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Abstract

Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate.
Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and
browsing species characterised by ‘blunt’ and ‘pointed’ snouts respectively, often with specification of an ‘intermediate’
sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using
a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large
sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that,
when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot
be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum
with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8
percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group
centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is ‘unknown’
can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these
results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric
morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both
browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between
snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape,
we find a slight increase in successful categorisation when repeating the analysis with phylogenetic control on the
geometric profiles.
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Introduction

Members of Ruminantia are even-toed ungulate mammals

defined uniquely by possession of a two-step digestion system

involving the fermentation chamber in the foregut of the stomach.

Some 200 extant species currently recognised [1]. Ruminant

feeding styles are reflected in their craniodental and gastrointes-

tinal morphophysiological diversity, and have been conventionally

categorised into ‘browsers’ and ‘grazers’, with an ‘intermediate’

sub-category [2–5]. Additionally, browsers are considered obligate

non-grazers, but not vice-versa [2]. Some authors further include

variants of frugivores, high-level browsers, and fresh grass grazers

as independent categories in an attempt to encompass a larger

range of feeding styles [3–5]. Variations in feeding style may also

occur on different spatial and temporal levels, corresponding to

environmental stresses (e.g., drought [6]), and plausibly a

hierarchical grazing succession related to species’ migration

patterns, geomorphology, resource partitioning or forage quality

[7–9].

Van Zyl was the first to define an ecological classification

scheme for ungulates based explicitly on feeding style [10].

Hofmann extended Van Zyl’s definitions to contain a novel

qualitative morphological and physiological underpinning [11–

16]. Hofmann’s modified ungulate feeding classification scheme

has been used extensively in vertebrate (palaeo)biology ever since.

Recently, availability of software, new data-analysis techniques,

and increased computational power have combined to facilitate

the use of a wider range of approaches, including geometric

morphometrics, that allows us to build on and re-appraise these

earlier findings (see Clauss et al. [17] and references therein).

Despite a range of morpho-behavioural correlates, the arche-

typal dichotomy between ‘browsers’ and ‘grazers’ is based on a

botanical foundation. Browsers typically consume dicotyledonous

leaves, stems, twigs and fruits [11,18,19]. Grazers consume

monocotyledonous plants, and ‘intermediate’ feeders vary their

consumption preferences depending on season and geography

[20,21]. The putative morphological significance of this dietary

variation is that the physical, mechanical and biochemical

properties of different forage types are adequate to drive and

maintain a morpho-functional trichotomy among ruminant

species that reflects the physical challenges they face accessing

and/or processing different types of forage. It has been argued that

the biomechanical properties of different forage types have exerted

strong controls on the evolution of the masticatory apparatus and

gastrointestinal tract [2], and specifically the reticulorumen

physiology [22,23] within ruminants.
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The botanical definitions underpinning the classification of

browsers and grazers have a complex history, with technical

articles containing numerous examples of inconsistent thresholds

for distinctions between these classes. Several authors have

regarded browsers to be ruminants that consume less than 10

percent grass, and grazers to be those consuming greater than 90

percent grass per annum, with all other species classed as

intermediate [24–27]. Conversely, others have selected greater

than 75 percent grass consumption per annum as the threshold

criterion for their grazer class, and greater than 75 percent browse

consumption for the browser class, with little or no empirical

evidence or logical rationale provided for these thresholds [4,28–

30]. Clauss et al. [31] defined grazers as those ungulates

consuming greater than 80 percent monocot material, and strict

browsers as those with a ‘‘very low intake of monocot forage’’ (p.

399) based on a small sample, similar to a range of comparative

studies in which percentage of grass consumed is used as the basis

for further investigations into ruminant ecology [2,17,23,32].

In other studies, feeding strategy delimitation has been based

purely on qualitative assessments [33], where grazers are classified

as those ‘‘consuming primarily grasses, sedges and other

graminoids’’ (p. 178). This discordant usage has been summarised

partially by Clauss et al. [17], with Gordon and Illius [34] finding

that different thresholds of classification give different results in

ecological analyses. Accordingly, defining these thresholds in

congruence with functional or ecological significance remains a

problematic issue and one which is only exacerbated when such

thresholds are used as a basis for further investigation of ruminant

ecology. Additionally, species-level variation in diet and the

physiology and morphology of ingestion due to the facultative

nature of feeding strategies makes placing discrete parameters

around distinct ecological sub-groups challenging [35].

There are numerous morphophysiological parameters that

might, in principle, affect digestive rates and masticatory efficiency

among ruminant species. Among these, the anterior snout forms

the interactive part of the ingestive apparatus that interacts with

any and all types of ruminant forage [36]. The anterodorsal

section of the snout is formed predominantly by the premaxillae. It

has been noted commonly that browsing ruminant species have

pointed snouts and grazers a more squared or blunt shape

representing a derived cropping condition (e.g., [24,37]). Inter-

mediate feeding styles have been posited to have an intermediate

form, considered to conform to a mediolaterally compressed club-

like shape [38].

