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ODiNPred: comprehensive 
prediction of protein order 
and disorder
Rupashree Dass1, Frans A. A. Mulder1,2* & Jakob Toudahl Nielsen1,2*

Structural disorder is widespread in eukaryotic proteins and is vital for their function in diverse 
biological processes. It is therefore highly desirable to be able to predict the degree of order and 
disorder from amino acid sequence. It is, however, notoriously difficult to predict the degree of 
local flexibility within structured domains and the presence and nuances of localized rigidity within 
intrinsically disordered regions. To identify such instances, we used the CheZOD database, which 
encompasses accurate, balanced, and continuous-valued quantification of protein (dis)order at amino 
acid resolution based on NMR chemical shifts. To computationally forecast the spectrum of protein 
disorder in the most comprehensive manner possible, we constructed the sequence-based protein 
order/disorder predictor ODiNPred, trained on an expanded version of CheZOD. ODiNPred applies a 
deep neural network comprising 157 unique sequence features to 1325 protein sequences together 
with the experimental NMR chemical shift data. Cross-validation for 117 protein sequences shows that 
ODiNPred better predicts the continuous variation in order along the protein sequence, suggesting 
that contemporary predictors are limited by the quality of training data. The inclusion of evolutionary 
features reduces the performance gap between ODiNPred and its peers, but analysis shows that it 
retains greater accuracy for the more challenging prediction of intermediate disorder.

Intrinsically disordered proteins (IDPs) fail to form a specific stable 3D structure under native conditions. 
Instead, they are in a statistical equilibrium involving several more or less unfolded conformations dictated by 
the local amino acid sequence. The structural dynamics and flexibility found in IDPs has been linked to key 
biological processes involving regulatory and signaling functions1–3. This has led to a growing interest in the 
structural characterization of IDPs4–6. Biophysical techniques for characterizing protein structure, such as X-ray 
crystallography, small angle X-ray scattering7, and NMR spectroscopy can be used for characterizing disorder 
experimentally. However, the experimental characterization of IDPs is time-consuming, laborious, and expensive. 
To mitigate this problem, a large number of computational methods that aim to predict disorder from sequence 
have therefore emerged8,9.

Contemporary disorder prediction methods are trained on sets of protein sequences with experimentally 
annotated disorder/order classification. Recently, we discussed the shortcomings of current disorder classification 
procedures and introduced the use of NMR spectroscopic data as an alternative benchmark10. In short, X-ray 
crystallography is a widely used criterion for judging disorder, where missing electron density is interpreted as 
disorder. However, the requirement of producing crystals is not commensurate with the observation of disordered 
residues. Another frequently used source of annotation, containing more cases of disorder, is the community-
maintained DisProt database, which provides annotations based on data from various experimental sources. 
Unfortunately, DisProt has inconsistent annotations due to the heterogeneous composition of techniques, often 
lacks position-specific information (e.g. annotation derived from CD and sensitivity to proteolytic degrada-
tion), and contains false classifications in some cases11. As an alternative, Nuclear Magnetic Resonance (NMR) 
spectroscopy can provide an accurate and residue-specific description of the structure and dynamics of IDPs. 
For example, the local variation in NMR ensembles has been used to define a disorder classification12,13. How-
ever, this classification depends also on the local precision of the NMR ensemble, which can vary substantially 
depending on the amount of available constraints and the protocol used to enforce the constraints and derive the 
structural ensemble. Furthermore, all available classifiers are binary, ignoring potentially meaningful intermediate 
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disorder14,15. The primary NMR observables, the chemical shifts, are measured routinely, are very precise and 
provide information on the local structure of proteins in solution16. Due to their dynamic nature, IDPs exhibit 
statistically-averaged “random coil” chemical shifts17. Conversely, secondary chemical shifts (i.e. the deviation of 
measured chemical shifts from random coil chemical shifts) indicate formation of structure, and have therefore 
been used to quantify order/disorder and conformational propensities in IDPs16,18–25.

Previously, we introduced the CheZOD Z-score11, which is based on secondary chemical shifts, and quantifies 
the degree of local disorder on a continuous scale. Z-score profiles were derived for a set of 117 carefully selected, 
representative proteins (herein referred to as the "117" database), revealing a diverse spectrum of disorder. It 
was demonstrated that the Z-score scale, besides being a reliable measure of disorder, also agrees well with 
other measures of disorder, such as missing densities in X-ray structures, structural variation in NMR-derived 
structural ensembles and positional variation in MD trajectories10. The CheZOD database was used to bench-
mark the performance of 26 disorder prediction methods10 by assessing the agreement between the estimated 
probabilities of order and the experimental Z-scores. A modest correlation was found (best method shows an 
absolute Spearman correlation coefficient of 0.638), and all prediction methods proved inadequate to predict 
intermediate disorder/order. Furthermore, it was found that the accuracy of disorder prediction methods was 
limited by the quality of the training data.

We present here ODiNPred; Prediction of protein Order and Disorder by evaluation on NMR data. ODiNPred 
was trained on a greatly expanded version of the CheZOD database, with experimental continuous-valued dis-
order Z-scores for 1325 protein sequences (herein referred to as the "1325" database), which spans a comparable 
number of disordered and ordered residues. ODiNPred uses a deep neural network and 157 residue-specific 
sequence features to predict a real-valued Z-score of disorder, which can be converted to a probability of disorder. 
Previously, the “117” database was used to derive a comprehensive and detailed benchmarking of prediction 
methods10. To align with this analysis, ODiNPred was evaluated on the “117” database in a cross-validation set-
ting and was found to outperform 26 recently-tested prediction methods with a Spearman correlation coefficient 
between observed and predicted Z-scores of 0.649. Prediction accuracy was equal to that of SPOT-disorder, 
suggesting that this algorithm is the best currently available that is not trained on NMR data. Furthermore, the 
performance of ODiNPred was assessed on the full 1325 protein sequences in a cross-validation setting, where 
it demonstrated superior performance. Four biologically relevant examples are provided to illustrate the utility 
of ODiNPred to comprehensively categorize protein order and disorder. ODiNPred is accessible at https​://st-
prote​in.chem.au.dk/odinp​red.

