-inflammatory and antioxidative roles have been
proposed. Our results confirmed that the water extracts obtained from the flowers of safflower contain
polyphenols (about 3.5 g GAE/100 g) and flavonoids (about 330 mg CE/100 g), in agreement with
literature [4,5]. A comparison with literature data demonstrates that ORAC values of safflower extracts
are in the range observed in vegetables and spices [20]. The Trolox index was about three times higher
for HSYA than SYA. HSYA had a Trolox index comparable to quercetin and kaempferol [21].

Using the DPPH assay, we demonstrated that safflower extracts exert scavenging properties. The
comparison of the anti-radical activity parameters IC50, EC50, and antiradical power (ARP) of DPPH,
demonstrates that HSYA exerted a higher scavenging property compared with SYA and CT extract.
The values observed for HSYA are comparable to those reported in literature for gallic acid.

To better investigate the modulatory properties of oxidative stress exerted by safflower extract,
SYA, and HSYA, ex vivo methods were also used by assessing their ability to inhibit the lipid
peroxidation of LDL induced in vitro by incubation with copper ions. The increase of levels of
conjugate diene is widely used to investigate lipid peroxidation [27,28]. A significant increase of the
lag phase was observed in LDL oxidized by copper ions in the presence of safflower extract. The
effect was concentration dependent and demonstrated the ability of safflower extract to modulate the
susceptibility of LDL to lipid peroxidation. The antioxidant effect against lipoprotein lipid peroxidation
could be related to the ability of safflower polyphenols to exert a chelating effect or behave as “radical
scavengers”. The results could be of physiological relevance, in fact oxidation of LDL occurs in vivo
and oxidized LDL are involved in the development of atherosclerosis and other chronic-degenerative
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diseases [29]. Two serotonin derivatives, N-(p-coumaroyl) serotonin and N-feruloylserotonin and their
glucoside derivatives have been identified as bioactive constituents of safflower extract [30]. It has
been demonstrated that these serotonin derivatives are absorbed into circulation and protect against
atherosclerotic lesion development [30]. Other polyphenols could be involved in the protective effect
against lipid peroxidation of LDL. In fact, a protective effect against lipid peroxidation of LDL was
exerted also by HSYA and SYA. Several polyphenols exert antioxidant properties in vitro and are of
interest because they could help protect the human body against damages induced by reactive free
radicals generated in human diseases such as atherosclerosis, Alzheimer’s disease, and even in the
aging process [31,32].

A relationship between antioxidant activity and structural characteristics of polyphenols has
been reported by several authors [33]. Literature data suggest that the scavenging activity of phenolic
compounds is directly associated with the presence of hydroxyl groups [33]. It is, therefore, possible to
suggest that the difference in antioxidant activity observed between HSYA and SYA could be likely
related to the structural characteristics of the two bioactive compounds and, in particular, to the number
of –OH groups and their position.

As a by-product of oxidative phosphorylation, a moderate quantity of ROS is necessary for cell
survival and proliferation [34]. Previous studies have shown that HSYA treatment alleviates oxidative
stress on neurons [10] and endothelial cells [9]. Even SYA inhibits cellular oxidative stress and apoptosis
in cultured rat cardiomyocytes [14]. We confirmed that safflower extract and HSYA exert antioxidant
properties as shown by the decrease of intracellular ROS levels in HuDe cells. The ability to modulate
intracellular ROS levels was evaluated also in cells treated by tert-butyl hydroperoxide (t-BOOH).
The effect on intracellular ROS formation was dependent on polyphenol concentration. At lower
concentrations of polyphenols, a protective effect was observed suggesting that CT polyphenols may
also play an antioxidant role at the cellular level. In contrast, higher CT polyphenol concentrations,
HSYA or SYA increased intracellular ROS levels.

The results of this study support previous studies showing that polyphenols in relation to their
concentration can have a biphasic effect. At low concentrations, polyphenols can act as antioxidants
by acting as “radical scavengers” or by other mechanisms. Conversely, at higher concentrations,
polyphenols can promote generation of ROS at a cellular level as previously suggested [15]. The
modulatory biphasic effect of polyphenols on oxidative stress has been studied in different cell
models [15]. The pro-oxidative and antioxidative properties of plant-derived antioxidant polyphenols
depend on different factors as their metal-reducing potential, chelating behavior, and solubility
characteristics [15,35]. Dual antioxidant and pro-oxidant activities have been demonstrated for several
plant-derived polyphenols including phenolic acids (gallic acid, syringic acid, vanillic acid, ellagic
acid, caffeic acid, coumaric acid, chlorogenic acid, ferulic acid), myricetin, quercetin, rutin, kaempferol,
(+)-catechin, (−)-epicatechin, delphinidin, and malvidin [35].

5. Conclusions

In conclusion, although the phenolics inhibit oxidation in certain systems, this does not mean
that they protect against all forms of oxidative damage. The evidence that dietary polyphenols
exert protective properties against oxidative stress in some experimental models is strong. However,
polyphenols can also exert pro-oxidative properties under certain conditions and in certain tissues [16].
Neither pro-oxidant nor antioxidant activities have yet been clearly established to occur in vivo in
humans. Therefore, consumption of large amounts of polyphenols in the form of either foods or
supplements might not be prudent until the bioactivity of these compounds is better understood.
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