The relationships between the various aspects of herbivore

ingestion are complicated, but recent developments have provided

considerable insight into the factors that interplay to control

efficiency (e.g., Clauss et al., [39]). Snout shape is part of this suite

of aspects of herbivore ecology that, combined, determine initial

intake rate, chewing efficiency and forage selection ability

[20,40,41,42,43]. Traditionally, a more pointed rostrum is

associated with increased selection sensitivity, and a blunt rostrum

is associated with a less selective cropping process with greater

intake [24,39], but these views remain in a state of partial flux

[34,44,45]. Codron et al. [46] suggested that browsers and grazers

vary their diets on a spatiotemporal scale, conforming to earlier

studies by Owen-Smith and Du Toit [33 and 47]. Despite this

variation, several distinctions have become apparent between

browsing and grazing ruminant categories and are supported

within a statistical and phylogenetic framework [17].

To date the association between anterodorsal snout morphology

and feeding style has not been subjected to any geometric

morphometric analysis of pure shape. Fraser and Theodor [43]

demonstrated that anterior dentary shape (i.e., the ventral

component of the snout) is strongly associated with diet.

Furthermore, dentary shape was shown to be a good proxy for

premaxilla shape and is strongly deterministic in selectivity during

feeding. Such studies highlight the importance of controlling for

phylogenetic similarity in tests of functional ecomorphology. We

aim to build on such studies by using geometric morphometric

techniques focussed exclusively on the dorsal snout, in particular

the anterior section of the rostrum formed primarily by the paired

premaxillae.

The principle aim of our study is to determine whether

empirically assessed patterns of snout shape variation in ruminants

support traditional distinctions that have been drawn between

‘browser’ and ‘grazer’ categories, and whether a quantitative

geometry-based approach allows a more precise morphological

definition of these functional categories to be formulated. The

secondary aim is an assessment of the extent to which quantitative

snout geometry may be used to predict the feeding styles in

ruminants of ‘unknown’ or ‘intermediate’ feeding style, including

fossil specimens for palaeoecology. The statistical null hypothesis

under consideration is that snout profile shape exhibits no

structured variation such that reliable morpho-functional categor-

isation is possible.

Furthermore, we investigate the influences of body size on snout

morphology. Body size is an important ecological parameter in

ruminants, affecting factors such as locomotion, digestive and

ingestive efficiency [40,48,49,50], competitive interactions [51],

evolutionary and life histories [52–55], biogeography [56,57], and

sexual dimorphism [58]. Finally, phylogeny has been repeatedly

demonstrated to be an important determinant of phenotypic

aspects of ruminant life histories and ecology [59–62]. Accord-

ingly, we explore the role of phylogenetic non-independence on

snout morphology similarity using established comparative meth-

ods (e.g., [63–66]), and compare the results between a ‘raw’

geometric morphometric study, and one in which there is a

measure of phylogenetic control.

Materials and Methods

Geometric morphometrics involves the multivariate numerical

analysis of two- or three-dimensional Cartesian coordinate data,

typically defined by discrete, spatially-defined landmarks (i.e.,

topologically homologous loci on a structure [67]). Zoological

studies are increasingly using a wide range of geometric

morphometric techniques due to their intrinsic ability to summa-

rize modes of variation in form – and so guide its interpretation –

in many different systematic contexts [68], including functional

morphology, sexual dimorphism, ontogenic development, and

phylogenetic inference. The ruminant specimen-set analysed here

consisted of 125 extant species, 119 of which were bovids or

cervids as these are the most taxonomically diverse groups.

Ecological categorisations were based on a number of sources and

independent criteria, provided in Table S1. Categorisation

authority was given to more recent studies where possible. Species

traditionally classified as ‘intermediates’ or ‘frugivores’ were

considered to be ‘unknown’ for the purpose of this analysis.

Species with conflicting ecological classifications were additionally

classified as unknowns, so that the browser and grazer categories

used here were defined by species strictly characterised as browsers

and strict grazers in the primary literature. The majority of

sampled specimens were housed in the zoology collections at The

Natural History Museum (NHM), London, UK, with additional

specimens sampled from the Royal Veterinary College (RVC),

London, UK. Specimen sex was not taken into account in

calculation of the discriminant function, and, where multiple
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specimens were available, the largest were always selected to

maintain consistency in age. The taxonomy follows the NHM

labelling system, updated to conform to the species-level taxonomy

of Fernández and Vrba [1]. It is assumed here that intraspecific

shape differences are of a lower order of magnitude than

interspecific shape differences; therefore, only a single specimen

per species was used for the investigation.

Snout profile outlines were collected from photographs taken in

ventral view with the crosshairs positioned centrally on the sagittal

inter-premaxillary suture. The starting point for all the outlines

was defined as the point where the suture between the maxilla and

premaxilla intersects the left-lateral margin on the ventrolateral

surface. This convention ensured that all subsequent semi-

landmarks were interpolated to topologically homologous positions

with respect to the total set of semi-landmarks used to represent

the outline (each semi-landmark has a defined x–y position with

respect to the co-ordinate system origin). One hundred equally

spaced semi-landmarks were collected along each outline, a

digitizing resolution sufficient to produce a geometrically faithful

representation of the profiles. No semilandmark sliding was

allowed for reasons discussed by MacLeod [69]. The raw,

untransformed landmark co-ordinate data are provided in data

file S1.

These semi-landmark data were subjected to a Procrustes
(generalised least squares) transformation. Procrustes superimpo-

sition forms the core for analysis of pure shape by removing the

extraneous variation in scale, orientation and position for all

specimens’ semi-landmark constructions (see [70] and Box 2 of

[71]). Optimising the fit of all specimens to each other was

achieved by rigid rotation iteration until the distance between

successive mean landmark configurations fell below 0.0001. This

means that the analysis proceeded in shape space as opposed to

form space. The specimens at this stage were sub-divided into their

ecological sub-groupings for each subsequent analysis.