Results and discussion
Training ODiNPred on a database with balanced order and disorder.  The CheZOD dataset of 
1325 protein sequences and their corresponding Z-scores was used to train ODiNPred. This database was con-
structed in a way to ensure balanced amounts of disordered and ordered residues (see “Methods” section). A 
histogram of all pooled Z-scores reveals a bimodal distribution (Fig. 1), as was previously seen before for the 

Figure 1.   Histogram of all Z-scores in the “1325” CheZOD database used for training ODiNPred. Fits to skew-
normal distributions (see “Methods” section) are shown with dashed lines in green and red for disordered, and 
ordered residues, respectively. A full magenta line indicates the sum of the two distributions.

https://st-protein.chem.au.dk/odinpred
https://st-protein.chem.au.dk/odinpred
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"117" database11, with Z-scores raging between − 5.0 and 16.15, where the lower end of the scale corresponds to 
fully disordered residues. The diversity, dynamic range, and balance of the CheZOD database is apparent from 
the visualization in Supplementary Fig. S1. A threshold value, Z = 8.0, is used to distinguish between disordered 
and ordered residues10. Residues with Z-scores < 3.0 can be considered fully disordered11, whereas 3.0 < Z < 8.0 
corresponds to cases with fractional formation of local, ordered structure. Conversely, residues with Z > 11.0 cor-
respond to segments of regular secondary structure or structured rigid loops, whereas 8.0 < Z < 11.0 corresponds 
to flexible loops between ordered segments. To investigate whether the distribution of experimental Z-scores 
could be interpreted as two broad classes of order and disorder, the distribution was fitted to a weighted sum of 
skew-normal distributions26 as described in “Methods” section. Indeed, a close fit was observed, and this model 
distribution is henceforth applied here for the statistical inference of disorder probabilities based on experimen-
tal Z-scores (see “Methods” section). According to this model distribution, the fraction of disordered residues 
in our database was 36.3%.

Disorder propensities for amino acid types.  It is well-established that individual amino acid types have 
different disorder propensities27–29. Analysis of the cumulative distribution of Z-scores for individual amino-acid 
types gives a much more detailed picture along the full scale of disorder and reveals a trend that agrees well with 
previous findings (Fig. 2); Secondary structure-breaking amino acids, such as glycine, have a larger number of 
low Z-scores (higher disorder propensity), hydrophobic residues such as tryptophan and isoleucine have the 
smallest disorder propensities, while hydrophilic/charged side chains give neutral disorder propensities. Fig-
ure 2 reinforces that glutamine may be used as a representative for the average behavior of disordered residues21. 
Furthermore, proline displays a very distinct pattern of being disorder-promoting to structured regions, but not 
to highly disordered segments30,31.

Performance of ODiNPred evaluated by blind prediction of Z‑scores.  ODiNPred uses a deep neu-
ral network to predict continuous-valued disorder Z-scores by training on the "1325" database and used 157 
unique sequence input features as described in “Methods” section. ODiNPred was trained in a tenfold cross-
validation setting (see “Methods” section) that allows for blind evaluation of predictions for the 1325 sequences 
(and for any subset of these as discussed below). We note that cross-validation is not biased by training, since, 
per construction of the database (see “Methods” section), all sequences in each subset contain no more than 
50% sequence identity to any of the sequences in the training set, and only include 5.7% identity on average. 
Figure 3 shows observed versus predicted Z-scores for the 1325 sequences in the CheZOD database. A good 
agreement was observed when evolutionary features were included (RPearson = 0.759), and when these were left 
out (RPearson = 0.731). Disorder was predicted for the 1325 sequences using three other popular methods, the fast 
and accurate MobiDB-lite32 and the two top-performing methods from the previous benchmark study on the 
"117" sequences10: SPOT-disorder33 and MFDp234. Compared to ODiNPred, a weaker correlation is apparent 
from the scatter plot in Fig. 3. As an alternative, we also evaluated the Spearman rank correlation coefficients 
(RSpearman), which compare the ranking of order probabilities to the ranking of Z-scores, without assuming that 
these should be linearly dependent. The highest RSpearman was obtained for ODiNPred (Fig. 3 and Table 1). To 
estimate the performance of our new prediction algorithm, we compared these results with a comprehensive 
selection of 26 contemporary predictors from a recent benchmark10. In this analysis, RSpearman was computed 
for the “117” database. It should be noted that, although some of the sequences from the “117” database were 
present in the “1325” database as well, all metrics were carried out in a strict cross-validation setting (see “Meth-

Figure 2.   Cumulative distributions functions (CDFs) for Z-scores in the “1325” database used for training 
ODiNPred. The CDF for all residues combined is shown as a black curve, and CDFs corresponding to specific 
amino acid types are shown with different colors (see legend). Z-score median values are highlighted by filled 
circles.
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ods” section) to ensure proper blind predictions for validation. The values for RSpearman are shown as a bar plot in 
Fig. 4. It is apparent that ODiNPred and SPOT-disorder stand out as best-performing. Furthermore, when not 
using evolutionary features (which leads to significant time savings), ODiNPred is significantly more accurate 
than other methods. We also note that ODiNPred performs noticeably better than several other NMR-based 
methods such as ESpritz-NMR, S2D, and Dynamine, where the latter were trained on continuous-valued target 
data derived from NMR spectroscopy.

Figure 3.   Performance of selected disorder prediction methods on the “1325” cross-validation set. Scatter plots 
show (a) predicted Z-scores (Zpred) vs. observed Z-scores (Zobs) for ODiNPred for the merged cross-validation 
sets from CheZOD (see “Methods” section). (b–d). Probability of order (porder equal to 1 minus the probability 
of disorder) vs. Z-scores for (b) SPOT-disorder, (c) MFDp2, and (d) MobiDB-lite. Note that MobiDB-lite 
provides fractions of consensus disorder among eight different fast predictors, hence values are restricted to 
the rational fractions: 0/8, 1/8, …, 8/8, and white noise with amplitude 0.03 was added to the predictions to 
allow for better visualization (nota bene: the correlation was computed prior to the adding of noise for graphical 
display).

