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Abstract: Hemodynamic activities, as an essential measure of physiological and psychological
characteristics, can be used for cardiovascular and cerebrovascular disease detection. Photoplethys-
mography imaging (iPPG) can be applied for such purposes with non-contact advances, however,
most cardiovascular hemodynamics of iPPG systems are developed for laboratory research, which
limits the application in pervasive healthcare. In this study, a video-based facial iPPG detecting
equipment was devised to provide multi-dimensional spatiotemporal hemodynamic pulsations for
applications with high portability and self-monitoring requirements. A series of algorithms have
also been developed for physiological indices such as heart rate and breath rate extraction, facial
region analysis, and visualization of hemodynamic pulsation distribution. Results showed that the
new device can provide a reliable measurement of a rich range of cardiovascular hemodynamics.
Combined with the advanced computing techniques, the new non-contact iPPG system provides a
promising solution for user-friendly pervasive healthcare.

Keywords: photoplethysmography imaging; systematic design; cardiovascular activities; facial
regional analysis; pervasive healthcare

1. Introduction

Pervasive monitoring of cardiovascular health is attractive for both clinical and
biomedical communities [1]. However, existing monitoring equipment is either embedded
in medical institutes or requires a specialist for operation. There is a shortage of user-
friendly cardiovascular monitoring equipment which is informative with easy accessibility,
allowing various health indices to be detected without knowing the detailed underlying
mechanisms [2,3] for daily life healthcare. iPPG (Photoplethysmography Imaging) which is
based on a non-contact and imaging technique [4–6], offers the public a potential solution
for quick and smart self-monitoring, and is being increasingly used in such applications.

iPPG measurement is often based on contact and point-light plethysmography (PPG),
where compression of contact tissue is essential and can only be measured at specific
body regions. The non-contact technology provides unconstrained blood volume pulse
measurements for cardiovascular or microcirculation monitoring. Several physiological in-
formation, such as the blood oxygen saturation calculation [7], pulse transit time (PTT) [8],
heart rate (HR) and its variability (HRV), can be obtained through analyzing of iPPG sig
dxnals [9]. HRV derived in certain regions can be used to analyze the function of parasym-
pathetic nervous system [10]. PTT reflects the changes in cardiovascular parameters, such
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as arterial elasticity and stiffness [8,11], which can be derived from the spatial dynamic
analysis of iPPG with pulsation distribution

Additionally, iPPG can provide extensive information on the vascular network un-
der the skin by measuring the spatial distribution of dynamic pulsations; thus, multi-
dimensional biophysical details of physiological parameters can be derived for analyzing
cardiovascular functions. For example, the spatiotemporal information derived from iPPG
measurement can be used to detect blood perfusion distribution at irritated skin [12] and
symmetric facial distribution in potential migraine patients with family history [13]. High-
dimensional information from iPPG has also increasingly been used for human–machine
interaction in healthcare applications. The radial artery above radius changes pulsatory
volume has been localized using the video-based iPPG technique [14].

Despite increasing potential applications, the essential iPPG equipment for healthcare
monitoring service has rarely been reported. iPPG-based healthcare equipment consists
of a lighting source, a camera, and iPPG derivation algorithms. Tulyakov et al. [15]
extracted iPPG, using ambient light, from regions of interest (ROI) selections, excluded
from independent movement’s influence. Kwon et al. [16], using visible lighting in an office
environment, studied the division of face ROI regions based on the signal-to-noise ratio
(SNR). Hao-Yu et al. [17] used a web-camera to take videos in ambient light and proposed
a method to enhance the subtle intensity changes in pixel values reflecting facial blood
pulsation. Kamshilin et al. [18] used the green Light Emitting Diode (LED) equipped with
a Complementary Metal Oxide Semiconductor (CMOS) camera to calculate PTT and Blood
Pulse Amplitude (BPA) distributions from subjects in sedentary and recumbent positions.
However, most current iPPG applications were set up in laboratory environment [19,20].