Superposed co-ordinate data for defined browsers and grazers

were subject to a covariance-based principal components analysis

(PCA) [72], which preserves the partial Procrustes distances

among specimens. Three principal component (PC) axes account-

ed for 93.4 percent of the total shape variance (Table S1).

Accordingly, projected scores on these three PC axes were

retained and served as the basis for a secondary discriminant

analysis. These principal component scores were then subjected to

a canonical variates analysis (CVA) which, unlike PCA, includes

the group-level information as an additional variable [73]. This

multivariate technique transforms the data to a configuration that

achieves the optimal discrimination between group centroids

relative to the group dispersion structure [73–75] (S3). A log-

likelihood ratio (LLR) test was performed to test group distinc-

tiveness (i.e., the group dispersion structure) of these transformed

data, with respect to the sample that defines the discriminant space

[76]. The resulting probability estimate represents a validation test

of the between-groups covariance structure; i.e., a low probability

(,0.05, traditionally) reflects a statistically significant difference in

the dispersion structure with respect to the defined groups.

Recently Mitteröcker and Bookstein [77] have questioned the

use of CVA in geometric morphometric contexts as it is often the

case in such datasets that the sample size is exceeded greatly by the

number of variables used to represent form variation among the

specimens in the sample (in this case, 200). To address this concern

we applied Monte Carlo simulation and bootstrapping variations

of CVA, each based on 1,000 pseudo-replicate datasets, to

determine whether the between-groups distinctions observed are

the product of hyper-dimensionality within the dataset [78]. The

Monte Carlo simulation created pseudo-replicate datasets of

values drawn randomly from a normal distribution of identical

mean and variance to that of the pooled PCA scores. Each pseudo-

replicate dataset was then subjected to a CVA and the extent of

between groups discrimination summarized via calculation of the

LLR index (w) [78]. As all of the values used for the CVA were

drawn randomly from the same distribution, this pseudo-replicate

w value represent the extent of-groups distinction expected under

the null model of no difference between groups other than random

sampling error. In addition, the set of 1,000 pseudo-replicate w
values was then be tabulated into a frequency distribution and

used to assess the statistical significance of observed w value

obtained for the investigation dataset. The bootstrapping simula-

tion created pseudo-random datasets drawn randomly from the

PCA transformed raw shape data themselves such that the

observed group structure was destroyed and, for each pseudo-

replicate dataset random agglomeration of species of group sample

sizes and variable numbers identical to the observed data were

substituted. The distribution of random w values derived from

these bootstrapped pseudo-replicate datasets was then compared

to the observed w value obtained for the investigation dataset.

Passing these sensitivity tests implies that the observed group

distributions are the products of some extrinsic group-distinction

factor (e.g., biogeography, phylogeny, functional constraints,

ecology), as opposed being the result of random sampling or

dataset dimensionality issues.

To represent a shape transformation sequence through the data

based on hypothetical successive models of the snout profiles in

both the principal component space, and a space defined by

maximum between-groups shape variation, overlay or ‘strobe plot’

comparisons of modelled snout shapes were performed [79].

Three principal component axes, with five modelled points per

axis, were back-projected into the space defined by the original

Procrustes-transformed variables. These models represent the two

extreme points, the central point, and two medially-interpolated

points between these on each PC. The result is a set of non-

orthogonal principal component axes oriented with respect to the

data within Procrustes-scaled landmark data. Each modelled axis

was plotted in order to assess, interpret, and illustrate the modes of

shape variation represented along each PC axis. We repeated this

procedure for the single discriminant axis produced by the CVA,

and back-projected this into the PCA space to observe the major

mode of between-groups shape variation in the space that defines

the sum variation in sample snout shapes.

We additionally performed a test for phylogenetic signal in the

principal component scores using Blomberg’s k, a commonly used

statistic that is independent of sample size and assumes that a trait,

in this case snout shape, evolved along a topology under Brownian

Motion [80]. We also calculated Pagel’s l which determines

whether a structured or non-structured tree topology fits the trait

data best [81]. Such practice is becoming increasingly common in

ecomorphological analyses, and particularly within ruminants

[49,59,60]. While several recent ruminant phylogenies exist for

Cervidae [82], Bovidae [83] and all of Ruminantia [1], we opted

to use the updated version of the Bininda-Emonds et al.
mammalian supertree (M. Clauss, 2014, JPT, pers. comm.,

[84]), pruning both this tree and our data set so that taxonomic

lists were congruent (n = 104, File S2). Blomberg’s k was calculated

in the Picante package using the Kcalc() function, and Pagel’s l in

the Phytools package using the phylosig() function. We tested for

phylogenetic signal using the residuals of a linear regression

between body mass and the raw PCA scores. The results of this

test prescribe whether or not the analysis needs to be repeated with

a measure of phylogenetic control – in this case, using the

phyl.pca() function in the Phytools package [85]. Body mass data

Snout Shape in Extant Ruminants
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were extracted from the PanTHERIA database [86] for all

sampled species, and log-transformed subsequent to any analysis.

All statistical tests were conducted in R v. 3.0.3 ([87]).