Table 1.   Spearman rank correlation coefficients for the four disorder predictors compared in Fig. 3. In case 
of ODiNPred the correlation is between observed and predicted Z-scores. In the other cases the correlation is 
derived between observed Z-scores and estimated probabilities of order.

Method RSpearman

ODiNPred 0.6904

SPOT-disorder 0.6760

MFDp2 0.5823

MobiDB-lite 0.6011
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Performance of ODiNPred on other benchmark data.  To follow standard benchmarking procedures 
for disorder predictors, we also evaluated the performance of ODiNPred on CASP935 and CASP1036 datasets 
using the binary disorder/order classifier provided by CASP for target values. The area under the receiver operat-
ing characteristics curve, AUC (see “Methods” section), captures the ability to simultaneously detect disordered 
residues while also preventing false classification of ordered residues as disordered. The AUC was used in previ-
ous CASP evaluations to assess the performance of predictors. ODiNPred was evaluated using the estimated 
probabilities of disorder, and for CASP9 and CASP10 datasets, we obtained AUC = 0.760 and 0.790, respectively. 
In this comparison, ODiNPred is not deemed to be among the best predictors (which range between 0.56 and 
0.855 for CASP9 and 0.599 to 0.907 for CASP1036). It should be noted, however, that in CASP9 and CASP10 
disorder is highly under-represented, contributing only 9.2% and 5.9% of the target set, respectively10. Such 
an overwhelming imbalance suggests that the predictors trained on these datasets were trained to recognize 
features of order and would, consequently, be overly focused on identifying ordered residues correctly. Indeed, 
it was found that some predictors that are trained on X-ray data overestimate order10. The classical AUC for 
ROC (AUC-ROC) can be optimistic in cases with pronounced class imbalance. In contrast, the precision-recall 
would not have this optimism bias and will, in principle, be more suited for imbalanced test sets37. We, there-
fore, derived the AUC for the precision-recall curve (AUC-PR) and found an area of 0.365, compared to ranges 
between 0.193 and 0.603 in the CASP10 evaluation36. However, precision-recall analysis mainly focuses on the 
performance of the classifier of the minority class37, which is neither optimal, as predictors should be balanced 
to accurately recognize both disorder and order. This impedes an objective comparison with CASP. Instead, we 
argue that the CheZOD database is likely better suited than the CASP targets for assessing the quality of disorder 
predictions, since it contains balanced order/disorder that matches experimental observations, has more accu-
rate disorder classification by continuous-valued targets for disorder, and has successfully been used to bench-
mark disorder predictors10. To substantiate this point, we derived the Mathews Correlation Coefficient (MCC) 
and AUC-ROC for the “1325” cross-validation set, using a threshold CheZOD value Z = 8 to demarcate disorder 
and order. Following this definition, AUC-ROC = 0.914 and MCC = 0.690. These numbers exceed performance 
indicators for other predictors as well as for various benchmark data sets. For example, for CASP10, the highest 
MCC is 0.53136. This result is in line with our previous study10, where also other predictors perform better on the 
“117” database than on DisProt or CASP X-ray datasets in terms of MCC and AUC-ROC. This reinforces the 
notion that the NMR-derived Z-score is a reliable and predictable classifier of protein disorder.

Importance of features.  Application of noisy features will lead to over-fitting and will have a negative 
impact on the performance of neural networks. There appears to be little consensus on how to prune neural 
networks38. Here, Gaussian noise was applied after the first hidden layer to prevent over-fitting. In order to test 
for over-fitting with a more systematic procedure that provides specific insights, we implemented the permuta-

Figure 4.   Performance of ODiNPred and other methods on the “117” benchmark set. Spearman rank 
correlation coefficients are shown as colored bars (see legend to Table 1). A dotted line separates methods that 
employ evolutional features (top) from those that do not (bottom).
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tion importance procedure39 to rank features on how important they are in predicting the target scores. This 
was implemented for each of the 10 validation datasets, shuffling each feature one-by-one (with 5 repetitions) 
while keeping all other features constant. The optimized neural network construct with all other parameters as 
described in the “Methods” section was applied. The squared Pearson Correlation (R2) between the prediction 
and the targets were calculated for the cross-validation subset and averaged over the 5 shuffle rounds. A feature 
was considered important if R2 decreased on shuffling it and vice versa. The specific magnitude of the change in 
R2 is not straightforward to interpret (it depends, among other factors, on the total number of features), but the 
relative magnitude of the change in R2 on shuffling was used to rank the features from most to least important 
(see Figure S2 in the Supporting Information). It was observed that the most important features were those 
accounting for (i) hydrophobic clusters, (ii) predicted secondary structure, and (iii) evolutionary relationship. 
These advanced features proved to be more important than the traditionally-applied single amino acid contribu-
tions and single univariate features derived from amino-acid specific properties such as isoelectric point. This 
can be explained by the fact that simple features can be constructed by a linear combination of the amino acid 
distribution features, whereas the more advanced features will be more orthogonal to the others. Features that 
account for repeats and linear motifs in a sequence had the least importance. We argue, that this is because these 
features are sparse (have relatively few non-zero values) and therefore do not contain much information on a 
statistical basis. However, these might be important for specific cases or for predicting contextual disorder/order 
as discussed below. In conclusion, all features were found to be important as groups and we, therefore, chose to 
keep all features.

Evaluation of ODiNPred on four important examples of disorder in biology.  To validate and 
to illustrate the application of ODiNPred, it was applied to four well-studied proteins that were not part of the 
“1325” database:

Case 1: The human oncogene protein p53 is involved in numerous protein–protein interactions, which is 
reflected in its large span of conformations40. Recently, we analyzed disorder predictions, disorder annotations 
and Z-scores for p53, and found that disorder prediction was challenging10. With ODiNPred, however, we are 
now able to demonstrate a close correspondence between predicted Z-scores and those derived from experimen-
tal data (Fig. 5A)41 (RPearson = 0.76). Both the disordered terminal regions are correctly identified, as well as the 
internal disordered region between the two ordered domains. Concurrently, the DNA binding domain (middle 
part) and the tetramerization domain (res. 325–355) are predicted to be structured (high Z-scores). Furthermore, 
fluctuations in experimental Z-scores reveal relatively flexible loops (Z-scores between ca. 3 and 10) in the DNA 
binding domain (middle part), and ODiNPred correctly reproduces these flexible loops, albeit in some cases with 
slightly larger length or amplitude. It is worth noting that two patches in the otherwise disordered N-terminal 
domain are predicted to have intermediate order; stretches centered around residue 25 and 50. Indeed, the 
former region forms a small alpha-helix whereas the latter become structured upon binding of e.g. HMGB142.