In this study, a new multi-functional iPPG sensoring device, integrated with signal
processing algorithms, was proposed for monitoring high-dimensional spatiotemporal
pulsation information. The system defines hardware configuration of the green-lighted
camera-based iPPG system and ROI selection criteria. iPPG spatial distribution was
visualized to demonstrate the feasibility of facial hemodynamics analysis. The highly
integrated system adds convenience and flexibility for the user, and allows an interactive
self-monitoring of multi-dimensional physiological information at home or for public
health applications

2. Materials and Methods
2.1. The iPPG Genesis of The Device

The dynamic fluctuations of reflection of incident light from dermal surfaces are
recorded by optical sensors (Figure 1a). A green LED with a wavelength of 530 nm was
used. The estimated depth of penetration (where the illuminance is attenuated by 95%) is
~1 mm [21,22], where lies the subpapillary plexus layer. Furthermore, the molar extinction
coefficient of hemoglobin reaches its locally maximized ~530 nm (Figure 1b), thus is
optimized for the detection of pulsation volume changes [23]. According to the Lambert–
Beer law and scattering theory, body tissues, such as bones, muscles, venous blood, and
melanin, absorb constant amounts of light, which constitutes the direct component (DC) of
iPPG. Changes in arterial blood volume in each cardiac cycle [24] produce the alternating
component (AC) (Figure 1c).
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Figure 1. (a) Illustration of incident light penetration of different wavelengths through layers of the skin and skin reflection
mode. In these wavelength ranges, a longer wavelength represents a higher light penetration rate. Green LED at 530 nm
can reach the subpapillary plexus of the dermis layer; (b) Absorption spectra of deoxygenated hemoglobin (Hb), and
oxygenated hemoglobin (HbO2). The x-axis represents the wavelength, and the y-axis represents the absorption rate. A
local maxima absorption rate at 530 nm (green bar); (c) The iPPG’s AC and DC formation from light intensity rely on the
light reflection and the arterial blood flow over time.

2.2. Devise Composition

The new device comprises a lighting system, an enclosed illumination chamber, a
recording camera and a user interface. iPPG is measured within an enclosed environment il-
luminated with designed light sources to avoid environmental light interferences (Figure 2).
A round LED belt light with adjustable intensity (via USB 3.0) was used, composed of light
sources of the green light with a wavelength of 530 nm. It was ensembled with a light
guide, and reflective and scatter plates to ensure uniform light emitting outward, placed at
the equipment chamber’s deep end. The illumination chamber has an elliptical opening of
a size 15 cm × 20 cm to fit an entire human face. Chin support was set 25 cm away from
the camera to help fix head posture and avoid head movement.

Figure 2. The composition of equipment. Left is the picture of the equipment, including the
illumination chamber and a Tablet PC for the user interface (UI). Center picture shows the light-
source driver, controller, and camera, all of which have been fixed at the back of the chamber. Right
shows the light source’s composition, including the light guide, scattering, and reflective plates. The
LED-belt light source is around the rim of the light guide plate. Users can place their chin on the chin
support and start video recording and iPPG analysis.
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A high sensitivity camera of BaslerTM aca2440-75ucmed camera (chip type: CMOS,
highest resolution of 2448 px times 2048 px, maximum frame rate: 100 fps, data recorded:
8 bit, manufactured in Ahrensburg, Germany) is installed. It is arranged in the middle of
the plate, equipped with a low-distortion c-mount 12 mm lens (m0814-mp2) to capture
image sequence under light illumination. An interactive user software was developed
integrated within a touch screen for customers to operate the device.

2.3. Subjects

In this study, a total number of 9 volunteers were tested, aged between 22 and 36
(25.9 ± 4.9) and without a history of critical illness. The volunteers’ blood pressure was
recorded with OmronTM HBP-9021 (manufactured in Dalian, China) before the experiment,
along with general health information. Participation was voluntary, and all participants
gave written informed consent.

2.4. Experimental Setup

In an experiment, the volunteer was set in a calm position, and the distance between
the face and the camera is around 20 cm. The camera’s exposure time was set at 20,000 µs,
and the frame rate was 40 fps. The size of each frame was 1800 px wide and 2000 px high.
We achieved the illumination at face as 850 lx. A 30-s sequence of images is continuously
recorded. During the experiment, BioCaptureTM (manufactured in Cleveland, U.S.) was
also used to collect finger PPG and electrocardiogram (ECG) signals for reference, illustrated
in Figure 3.