The process of dimensionality reduction, discriminant analysis,

dispersion structure validation, and model visualisation provides a

statistically rigorous protocol for assessing the validity of the

ruminant feeding categories, and the morphology of the profiles

that define these categories. Additionally, by exploring the effects

of phylogeny and body size, we can determine if the pattern of

shape variation exhibited by the sampled species is the product of

evolutionary similarity, body size, an external ecological factor,

such as feeding style, or a combination of all of the above.

Results

Principal Components Analysis
The first two principal component axes explained the

overwhelming majority of the sample covariation (89.45 percent;

Table S1). These axes can be used to define a low-dimensional

shape ordination subspace (Fig. 1A), with an additional 4 percent

of the covariance described by PC-3 (Fig. 1B). Grazer-classed

species show less variation in this PC-1 and PC-2 subspace

compared to browsers. The two groups overlap about the region of

the total sample grand mean, but occupy quasi-distinct regions of

the PC-1 to 3 subspace. Much of the morphospace occupied by

grazing species in PC1–PC2 is defined by several outlier taxa (Bos
taurus, Connochaetes gnou, C. taurinus and Oryx leucoryx),

whereas the majority of this group occupy low negative scores

about the grand mean. Grazers occupy more negative regions

overall on PC-1 and browsers more positive values on both PC-1

and PC-2. Grazers are strongly constrained along the PC-3 axis,

whereas browsers exhibit about twice the range variation in both

the positive and negative values.

This dispersion structure implies that the dominant aspects of

the shape covariance observed in the sample play a limited role in

any between-group separation structure in the sample. Since PC-1

accounts for more than four times the variance as PC-2, this

means that much of the shape variation present in the dataset is

being determined by something other than distinctions between

browsers and grazers, such as phylogeny, body size, or geograph-

ical partitioning. Overall the dispersion pattern of browsers is

much sparser along PC-1 (defined at the positive-most extremity

by Alces pulmatus and Ammodorcas clarkei, and negatively by

Beatragus hunteri), whereas the distribution is much more

constrained and defined by a higher density of species at extreme

ranges on PC-2 (with the extremity defined positively by Tragulus
javanicus and negatively by and negatively by Rhynchotragus
kirkii).

The between-groups shape deformation axes were modelled at

five coordinate positions along the first three PCA axes (Fig. 2). As

can be seen from these models, positive scores on PC-1 are

associated with profile shapes exhibiting an elongated rostrum

(approximately twice the length compared to the maximal width of

the premaxillae), with a convex distal end, and a distinct medial

compression at the mid-point of the lateral premaxillae margins.

Negative PC-1 scores describe premaxillae that are slightly wider

than long, with a distal medial concavity and lateral margins that

gradually diverge posteriorly. The anterior end of this model

profile is slightly concave. This represents a continuous transfor-

mation of lateral broadening and longitudinal contraction from

positive to negative score values. This difference in muzzle length

between different feeding categories was first noted by Fraser and

Theodor [43]. Positive scores on the PC-2 axis describe a sub-

triangular geometry, with a convex distal end. The lateral margins

of these profile shapes diverge rapidly posteriorly, with a slight

lateral contraction that is not distinct as in PC-1. Negative PC-2

scores describe mediolaterally compressed ‘club-like’ shapes, with

a slight anterior concavity similar to PC-1. This axis represents a

shape deformation sequence in which the posterior part of the

lateral premaxilla narrows in width, and the anterior part expands

laterally but compresses longitudinally from positive to negative

PC-values. The major mode of change described by PC-3 is from

a distally flattened rostrum with strongly laterally convex margins

(negative scores) to a distally convex rostrum (positive scores), with

a slight component of asymmetrical vergence in the higher values.

This pattern of deformation is unusual in that it is occurring in a

non-symmetrical mode about the sagittal line of the rostrum. It is

likely that this axis is detecting a portion of heterogeneous shape

change associated with deformation not removed by the Procrustes
transformation, and perhaps due to a small degree of warping in

the premaxillae from drying involved in the collection and storing

process. As this mode of deformation is represented by such a

small proportion of the sample variance, we do not consider this to

be a major problem with our samples.

Canonical Variates Analysis
The first three PC axes accounted for the majority of the total

observed sample shape variance (93.42 percent). Scores of

individual semi-landmark shape configurations on each of these

axes were parsed into grazers and browsers based on lines of

evidence independent of snout morphology and subjected to a

CVA. Since only two groups were used for this analysis, a single

discriminate axis was defined. A histogram of results for the

projection of shape configurations onto this axis is given in

Figure 3. Both browsers and grazers occupy relatively broad

regions with grazers occupying negative values along CV-1

whereas browsers are distributed more positively (see Table S2

for associated CVA scores).

The overlapping ranges of browsers and grazers implies that the

within-groups shape variation is distributed in a manner such that

a complete snout profile continuum exists irrespective of whether

the shape space is formulated to reflect the major axes of pooled

groups variance (Figs. 1A, B) or between-groups distinction

(Fig. 3). Nevertheless, quasi-distinct regions within the discrimi-

nant space can still be identified. A log-likelihood ratio test

confirmed this distribution as not being the product of random

variation within the dataset (p,0.0001). Monte Carlo simulation

and bootstrapping variations of CVA both based on 1,000

pseudoreplicate datasets produced distributions of randomized

LLR (w) values that were all well below that of the empirical data

(w = 38.13; p = 0 in both circumstances). This indicates that the

probability of these groups occupying their positions in the overall

CV space as a result of the effect of random sampling of a single,

underlying population is well below the traditional 95 percent level

of statistical significance. Accordingly, the alternative hypothesis –

that the observed magnitude of centroid separation is such that

these data were most likely drawn from different shape populations

with different characteristics – is supported. Although these snout

outline shapes are distributed continuously between ruminant

species, there is an underlying trend driven by the different group-

based ecological categorisation of these profiles.