Case 2: The human prion protein (hPrP) is associated with fatal transmissible spongiform encephalopathies43,44. 
The structure determined by NMR reveals a folded C-terminal domain and a disordered N-terminus45. The 
C-terminal domain shows high experimental Z-scores and is correctly predicted as structured by ODiNPred 
(Fig. 5B). Again, it is noticeable that the two larger flexible loops in the C-terminal structured domain are 
correctly identified by ODiNPred to have increased flexibility. The N-terminal ~ 100 residues have low experi-
mental and predicted Z-scores and, hence, are predicted correctly as disordered by ODiNPred. The quadruple 
octa-repeat (OR) regions (residues P60-Q91, Fig. 5B) have degenerate chemical shifts for the four repeats and 
consequently a repeating pattern of Z-scores. Noticeably, the Z-scores for the OR are slightly higher, on average, 
compared to the other residues in the flanking disordered region. The OR repeat is involved in the misfolding of 
PrP and constitutes an aggregation locus, influenced by intrinsic flexibility and environmental conditions46–48. 
The OR can adopt stable turn-like structures in the presence of co-factors, such as metal ions and sulfated 
glycans49–52, and these local structures were demonstrated to be transiently present under native conditions. 
This transient structure is reflected in elevated Z-scores for the OR. Coincidently, ODiNPred predicts slightly 
higher Z-scores for this segment.

Case 3: The “deformed” (DFD) HOX transcription factor controls the development of the labial and pro-
thorax segments in Drosophila53. A segment of DFD containing a conserved 60-residue DNA-binding homeo-
domain and the 30 preceding residues (T337–K426) was studied by NMR spectroscopy and other biophysical 
characterization techniques54. ODiNPred predicts the C-terminal DNA-binding domain to be ordered whereas 
the 30 N-terminal residues are predicted as mostly disordered (Fig. 5C), in agreement with experiment. More 
specifically, intermediate Z-scores, 6 < Z < 11, are predicted for residues 2–18 (numbering as in Fig. 5C). Indeed, 
residues with intermediate experimental Z-scores are part of this segment. Residues 8–11 were demonstrated 
to be more rigid than the remainder of the disordered N-terminal region by NMR relaxation analysis and MD 
simulations. This segment with reduced flexibility is specifically recognized by other co-transcription factors54.

Case 4: The protein TDP-4355 binds to chromosomally integrated trans-activation response element (TAR) 
DNA and represses HIV-1 transcription56. In addition, it is implicated in amyotrophic lateral sclerosis (ALS) and 
neurodegenerative diseases57,58. ODiNPred correctly identifies the folded domains of the N-terminus and the two 
RNA recognition motifs, having both large experimental and predicted Z-scores (Fig. 5D). ODiNPred correctly 
predicts the flexible linkers between the isolated domains, which are disordered as defined by Z-scores < 8.0. 
Furthermore, ODiNPred correctly predicts the C-terminal low complexity domain (LCD) to be disordered, with a 
segment in the middle of intermediate order, as judged by intermediate observed and predicted Z-scores (residues 
320–340). This specific segment has been shown to form a transient α-helix59,60 and is involved in liquid–liquid 
phase separation. The LCD is prone to pathological aggregation, with the α-helical segment mediating tertiary 
contacts that lead to oligomerization61, and mutations in this segment are correlated to ALS. Clearly, ODiNPred 
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is able to accurately pinpoint segments with intermediate Z-scores, which corresponds to sites of important 
biological function which are implicated in human pathology.

The full spectrum of order and disorder.  ODiNPred extends the repertoire of disorder prediction 
beyond the categorical and binary disordered and ordered states. We have demonstrated here that ODiNPred 
can accurately predict flexible parts of otherwise structured proteins as well as segments with transient structure 
or reduced flexibility within disordered regions (see Fig. 5). Such segments are potentially important for the 
biological function of many proteins, as the remarkable spatio-temporal heterogeneity of IDPs is closely linked 
to their interaction promiscuity and multifunctionality65. The ensemble of conformations sampled by IDPs con-
stitutes a pre-existing equilibrium in which conformations are available for binding and interaction with ligands 
or other macromolecules66. Furthermore, for structured proteins, the unbound states of flexible loops contain 
transiently formed conformations that may resemble ligand-bound states67. Segments that are partially folded, 

Figure 5.   Applications of ODiNPred for disorder prediction. Top panels: Profiles of predicted Z-scores from 
ODiNPred (black) compared to Z-scores from experimental NMR data (green). Bottom panels: Derived 
probabilities of disorder estimated by ODiNPred (see “Methods” section) highlighting predicted disordered 
and ordered residues using red and blue bars, respectively. (A) Human oncogene protein p53 (Uniprot P04637, 
Z-scores from published chemical shifts41 and shifts deposited in the BioMagResBank entry 17,760). (B) Human 
Prion Protein (Uniprot P04156. BMRB id 440245). (C) DFD Drosophila HOX transcription factor (Uniprot 
P07548, BMRB id 2762154) segment. (D) TDP-43 (Uniprot Q13148). Z-scores were derived from NMR data 
from four separately studied domains: (i) N-terminal domain (NTD) residues 3–89 (BMRB id 34081)62, (ii) 
RNA recognition motif 1 (RRM1) residues 91–190 (BMRB id 18765)63, (iii) RRM2 domain residues 191–264 
(BMRB id 19922)64, (iv) Low complexity domain (LCD) residues 268–413 (BMRB id 26823)59.
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or have transient residual structure (semi-foldons), as well as segments that can fold dependent on interactions 
(inducible foldons) are widespread in IDPs and are important for biological function68. Protein segments can 
also be conditionally disordered or transiently disordered depending on the environment and interactions69. In 
addition, a semi-disordered region is prone to aggregation in fully unstructured regions but disposed to local 
unfolding that exposes the hydrophobic core to aggregation in structured globular proteins. These important 
“semi-disordered segments” can be identified experimentally as segments with intermediate Z-scores. Since 
ODiNPred is trained with data covering the full spectrum of disorder, it can predict semi-disorder with confi-
dence, as demonstrated above.