Figure 3. Experimental setup to record iPPG, PPG and ECG data. Biocapture TM was attached
to the left hand’s index finger for PPG signal detection and to the chest for ECG signal detection.
Meanwhile, our equipment records facial video with the green light on.
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2.5. Analysis Methods
2.5.1. Facial Region Segmentation Based on Facial Landmarks

The present study applied the ROI segmentation [11–18] process into three parts:
the face detecting process, the facial landmarks detecting process and the region’s auto-
generation process. We used Dlib toolkit’s [25] to detect the face and “shape-predictor-
68-face-landmarks” to find the facial landmarks. As the face detection algorithm returns
rectangle areas for preliminary facial location, an 81-facial-landmarks algorithm retrained
from [26] returns coordinates of facial locating points within the rectangle region. According
to the combination of the locating points, we defined 98 (0~97) non-overlapping, seamless,
and symmetry triangle regions to cover the whole face. Then, the fixed-size rectangles
(80 px × 80 px) were applied in each region’s centroids, and the regional iPPG signals were
extracted from these rectangles (ROI). Considering the relatively static face position and
requirement of real-time iPPG signal processing, we built a ROI mask for the first image.
We used it to extract the corresponding regions from the follow-up input pictures.

2.5.2. Signal Processing

We used the green channel of images. Pixels within the selected ROI were averaged to
reduce spatially uncorrelated noise and derive “raw iPPG signal” following a multi-step
iPPG extraction procedure [12]. Prior to further analysis, the low frequent component was
removed by mean-centralization (also called sliding mean) using a sliding 1s window. To
extract “pre-processed iPPG signal”, a 0.5–4 Hz bandpass filter using 5th Butterworth was
applied to derive the. A 0.2–0.5 Hz bandpass filter using 5th Butterworth was applied to
derive the “breathing signal”.

2.5.3. Q Value for Evaluating Signal Quality

SNR is derived from the power difference between pre-processed iPPG and raw iPPG,
using the equation below:

SNR = 10 × log10(
∑N

i f (i)2

∑N
i ( f (i)− x(i))2 ) (1)

where x(i) is the ith sampled value of raw iPPG signal, f(i) stands for the ith sampled value
of signal processed by the bandpass filter.

To evaluating the signal quality, standard deviation of AC (denoted as STD), and SNR
were used to define a Q value as:

Q = mean (SNR) + mean(−STD) =
N

∑
n−1

(SNRn − STDn)/N (2)

where N is the number of the subjects. Further process of iPPG analysis was applied after
sorting by Q value and within the chosen top 50 regions.

2.5.4. Time Lag

The 20th region (the middle of the forehead) was selected as the reference region for
analysis of the average time lag difference of the top 50 ROI regions selected. We calculated
the peak arriving time difference between the reference area and other regions to measure
time lag:

Ti =
K

∑
k=1

Pi,k − Pre f ,k

f ps
(3)

where Pi,k is the kth peak point of region i, Pref,k is the kth peak point of the reference region,
and k is the number of cycles.
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2.5.5. Mean of Difference

We define mean of difference as the time lag effect size that we are interested in. By ap-
plying bias-corrected and accelerated bootstrap resampling [27], 5000 samples were derived
from each region’s data. Wilcoxon signed-rank test was used to measure the relationship
between a pair of regions. By considering 95% is widely acceptable as confidence interval,
p-value were calculated with 5% chosen as the threshold to reject the null hypothesis.

2.5.6. iPPG Intensity

AC was calculated using pre-processed iPPG by calculating peak-bottom amplitudes.
The equation below is used to compute the signal intensity of the recording period:

AC = (
∑N

i=0 s(i)2

N
)

1
2

(4)

where s(i) stands for the ith sampled value of pre-processed iPPG signal and N stands for
the number of sampled points in one period.

2.5.7. Goodness Matrix

To estimate if a signal mainly consists of target frequency, M. Kumar et al. propose a
metric called “Goodness Matrix” [28]. Goodness define as follow:

G(PR) =

∫ PR+b
PR−b Y( f )d f∫ B2

B1 Y( f )d f −
∫ PR+b

PR−b Y( f )d f
(5)

where G is goodness, Y is the power spectrum density of iPGG signal, PR is the periodical
pulsation frequency, b is the frequency threshold, B1 and B2 is the frequency bandwidth
of the iPGG signal. This goodness matrix is to quantify the iPPG signal quality around
the pulse rate for each ROI, and G below 50% was excluded for intensity analysis. By
multiplying G to AC, the weighted results can be obtained to highlight the pulse signal in
the facial distribution analysis.