Proximity estimates are provided by calculation of a confusion

matrix (Table S2), which summarizes the assignment of species

with respect to their a priori-defined groups based on their

distances to the respective group means in the canonical variates

space. This result indicates that in over four out of every five cases

(83.82% for this dataset), the correct a posteriori assignment of

each species to its a priori designated feeding class, based on
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secondary criteria, was possible using premaxilla shape data alone.

As such, the division of ruminants in to broad, but non-exclusive,

categories of browsers and grazers maintains a high level of

statistical support. A jackknifed (leave one out) cross-validation of

the performance of this discriminant space produced results

similar to the original CVA, with 83.58% of correct a posteriori
assignment with just a single grazer being identified incorrectly.

The ‘unknown’ sub-group was projected into this defined space

as a way of indicating which of the known groups they belong to,

and as such what ecological inferences can be made about them

with a confidence of 83.82 percent (Fig. 4). By calculating the

distance from each projected point to the known group centroids,

we were able estimate the likely candidate group to which these

‘unknown’ and ‘uncertain’ species belong. Of the 57 unknown

species, 32 are assigned provisionally to the grazer category, and

25 to the browsers. These provisional assignments can be validated

by using additional observational data, such as the percentage of

grass consumed, or the hypsodonty index, once these are

Figure 1. PCA score plots for browsing- and grazing-classed ruminants (A) PC-1 versus PC-2. The convex hulls represent a morphospace
constrained by the extreme data points within the range envelope. Ecological classifications and PC scores for the species used to define this space
are in Table S1. (B) PC-1 versus PC-3. The browser group occupies a similarly broad range as the PC-1 versus PC-2 plot, with grazers appearing more
constrained along the PC-3 axis.
doi:10.1371/journal.pone.0112035.g001
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rigorously defined as being able to discriminate between the

different feeding styles. It is however worth noting that the

assignment of several of the taxa that fall outside of any of the

known browser- or grazer-defined spaces cannot be justified based

on the current analysis.

To interpret the geometric character of optimal between-groups

shape discrimination, the single CV axis was modelled at five

equally-spaced coordinate positions as with the PC axes. The

shape configurations present at these positions along this CV axis

were determined in a manner similar to that used to create the PC

models (see above), first by back-projecting them into the

corresponding PC-space and then reconstructing the semiland-

mark point configurations at those positions using the method of

MacLeod [78,79] (Fig. 5). The pattern of shape variation

described by this CV axis incorporates all three of the modes

represented by the PC axes described above. It can be regarded as

a continuum that shows progressive deformation of the premaxilla

from a rostrolaterally broad, moderately laterally convex, and

Figure 2. Strobe plots for the axis models associated with PC-1, PC-2 and PC-3. The right hand column is an overlay plot for each model
series, showing the progressive deformation along each axis.
doi:10.1371/journal.pone.0112035.g002

Figure 3. Histogram showing the frequency of occurrences of browser-class and grazer-class species along CV-1. The occupation of
quasi-distinct discriminant spaces is clear, with overlap about the grand mean.
doi:10.1371/journal.pone.0112035.g003
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distally depressed geometry (negative scores) into a laterally convex

and posteriorly divergent, and distally narrow and pointed shape

(positive scores). This model ‘strobe plot’ provides a more explicit,

detailed, and empirically-based visualisation of this broadly

pointed-to-blunt shape continuum. The fact that these discrimi-

nant axis models are almost identical to those of PC-1, the major

axis of shape variation, implies that the shape distinction between

browsers and grazers is more significant than any other factor in

reflecting the current state of ruminant snout morphological

diversity.

Comparison with body mass and phylogeny
We used the Bininda-Emonds et al. supertree [82] pruned to

include only those taxa that are present in the current sample

dataset (n = 104). Using the residuals from a linear regression

model of the first two PC axis scores against body mass, we derived

Pagel’s l as a measure of phylogenetic signal (PC-1, p = 0.014; PC-

2, p = 0.008). We additionally derived the Blomberg’s k statistic as

a comparison, finding non-significant results for the residuals for

both major PC axes (PC-1, p = 0.228; PC-2, p = 0.192). Taken as a

whole, however, these results suggest a significant component of

phylogenetic signal within these shape data. Accordingly, we

calculated independent contrasts for the body mass data and

scores for the first two PC axes. A Spearman’s rank (p = 0.8613,

r= 0.017) and Kendall’s tau test (p = 0.934, t= 0.006) demon-

strates that there is no significant relationship between body mass

and PC-1, the primary axis of snout shape variation, within the

ruminant data set when phylogenetic independence is controlled

for. Similar results were obtained for PC-2 for both Spearman’s

rank (p = 0.445, r= 20.076) and Kendall’s tau (p = 0.454, t=

20.05).