Disordered segments often interact with other proteins serving an important functional role70. The IDEAL 
database annotates a number of protein-binding IDR segments referred to as “protein segments” (ProSs)71. Inter-
actions of IDRs have been categorized to occur for three types of segments; LCRs (Low Complexity Regions), 
SLiMs (Small Linear Motifs), and MoRFs (Molecular Recognition Features)72. LCRs are identified by their lower 
sequence complexity and often by their repetitiveness and are associated with the more generic role of mediating 
protein liquid–liquid phase separation73. SLiMs are distinct short conserved sequences that often mediate the 
interaction with specific proteins74 , and are collected in the ELM database75. Features that relate to SLiMs and 
LCDs were included in the features used by ODiNPred. These features appeared to have limited importance for 
predicting disorder (see above), which might be due to their limited number of non-zero values. However, these 
might be important for predicting local variation in disorder and contextual disorder. In contrast to SLiMs and 
LCDs, MoRFs are a much more general class of longer segments (10–70 residues) that gain some degree of struc-
ture upon binding to their targets76. MoRFs appear to have some latent propensity to form secondary structure, 
that could be predicted from sequence features as envisioned in the FELLS analysis77 . Other attempts have been 
made to predicts these segments from more general sequence features with some degree of success78–82 . The 
ANCHOR/ANCHOR2 method differs from other methods, estimating the disordering binding propensity as 
the product of the disorder probability and the estimated amino acid pair energy gained upon binding83–86. For 
example, for p53 discussed above, ANCHOR/ANCHOR2 assigns a high probability for disordered binding to the 
N-terminal region (residues 20–60) and the C-terminal region (residues 380–398)87, which was also predicted by 
MoRFMPM

80,87. These regions contain confirmed MoRFs88–90 and are annotated as ProSs in the IDEAL database. 
In agreement, ODiNPred, predicts intermediate probabilities of disorder. This suggests that the MoRF segments 
have some pre-existing order bias, which is reflected in the dispersion of the average chemical shifts, and thereby 
gives rise to an elevation of experimental Z-scores, which are mirrored by ODiNPred. This highlights the potency 
of ODiNPred to predict beyond the order/disorder dichotomy and demonstrates that a comprehensive disorder 
classification—capturing complex concepts such as intermediate and contextual disorder—is now within reach.

Conclusions
A new disorder prediction method, ODiNPred, was presented. ODiNPred uses a deep neural network and is 
trained on experimental NMR-derived Z-scores from 1325 proteins, applying 157 sequence features. When 
evaluated against a previous benchmark set consisting of 117 proteins, ODiNPred ranked second of 27 prediction 
methods, with SPOT-disorder showing marginally better performance. When evaluated in a cross-validation 
setting against the more extensive "1325" database presented herein, ODiNPred displays performance that even 
surpassed SPOT-disorder. Predictions with ODiNPred can provide key insights, as highlighted with four example 
cases. ODiNPred can be freely accessed at https​://st-prote​in.chem.au.dk/odinp​red.

Methods
Datasets.  The CheZOD database was expanded to contain 1325 protein sequences with a balanced overall 
content of disordered residues applying an iterative procedure of adding complementary datasets. As an ini-
tial construct, we used the database for training the POTENCI procedure17 (containing most of the proteins 
from the original CheZOD database) keeping the 178 entries having at least 20% residues with Z-scores < 5.0 
(fIDR5 > 0.2; fIDR5 denoting the fraction of residues with Z-scores below 5). Subsequently, this database was 
expanded with new sequences and their corresponding Z-score profiles derived from chemical shifts deposited 
in the BMRB database91. Entries were only considered if experimental conditions were native, non-denaturing, 
and non-complexed, as described before11. Since the BMRB database has an over-representation of structured 
proteins, precautions were taken to favor proteins with more disorder in order to construct a balanced database. 
This was accomplished by adding sequences with progressively more order in separate steps. In each new step, 
a new candidate set was stripped for sequences with more than 50% sequence identity among themselves and 
against the previous iteration of the database. Increasingly stricter demands were imposed on the new data to 
enforce balance. Specifically, in the first iteration, it was required that fIDR5 > 0.5 and that the average number of 
assigned chemical shifts per residue was greater than 2.0 (ACSR > 2.0). In the following iterations, it was required 
that (i) ACSR > 4.0 for 0.5 > fIDR5 > 0.3, (ii) ACSR > 5.0 for 0.3 > fIDR5 > 0.2, (iii) ACSR > 6.0 for 0.2 > fIDR5 > 0.1, and 
(iv) ACSR > 6.0 for 0.1 > fIDR5 > 0.05 while keeping only the 100 sequences with the largest number of residues. 
Finally, the new CheZOD database was complemented with sequences from the larger database of structured 
proteins derived from RefDB92, requiring that ACSR > 6 or ACSR > 5.5 and fIDR5 > 0.05. It should be noted here 
that the procedure of requiring fewer ACSR for disordered proteins does not lead to significant statistical bias, 
since Z-scores are largely unaffected by the number of chemical shifts used to derive them, whereas, in contrast, 
Z-scores scale approximately linearly with the number of chemical shifts for completely structured residues11.