2.5.8. Eulerian Video Magnification

Eulerian Video Magnification (EVM) is a method to reveal the temporal variation
within a video proposed by Wu et al. [29]. EVM decomposes the video into pyramidal
ranks of resolutions then applies temporal filtering to select a preferred frequency for
emphasizing and amplification. Finally, ranked videos are summed back to reconstruct
the composed signals and generate the magnified video. The reconstruction result is
used to show the propagation and strength distribution of the pulsations clearly in the
current work.

3. Results and Applications
3.1. iPPG Processing

The raw iPPG signal derived from the non-contact images of the forehead can be used
to derive multiple biophysiological indices (illustrated in Figure 4). A breathing waveform
can be obtained by bandpass filtering the raw signals with the bandpass 0.2~0.5 Hz.
The sliding mean process with 1-s window derived the mean-centralized iPPG signal. A
0.5–4 Hz bandpass filter using 5th Butterworth was applied to derive the “pre-processed
iPPG signal”.
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Figure 4. Original iPPG signal of recording. Multiple biophysiological indices, such as pulse pressure,
heart rate variability, breathing rate, perfusion variable information can be derived from the signal.
The x-axis is the recorded time frame, and the y-axis is the amplitude. The green line is the change of
the original pixel value extracted from the picture. The red line is the breath signal after a 0.2~0.5 Hz
bandpass. The blue line was after a 1s window sliding-mean process, and the black line is the smooth
signal obtained after passing through a 0.5~5 Hz bandpass filter.

3.2. Regional iPPG Derivation

To analyze the differences between regions, this study derived regional iPPG for each
subject by segmenting the facial areas using its geographical features (Figure 5). A total of
81 facial features were detected from each face image, constructing 98 triangular regions
by combinations of neighboring landmarks. We recorded 36 groups of iPPG signals from
9 subjects (each subject tested four times in both resting state and post-exercise state), then
sorted 98 facial regions according to the Q value of Equation (3) at each state. The deviation
of the mean “-STD” is relatively lower in the higher-ranking regions, indicating the AC
volatility tend to be low consistently for different subjects in these regions. Mean SNR and
mean “-STD” were calculated as 11.96 and −0.08, respectively.

Figure 5. Facial landmarks detection and ROI extraction. Left two are the original image taken by
the camera and the 81 facial features detected. Right two represent the 98 triangular regions formed
by combinations of different landmarks and the number of each triangular region.

To explore differences between areas and face sides (left or right), we selected 38 sym-
metric meta-regions from the top 50 ranked by the Q value for further analysis, hereafter
referred to as “meta area” or “meta region”. They formed a total of 12 larger symmetric
areas (6 regions on each side), referred to as ”region” or “area” in Table 1. For illustration,
we draw the waveforms of six meta regions (from meta regions 19, 45, 89, 98, and 92),
and the comparison of waveforms of meta-region 20 and 59, as it’s shown in Figure 6.
Waveforms in the selected region are rhythmic showing obvious peaks, and it can be found
that peak times vary among these meta regions. This idea is the foundation of the time lag
analysis between regions in the next step.
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Table 1. ANOVA statistics of time lags at face regions.

Factor DF-fac DF-err SSF SSE F-Value p-Value

Within left face 18 323 6436 39810 2.894 9.494 × 10−5

Within right face 18 323 13333 39019 6.132 9.122 × 10−13

Between two sides 1 646 1148 78929 1.56 2.250 × 10−3

Between regions 18 646 16338 78930 7.429 1.120 × 10−17

Face sides × regions 18 646 3431 78929 1.56 0.0647
DF-fac stands for “degree of freedom of factor”, DF-err stands for “degree of freedom of error”, SSF stands for
“sum or square for factor”. SSE stands for “sum of square for error”, and MSF = SSF/DF-fac, MSE = SSE/DF-err,
F-value = MSF/MSE and it determines the p-value. DF-fac for regions (the 1st, 2nd and 4th rows of Table 1) is
19 − 1 = 18 (19 is the number of regions), DF for face side (the 3rd row of Table 1) is 2 − 1 = 1 (2 means “left or
right side of face”), DF for interaction of two factors (the 5th row) is (19 − 1) × (2 − 1) = 18.