Due to the significant phylogenetic signal in the principal

component scores, we modified and repeated the previous

multivariate analysis procedure using the raw shape variables by

performing a phylogenetic PCA on the superimposed Procrustes
co-ordinates [85]. The results of this extended phylogenetically

controlled analysis are given in Table S3. The resulting canonical

variates histogram produces similar results to the raw analysis,

with overlapping but quasi-distinct discriminant spaces occupied

by both browsers and grazers (Fig. 6). It is important to note that

the frequency peaks of these distributions are distinct from each

other in this space, falling either side of the mean shape. The

confusion matrix indicates that the phylogenetically controlled

discriminant analysis performs slightly better than the non-

controlled analysis in correctly resolving individual species to their

category, with 85.45% correct assignments. The jackknifed

confusion matrix confirms the stability of this distribution, with a

slight reduction to 85.19% correct assignment. The log-likelihood

ratio test of this distribution is strongly significant, (p,0.0001), and

the stability confirmed as before with bootstrapping of the

distribution (p = 0.0) and Monte Carlo simulations (p = 0.0).

Projecting the ‘unknowns’ into this discriminant space as in the

raw analysis shows that they overlap both group spaces

pervasively, and exceed the browser space on the negative CV-1

axis (Fig. 7). Of the 48 ‘unknown’ species in this slightly reduced

dataset, 31 (64.58%) are assigned to the browser group, and 17 to

the grazer group (35.42%), which based on the assessment purely

with browsers and grazers we can state with approximately an

85% confidence level (Table S3). The overall result is that

controlling for phylogenetic similarity in these tests is not sufficient

to change the stability of the resulting group dispersion structures,

despite their being a high degree of phylogenetic signal in the

shape profiles within the sample dataset.

Discussion

Taken as a whole, our results suggest that snout shape is largely

sufficient to differentiate between - and so to identify - different

feeding styles in ruminants. Initial descriptions of the blunt-pointed

dichotomy do indeed represent an aspect of the deformation

sequence and describe it in a simple way. While the results of this

study largely confirm that of previous research (e.g.,

[24,36,37,42]), the approach used herein gives analysts access to

the total range of shape variation expressed by geometric

Figure 4. Histogram plot for ruminants classified according to their feeding strategy, with ‘unknowns’ projected into the space. The
unknown-classed species’ range plots more negatively on the CV-1 axis, suggesting that there is a ‘cryptic’ measure of snout shape variance that is
not picked up in the traditional browser-grazer dichotomy.
doi:10.1371/journal.pone.0112035.g004
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Figure 5. Overlay plot of the CV model axes in PC space for browsers and grazers showing the progressive geometric deformation
between modelled axis points. The general profile change is from blunt to pointed, but this excludes some of the subtle profile shape changes.
doi:10.1371/journal.pone.0112035.g005

Figure 6. Histogram showing the frequency of occurrences of browser-class and grazer-class species along CV-1, based on a
canonical variate decomposition of the phylogenetically controlled principal component scores (PC1, PC2, and PC3). Note that the
frequency distributions for each group appear to be superficially taking on that of a normal distribution about different means.
doi:10.1371/journal.pone.0112035.g006
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morphometrics, and so provides a greater quantitative apprecia-

tion of the complexity of the shape transformation. It is apparent

that ruminants are so morphologically diverse, and have adapted

to maximise resource exploitation in their respective ecosystems to

such an extent, that they form a continuum of shape variation

between ‘browser-type’ and ‘grazer-type’ end members. Such a

result might be explained by ‘constrained divergence’, whereby the

two groups’ rostrum shapes were originally quite similar, but have

diverged over evolutionary time.

Previous work assessing the relationship between snout shape

and diet (e.g., [36,42]) has largely followed the methodology of

Walker [88], using it primarily to aid for inferring the diets for

extinct ruminant species. These assessments were based on

quantitative interpretation of exemplar taxa, with the method

requiring construction of the anterior dorsal snout curve using a

cubic spline-fit function to assess intraspecific variation. Typically,

authors have selected the 26 degree angle for the whole sample to

reconstruct the angle of lateral intersection from the midline, a

seemingly arbitrary decision which may not be a consistently

strong indicator of snout shape for each specimen. More recent

research, such as the comparative study by Fraser and Theodor

[43], extended these earlier studies by comparing the utility of

numerous snout shape metrics in reconstructing diet, additionally

incorporating information from the anterior dentary. We have

demonstrated that, using geometric morphometrics, such linear

morphometric approaches are largely sufficient in capturing the

complexity in shape variation of ruminant snouts. Other authors

have identified snout width as a proxy for distal snout shape, with

measurements taken at the ventral maxilla-premaxilla intersection

on the lateral margin [24,37]. When describing the geometry of

complex shapes a single linear metric is usually inadequate as

equivalent measurement values can describe completely disparate

geometries of varying complexity, and non-comparable function.

These authors used this type of measurement, along with the

palatal length, to define a ‘relative muzzle width ratio’, which they

used to represent the ratio between body size and the oral

aperture, as well as possibly representing oral intake and

processing rate. Ratios are poor shape descriptors since all a ratio

can represent adequately is an ellipse, if the two measurements

represent orthogonal axes, as in the method used by Solounias and

Dawson-Saunders [89]. This approach may be sufficient for

partially representing extremes of the browser end of the shape

spectrum, but can just as easily describe a typically blunt grazing

form. The simple fact is that the set of shapes the same ratio can

represent is infinite. Hence, ratios can be inappropriate tools for

snout shape characterisation (contra [24]). However using linear

morphometrics, Fraser and Theodor [43] find a high rate of

dietary classification, in particular when the intermediate or mixed

feeders are excluded from analyses. The implication of this result is

that while outline morphometric methods can describe the

complexity of shape variation and confirm the presence (or

absence) of shape differences in a more geometric manner, linear

distances may be adequate for encapsulating the same amount of

ecological information from ruminant snouts, and arguably in a

more efficient manner.