The newly derived CheZOD dataset, containing 1325 protein sequences and their corresponding Z-score 
values, was then split randomly into 10 disjoint sub-datasets with 132 or 133 entries each. Each of these sub-
datasets was utilized for different purposes: (i) a training set used for learning the weights of the neural network, 
(ii) a testing set used for evaluating the goodness-of-fit of the model after each epoch within the neural network 

https://st-protein.chem.au.dk/odinpred
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optimization algorithm, and (iii) a validation set used for blind evaluation of the neural network optimized with 
complementary datasets. Eight sub-datasets were applied for training, whereas a single was used for testing and 
validation (i.e. 1,060 sequences for training and 132/133 each for testing and validation). The definition of the 
training/testing/validation sets was varied systematically to define models 1 to 10. In model n, sub-dataset n 
and n − 1 were used for validation and testing, respectively, whereas the remaining sub-datasets 1, 2, …, n − 2, 
n + 1, …, and 10 were used for training. By this procedure, the combined predictions for the validation sets con-
stitute a tenfold cross-validation set. The 10 different models provide slightly different, albeit not independent, 
predictions for a new protein sequence not present in the "1325" CheZOD database. In such a case, the final 
ODiNPred Z-score prediction is the average of the predictions of the 10 models. The standard deviation within 
the 10 different predictions provides an estimate of the precision of the prediction and is further used to estimate 
the probability of disorder using statistical inference.

Any sequence from the “1325” was always validated in a cross-validation setting. This means that, for a given 
sequence, only one specific model from the 10 sub-models was used for the prediction. Namely the model, for 
which the particular sequence was part of the validation subset, and hence not used for neither training nor 
testing of the neural network. This procedure was also referred to here as blind testing.

The neural network.  Deep neural nets have high capabilities in finding complex relationships between 
input and output data. ODiNPred uses a feed-forward network93 implemented using Tensorflow94 with an input 
layer, five fully connected hidden layers and an output layer with one node and a linear activation function. The 
input to the network is a matrix of size equal to the length of the protein and the number of features per residue. 
For the network to learn reliably from the features, each input feature was normalized by its mean and standard 
deviation. The neural network was set up differently for two cases (i) without and (ii) with evolutionary features. 
For the case without evolution, the hidden layers contained 40, 10, 25, 40, and 8 neurons, whereas for the case 
with evolution the hidden layers contained 128, 80, 20, 15, and 10 neurons. In both cases, the response of the first 
hidden layer was penalized using L2 regularization and the remaining hidden layers used a rectified unit activa-
tion function (ReLU). To prevent overfitting, Gaussian noise was applied after the first hidden layer, with a stand-
ard deviation of 0.1. The Adam optimization algorithm95 was used during training with a learning rate of 0.0001. 
The mean squared error between the predicted and observed Z-scores was determined for both training and 
testing datasets after each iteration. The training involved 100 iterations with a batch size of 50 and a standard 
back-propagation algorithm96. The model giving the lowest mean squared error for the testing set was chosen.

Sequence features.  ODiNPred encodes the sequence as a comprehensive set of 157 features derived from 
sequence attributes such as frequency of amino acids (AA), sequence complexity, secondary structure propensi-
ties, and identification of patterns in the sequence such as binding motifs, repeats, and accumulation of identi-
cal charges. Known methods such as the Chou–Fasman algorithm97 and Tango98–100 were also applied for the 
derivation of some of the sequence features. 27 complementary features accounting for evolutionary relatedness 
to other sequences were based on sequence alignment profiles generated by BLAST and Clustal101,102. ODiNPred 
predictions can be run optionally with or without calculating and applying these additional features. Most fea-
tures apply averaging within a sliding window along the sequence. A detailed definition of all features is provided 
in the “Appendix: Online methods” and Supplementary Table S1.

Disorder predictions.  The distribution of experimental Z-scores was fitted to a weighted sum of two skew 
normal distributions26

where the skew normal distribution, ψ, is defined in terms of location, scale, and skewness parameters μ, σ, and 
σ, respectively, as:

and ϕ is the standard normal probability density function and Φ is the corresponding cumulative distribution 
function for the normal distribution. The distribution of the experimental Z-scores agrees well with this model 
as visualized in Fig. 1 as evidenced by a Hellinger distance of 0.003673103. The shape parameters were found 
by the fitting procedure and the fraction of disordered residues in the training set, fD, were found to be 0.3626.

ODiNPred provides a predicted Z-score, Zpred. A probability of disorder, pD, is estimated using the fitted shape 
parameters and a reference fraction of disordered residues, fDref = 0.333104.

where

with S = D or O denotes the state of order or disorder and again ϕ is the standard normal distribution. The 
Z-score is predicted using ODiNPred’s 10 different cross-validation models and the standard deviation, sZ is 
extracted from all 10 model predictions and is an indicator of the precision of the prediction. The actual error 
in the prediction, Zerr, was compared to the standard deviation for all pooled ODiNPred Z-score predictions 

d(x) = fDψ(Z,µD , σD ,αD)+
(

1− fD
)

ψ(Z,µO , σO ,αO)

ψ(Z,µ, σ ,α) = 2φ(znorm)2�(αznorm), znorm = (Z − µ)/σ

pD =

(

πD

πD + πO

)

πS =

∫

∞

−∞

fDψ(Z,µS , σS ,αS)φ((Z − Zpred)/Zerr)dZ
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for the 1325 sequences. The observations of standard deviations were collected in bins and a clear relationship 
between precision (average sZ in the bin) and accuracy (average Zerr) was observed (Supplementary Fig. S3). 
We used this relationship to estimate the error, Zerr, on the predicted Z-scores as applied in the equation above.

Measuring performance.  To assess the performance of ODiNPred, the Pearson correlation coefficient is 
calculated when comparing observed against predicted Z-scores, where a value of 1 indicates a perfect correla-
tion and 0 expresses a complete lack of correlation. The Spearman rank correlation coefficient, describing the 
agreement with a monotonic relationship was evaluated when comparing disorder probabilities and Z-scores. 
When assessing the performance against benchmarks with binary classifiers, such as the CASP datasets (for 
which experimental classification is available), classical binary confusion-matrix parameters, i.e. true positives 
(TP), false positives (FP), true negatives (TN), and false negatives (FN), were analyzed. The area under a para-
metric curve is derived using the estimated probabilities of disorder as the parameter to be varied. A receiver 
operator curve (ROC) is the true positive rate (or recall), TPR = TP/(TP + FN), vs. the false positive rate (false 
alarms), FPR = FP/(FP + TN), parameterized by the probability threshold, and the corresponding area under this 
curve (AUC) is an aggregate measure of the quality of the correlation36. A perfect classifier would yield AUC = 1, 
whereas random guessing gives AUC = 0.5.

Implementation of ODiNPred web application.  The ODiNPred web application (run in python) is 
located at https​://st-prote​in.chem.au.dk/odinp​red (Fig. 6). Input data can be uploaded following instructions on 
the server. ODiNpred can take up to 100 protein sequences as input at a time and predicts their Z-scores and 
disorder probabilities. It is possible to run predictions with or without evolutionary features included. Running 
without evolutionary features decreases the run time from approximately one minute to a few seconds per entry 
on the current server. Including evolutionary features is recommended for predictions of individual sequences, 
as it produces higher prediction accuracy (see Results). The prediction results are sent by email to the user as a 
text file and a plot.

Data availability
All sequences from the new 1325 CheZOD database along with corresponding Z-scores are available from: https​
://githu​b.com/prote​in-nmr/CheZO​D.

Appendix: Online methods
Derivation of sequence features.  Sequence features were derived from basic procedures and in some 
cases with the application of external programs or published reimplemented algorithms. Each type of sequence 
feature is explained in detail below. Some features are based on distributions of amino acids and apply a sliding 
window to define the amino acid set. For a window size N, (N − 1)/2 dummy residues were added to the ends of 
the sequences to preserve the length of the sliding windows. Supplementary Table S1 summarizes the length of 
sliding window and number of features for each type.

Amino acid composition.  Number of occurrences of each amino acid within sliding window (including dummy 
end-residue).

Figure 6.   Screenshot of ODiNPred at https​://st-prote​in.chem.au.dk/odinp​red.

https://st-protein.chem.au.dk/odinpred
https://github.com/protein-nmr/CheZOD
https://github.com/protein-nmr/CheZOD
https://st-protein.chem.au.dk/odinpred
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Sequence entropy.  The fraction, fi, of each amino acid type was used to derive the Shannon entropy, S21, for the 
local distribution including dummy end-residues.

using the definition that the product 0*log(0) is 0.

Chou–Fasman secondary structure predictions.  The Chou–Fasman algorithm105 was used to derive simple esti-
mates of the probability for all secondary structure types (sheet/helix/turn), and averaged using a sliding window 
(see Supplementary Table S1).

Residue interaction entropy.  A pairwise interaction energy, Eij was assigned to each residue pair based on the 
identity of the amino acids106. The energies were considered a phenomenological statistical probability, pij, of 
interaction using the transformation:

This procedure derives a 2d-array of probabilities at each point of the sequence, and Shannon entropy (see above) 
of this array is the single feature for this type.

Flexibility.  Window-averaged amino acid specific flexibility index as defined before107.

Interaction motifs.  The sequence was queried for linear motifs listed on https​://elm.eu.org/elms75 including all 
types (CLV, DEG, DOC, LIG, MOD, TRG). Each position is assigned a binary value (part of linear motif: 1, not 
part of: 0). These numbers were used as specific features for each motif type.

Net charge.  The net charge present in each local sequence segment was calculated using + 1 basic residues 
lysine and arginine and − 1 for acidic residues glutamate and aspartate.

Isoelectric point simple.  Window averaged amino acid specific isoelectric point values as defined before108.

Segment dipoles.  The local dipole was calculated for a segment for supposed helical and strand structure using 
angles of 100° and 170°, respectively, as described by Eisenberg and co-workers109, using the amino acid hydro-
phobicity scale of Kyte and Doolittle110.

Repeats.  Following an iterative procedure, the highest possible number of amino acids, being repeated again, 
at any position, was identified for each position of the sequence. The probability of the repeat occurring a certain 
number of times in the full sequence simply by statistical chance was evaluated as:

where N is the length of the sequence, L is the length of the repeat, k is the number of times the repeats is found 
(the multiplicities) and ploc is the product of probabilities for each amino acid occurring independently (roughly 
equal to 1/20L). Furthermore, the minimum distance, d, in sequence position between consecutive repeats were 
identified and, in the case of three-times multiplicities of a repeat, the absolute difference, Δ, between two con-
secutive distances was evaluated (in case of k < 3 the difference is set to 0). Five sequence features were finally 
generated using sliding window averaging of L, k, p, d and Δ.

Class‑composition/transition.  The amino acid types are separate into three disjoints classes, 1, 2, 3 according 
to different physio-chemical properties according to the definition by protr (see https​://cran.r-proje​ct.org/web/
packa​ges/protr​/vigne​ttes/protr​.html#4_commo​nly_used_descr​iptor​s, Sect. 4.5 and111, 112). For each segment, the 
fraction of observations of each of the 3 classes defines the class-composition features. At each position, i, of the 
segment, a possible transition between two classes: class(i) ≠ class(i + 1) was evaluated with four possibilities: no 
change, change between classes 1 ↔ 2, 1 ↔ 3, or 2 ↔ 3. The fraction of the three different non-trivial transitions 
defines the class-transition features. Finally, the Shannon entropy among the fractions for the three different 
transitions was used as the final feature (defined to be 0 in cases of exclusively trivial transitions). This procedure 
was repeated for seven different definitions of the three-class groupings, yielding a total of 49 features.

Secondary structure propensities.  The program Tango98–100 was used to calculate the local propensity of beta-
sheet, turn, helix and poly-proline using standard settings yielding four features.

Evolutionary relationships.  Evolutionary relationships were derived, ultimately leading to position-specific 
properties derived from a column of aligned residues generated with the below procedure:

S21(f ) =

21
∑

i=1

filog(fi)

pij = log(−Eij/4.26)

p =
ehhk

k!
, h = ploc(N − L+ 1)

https://elm.eu.org/elms
https://cran.r-project.org/web/packages/protr/vignettes/protr.html#4_commonly_used_descriptors
https://cran.r-project.org/web/packages/protr/vignettes/protr.html#4_commonly_used_descriptors
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1.	 Homologous sequences were identified by performing one-by-one alignment with NCBI Blast113 initially 
using the Swissprot database114. Sequences, not identical to the query sequence and with an E-value < 0.001 
were kept for further analysis. If the accepted number of sequences, NS, was less than 10, the full non-
redundant database was searched with a similar procedure.