The principle focus of this study was to determine whether

ruminant snout profile shapes form discrete varieties that covary

with feeding strategies (assessed via independent evidence) as had

been suggested by numerous previous studies [24,36,37,42]. The

corresponding null hypothesis relates to the conclusions of Pérez-

Barbéria and Gordon [29], among others, that feeding strategy

bears no precise relation to premaxilla morphology. One

alternative hypothesis is that the shapes of ruminant premaxilla

form a continuum, with characteristic ‘browser-type’ and ‘grazer-

type’ morphologies comprising end-members, a hypothesis that is

increasingly winning support based on a range of detailed

investigations. This hypothesis is based on the inference that

classifying what are intrinsically morphologically diverse organisms

into discrete clusters is problematic and somewhat counter-

intuitive, if purely for the purposes of having an antecedent

framework onto which new hypotheses of functional morphology

can be built. Our results show that, when ruminants are classified

ecologically as browsers and grazers based on a range of secondary

criteria, they cannot be discriminated completely based on the

Figure 7. Histogram plot for ruminants classified according to their feeding strategy with ‘unknowns’ projected into the
phylogenetically controlled CV-1 space. Note the high frequency distribution about the grand mean of the browser-grazer defined space.
doi:10.1371/journal.pone.0112035.g007

Snout Shape in Extant Ruminants

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112035



shape of their premaxillary profile. This result is inconsistent with

previous investigations of this issue in which this shape dichotomy

was assumed to be absolute based on the sample species used

[24,36,37,42]. Premaxilla shape appears to be moderately

homoplastic in nature, with a broad range of profile geometries

being present in both of the feeding-style sub-groups. Despite

exhibiting a degree of shape overlap, these groups retain moderate

geometric independence, such that they can be assigned to the

correct groups post hoc over 80 percent of the time. While profile-

based classification among ruminants is not perfect, it nevertheless

has potential to inform studies of fossil ruminants, as it enables

quantitative assessment of inferring their ecologies as well as

providing a means of quantifying the statistical confidence that can

be assigned to these inferences.

The results obtained by our investigations also suggest a possible

route of analysis that can be employed in future investigations of

functional ecology in ruminants: specifically the use of multivariate

ordination analysis combined with tests of statistical confidence to

assess the validity of naturally-occurring groups. A similar

conclusion was reached by Pérez-Barberı́a et al. [90] that

currently accepted boundaries between ruminant feeding strate-

gies remain somewhat arbitrary. One approach to resolving this

problem would be to employ a covariate or group of covariates as

continuous variables, with thresholds being based on the

identification of functionally significant and discrete clusters.

However, investigations into this issue so far have found no

morphological discrepancies that can explain variation in rumi-

nant digestive efficiency based on digestive, not ingestive,

morphology [2,19,32,91]. This perplexing result may, in part, be

due to the treatment of species as static entities, when realistically

thresholds should be constructed on a sliding scale accounting for

population-level ecological, environmental and spatiotemporal

variations where appropriate [33,35]. Interpretation of general

patterns must also be flexible enough to account for singular

exceptions (e.g., frugivores) and are currently insufficient to

encapsulate the full diversity of ruminant feeding habits.

Theoretically, a higher food intake rate should covary with the

evolution of stronger anatomical structures [92] (e.g., strengthen-

ing or fusion of sutures, increased muscle attachment area,

decreasing pleurokinesis and increased resistance to strain). This

relationship between diet and ecology does not necessarily imply

that as snout shape, and hence intake rate, varies, it forces

covariation of other morphophysiological parameters. Rather,

snout shape constitutes an initial parameter with which other

functional domains interact. This morpho-functional relationship

was corroborated by Fletcher et al. [93], who proposed that the

strength of the masticatory apparatus has a functional or

adaptational origin, challenging other studies which identified it

as being a phylogenetic artefact [29,37,94,95]. This covariation

hypothesis requires further investigation, with snout shape being

analysed to assess functional significance as a trait affecting both

intake rate (volume per unit of time) and selectivity (non-

parametric), and plausibly maximum bite size (volume) [96,97].

The results herein imply that snout shape, and thus feeding style,

has a strong adaptive component combined with phylogenetic

constraint, based on the analysis of a broad range of ruminant

species. Finally, our results suggest that major variations in snout

shape are related to body size variation, although a directional

relationship cannot be established.

Conclusions

Using a two-dimensional representation of the ruminant snout

in ventral aspect, we have demonstrated that there is a strong

relationship between snout shape and feeding ecology within a

highly diverse sample of the major ruminant clades, but only when

the data set is restricted to members of the relatively well-defined

browser and grazer classes. This between-group discrimination is

statistically robust, and supported by recent analyses of the

relationship between diet and the shape of the anterior dentary

[43]. Snout shape variation is shown to be strongly controlled by

phylogenetic similarity, but with this phylogenetic component not

affecting the overall dispersal patterns of snout shapes in

discriminant space and proportion of successful categorisations.

Snout shape variation is also found to be strongly correlated to

body size, although this relationship breaks down in a phyloge-

netically controlled comparison. This corroborates previous

hypotheses of relations between feeding style, body size, and

ecology, and that while evolutionary similarity is an important

component of ecology, snout shape appears to reflect a genuine

functional signal.