2.	 Multiple sequence alignment was performed on the above derived set of sequences using ClustalOmega101, 

102

3.	 The multiple sequence alignment was organized into a predicted phylogenetic tree using FastTree115, 116

4.	 In case NS > 500, an additional smaller set of sequences was constructed by using Treemer to iteratively 
remove a single sequence from the phylogenetic tree, being one from the pair of leaves in the tree with the 
smallest distance. The procedure was continued until NS = 500 and multiple sequence alignment was per-
formed for this smaller set.

Two features were derived from the phylogenetic tree and were set to be constant along the sequence: (i) the 
average cumulative distance from a sequence leaf to the root of the tree and (ii) the logarithm to fraction between 
the number of terminal nodes divided by the total number of nodes.

Within each alignment column, the following features were derived (all these features were averaged with a 
window of 7 subsequently):

	 i.	 The fraction of all 20 amino acid types (producing 20 features).
	 ii.	 The fraction of gaps.
	 iii.	 The fraction of insertions.
	 iv.	 The percentage conservation, i.e. the fraction of residues identical to the parent residue.
	 v.	 Average blossum62-distance117 between column residues and parent residue.
	 vi.	 Shannon entropy of the 20-residue distribution within the column.
	 vii.	 Jensen-Shannon distance118 between the above 20-residue distribution and a reference distribution for 

proteins in the UniProtKB/Swiss-prot database119

	viii.	 Finally, the correlated amino acid mutations feature was calculated. This feature was the most time-
consuming scaling with the length of the column and the square of the length of the sequence. Therefore, 
the smaller, NS < 500, set was used here and the amino acids were grouped into nine groups to effectively 
use an alphabet of smaller size (ignoring gaps). The ratio between the Shannon entropies, S9(f) and S81(f), 
for single alignment columns and the distribution of pairs in combined pairs of columns, respectively, was 
calculated. The position specific feature, Fi, is derived as the average of this ratio for all possible pairs.

Predicted secondary structure.  Secondary structure and solvent accessibility were predicted using the DeepCNF 
procedure from the RaptorX-property implementation120. Following this procedure, probabilities were given for 
3-state secondary structure and 8-state secondary structure subtypes as defined by the DSSP algorithm121. A 
number of different features were derived from the probabilities provided by DeepCNF:

	 i.	 The 8-state probability (8 position specific features)
	 ii.	 The Shannon entropy of the 8-state distribution for each position
	 iii.	 The 3-state probability with window averaging of size 15 (3 features)

The states with highest probabilities were analyzed (e.g. if the probability is maximal for helix for a certain 
position, this is regarded a helical state). Furthermore, we refer to a state with maximal 8-state probability for 
either “bend” or “no structure” (labels ‘S’ and ‘ ’ by DSSP) as an unstructured state and other states as structured 
states, and the number of such consecutive unstructured (CU) and structured (CS) states along the sequence were 
counted. A number of features were derived using these definitions.

	 i.	 log(CS)
	 ii.	 log(CU)

this value was used as a position specific feature for all residues within the specific consecutive stretch. Outside 
these segments, a value of 0 was used as default.

A 3-state solvent accessibility is provided as well by DeepCNF. Probabilities are provided for states: B (Buried, 
pACC: 0–10), M (Medium, pACC: 11–40) and E (Exposed, pACC: 41–100), where pACC is the relative solvent 
accessibility value calculated by DSSP. States were defined as in the above according to maximum probabilities. 
A number of features were derived:

	 i.	 The 3-state probabilities using window averaging of 9 (8 position specific features).
	 ii.	 Shannon entropy of the distribution of states within a window of size 9.
	 iii.	 The logarithm to the number of consecutive exposed states similar to the above

Fi =
1

NS

NA
∑

j=1

S9
(

fi
)

S9(fj)

S81(fij)
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Hydrophobic clusters.  Hydrophobic clusters were identified using the HCA algorithm122 (Hydrophobic Cluster 
Analysis). Domains were inferred using the Seg-HCA123 procedure implemented in pyHCA124. This procedure 
derives a score, S, and a p-value (p) related to foldability for each domain. The total charge value, Ctot, and the 
total absolute number of charges, Cnum, in each predicted domain were identified. A number of features were 
derived with a fixed value for each residue position in the predicted domain and a default value of 0 for residues 
outside of the domain:

	 i.	 log(LD)

	 ii.	 2log
(

0.05
p

)

	 iii.	 S
	 iv.	 LD/(10+ 10Ctot)

	 v.	 LD/(10+ 10Cnum)

Similarly, features were derived for the hydrophobic cluster segments (0 outside segments) using again the 
total charge and number of charges and here also the number of hydrophobic residues, nH, in a segment of 
length LS

	 i.	 LS
	 ii.	 10nH/LS
	 iii.	 LS/(3+ 3Ctot)

	 iv.	 LS/(3+ 3Cnum).

Finally, an array was defined with values set to the difference in primary sequence position between the end 
and beginning of two consecutive hydrophobic cluster segments. This value was used in the array at all positions 
from the middle of a segment to the middle of the next segment. The above described array was window averaged 
with size 13, and the inverse of the array was used for a position specific feature. Two further sequence-specific 
features were added, in case evolutionary analyses were included. In this scenario, each sequence from the mul-
tiple sequence alignment was analyzed by pyHCA to identify the domains with their related p-values. The first 
feature is the fraction of cases were a domain was identified at a specific sequence position and the second feature 
is identical to the first except requiring that the p-value was smaller than 0.03 for a domain.

Electrostatic potential by statistical mechanics.  The electrostatic potential was calculated by adding a dummy 
charge at each position in the sequence one-by-one and evaluating the electrostatic energy following a statistical 
mechanics algorithm implemented in pepKalc125 using default values for the physical parameters.

Length of sequence.  Finally, the length, L, of the sequence was included as a constant feature across all positions 
as: log(min(500,L)).
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