Based on our results, it is further apparent that previous

categorisations, which included putative ‘intermediates’, or ‘un-

knowns’ here, of snout shapes relative to feeding strategy are not

fully adequate in their depictions of the full range of exhibited

morphological variation (i.e., ‘browsers’ do not strictly have

‘pointed’ premaxillae, and ‘grazers’ do not just have ‘blunt’

premaxillae as asserted previously by many authors). The

geometric complexity of premaxilla morphology is more extensive

than this and forms a continuum of shape variation within the

modern ruminant fauna. Our results suggest that attempts to place

thresholds on other related factors involved in feeding are

problematic and quantitative testing is required a priori (following

the recommendations of Gordon and Illius, [34]).

In light of these results, inferences made by Janis et al. [92]

- that intake rate forces covariation in the anatomical strength of

the mandible - could be explored further to determine the

relationship between grazing and browsing ruminants and the

relative robustness of the masticatory apparatus. We suggest, in a

manner analogous to that of Codron et al. [46], that ruminant

diets represent a continuum with variation explicitly occurring on

a spatiotemporal (geographical and seasonal) scale for all feeding

strategies. This requires additional analysis in terms of ruminant

phylogenetic affinity, [98,99,100], species’ ranges, and functionally

significant ecological parameters. Additionally, the role of different

ecological categories based on dietary strategies could be explored

beyond the traditional browser-intermediate-grazer trichotomy,

such as that for African bovids by Gagnon and Chew [101].

The fact that feeding style-based categories were demonstrated

to be associated with snout shape in this investigation offers a

model for future ecological studies regarding the reconstruction of

palaeodiets using a morphometric dataset to delimit and identify

extinct browsing and grazing species [36,38]. This aspect of

palaeoecology could feasibly be integrated with additional

indicators of diet, such as isotopic signatures and microwear in

teeth [99,100,102], or the hypsodonty index [103]. Indeed, the

incorporation of additional ecological predictors has been

demonstrated to increase the accuracy of dietary classification

[42].

It is conceivable that our results are the product of a lack of

consistency in the ecological definitions of functional feeding

groups for ruminants – either in theory or in practice – with

respect to other morphophysiological traits. The functional

significance of snout shape in relation to bite size, intake rate,

body size and selectivity was not addressed explicitly by our

investigation. Indeed, our results indicate that closer inspection of

these relationships is required. Quantitative metrics describing
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these ecologically significant parameters should provide a firmer

basis for these in (anticipated) future studies [97].

What is undoubtedly necessary in future studies is the dissection

of recovered signals to determine what proportion of trait

covariation can be explained by phylogenetic relationships

[94,95]. Applicable methods include comparative phylogenetic

modelling, which has gained increasing interest in the integration

of ecology and macroevolution (e.g., [95,104]), and demonstrated

in the current study in the context of multivariate statistics. This

will facilitate the teasing apart of genuine adaptational signals as

opposed to morphological similarity based on common ancestry.

Calculation of the rates and direction of snout shape evolution in

ruminants, while incorporating fossil data, will be important in

elucidating the ecological history of ruminants. Furthermore, if

singular or multiple functional traits are found to be phylogenetic

artefacts, it may be possible to track the sequence of acquisition,

and therefore trace the macroevolutionary and ecological coevo-

lution of ruminants. However, the results obtained here suggest

that while phylogeny exhibits a strong control on snout shape in

ruminants, it does not affect their ecological classification. Indeed,

snout shape and profile-based classification can be explained by a

combination of phylogenetic similarity and evolutionary history,

body size, and ecology. Finally, in addition to phylogeny, factors

such as ontogeny and range size should be scrutinised within a

similarly rigorous morphometric-statistical framework to detect

potential allometric variation, possible synchronisation of trait

acquisition, and evolutionary patterns of character acquisition that

might differ between sexes.
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30. Pérez-Barberı́a FJ, Gordon IJ, Illius A (2001) Phylogenetic analysis of stomach

adaptation in digestive strategies in African ruminants. Oecologia 129: 498–

508.

31. Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, et al. (2009) Physical

characteristics of rumen contents in four large ruminants of different feeding
type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus
elaphus) and moose (Alces alces). Comparative Biochemistry and Physiology,

Part A 152: 398–406.

32. Sponheimer M, Lee-Thorp JA, DeRuiter D, Smith JM, Van der Merwe NJ,

et al. (2003) Diets of Southern African Bovidae: stable isotopic evidence.
Journal of Mammalogy 84: 471–479.

33. Owen-Smith N (1997) Distinctive features of the nutritional ecology of

browsing versus grazing ruminants. Proceedings of the First International
Symposium on Physiology and Ethology of Wild and Zoo Animals 11: 176–

191.

34. Gordon IJ, Illius AW (1994) The functional significance of the browser-grazer
dichotomy in African ruminants. Oecologia 98: 167–175.

35. Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking
digestive physiology and food selection across wild ruminant species. Canadian

Journal of Zoology 88: 1129–1138.

36. Solounias N, Teaford M, Walker A (1988) Interpreting the diet of extinct
ruminants: the case of a non-browsing giraffid. Paleobiology 14: 287–300.

37. Gordon IJ, Illius AW (1988) Incisor arcade structure and diet selection in
ruminants. Functional Ecology 2: 15–22.

38. Murray MG, Brown D (1993) Niche separation of grazing ungulates in the

Serengeti: an experimental test. Journal of Animal Ecology 62: 380–389.
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