Figure 6. (a) Illustration of face region segmentation. The entire face is covered by a set of 98 triangles
defined by facial landmarks combinations and each triangle has a dot indicating the location of the
center of 80 px × 80px rectangles where the iPPG signal was extracted from; (b) Aligned waveform
comparison of signal from meta area 20 and meta area 59; (c) Examples of iPPG signal from different
meta regions (19,45,59,89,98,92). X-axis represents the sample points (40 Hz), y-axis represents the
intensity of signal.

3.3. Time Lag Analysis
3.3.1. Analysis among Vertical and Symmetrical Regions (ANOVA)

We used time lag, with meta area 20 in the middle of the forehead as reference, to
measure phase difference among regions. Symmetrical areas composed in Table 1 were the
left and right forehead, the left and right nose bridge, the left and right mid cheek, the left
and right nasolabial fold, the left and right peri-oral, and the left and right chin areas. For
each repeated experiment, we used Equation (4) to calculate time lag for 38 meta regions
and obtained in total of 18 samples for each region.

One-way ANOVA was used to analyze the influence of region factors on both sides,
and the statistical data were shown in first two rows of Table 1. The p-value the region
factors of the left and right faces is 9.494 × 10−5 and 9.122 × 10−13, respectively, which are
both less than 0.01. Therefore, it is considered that the categorical variable of the region has
a significant influence on the regions’ time lag of both the left and right faces.

Two-way ANOVA was used to analyze the two regions and face sides and their
interactions. The statistical data obtained were shown in the last three rows of Table 1.
The results show that the p-values of side factor and region factor are 2.250 × 10−3 and
1.120 × 10−17, respectively, which are both smaller than 0.01. Therefore, it is believed that
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there is a significant difference in the time lag between regions in the whole face range, and
there is a significant difference in the mean of the phase difference between the left face
and the right face.

The p-value of the interaction of the two factors is 0.0647, as greater than 0.05, thus
it is believed that one factor will not affect other factor’s effect on the peak arriving time,
that is, the time lag between regions do not depend on whether regions come from the left
cheek or the right cheek.

In conclusion, there are significant differences between regions, as well as between the
left and right faces, but the regional differences are enough for us to ignore the differences
between the left and right facial sides.

3.3.2. Mean-of-Difference Analysis of Vertical Regions

To specify the difference among regions, we analyzed time lags for all regions with
scatter diagram illustrating “time lag” and distribution diagram illustrating “mean-of-
difference” with reference to the forehead meta region. A global trend of time lag changing
from both sides of the face is shown: it went down from forehead to nose bridge and mid
cheek, then ascended from mid cheek to nasolabial fold to upper peri-oral and to chin
regions (upper scatter diagrams in both Figure 6a,b).

We also compared time lag between forehead and other regions by calculating “mean-
of-difference”, shown in lower diagrams in both Figure 7a,b. We found that on the left side
of face, the bars of chin and peri-oral region had crossed the zero baseline, in other words,
there’s no significant difference between these two regions’ time lag from the forehead. As
to regions of the right side, all null hypothesis was rejected, which means all regions were
significantly different from forehead region.

Figure 7. Comparison of time difference between each region and reference region. (a) Left face’s data
demonstrated; (b) Right face’s data demonstrated. In the upper part of (a,b) is the scatter diagram of
the time difference between the six regions (each region is composed of the meta region shown in
Tab 1 and each meta-region has 18 sample points.) and the reference region. In the lower part of is
the distribution of the time difference between the other five regions and forehead. The vertical axis
is the time difference (ms), which is used to show the range of the 95% CI of the mean-of-difference.
5000 samples from BCa bootstrap were taken from the six regions of the left and right faces, and the
forehead was taken as reference to calculate the probability distribution of difference between other
areas and forehead, and we had a bar with a circle indicated the range of 95% CI of difference mean.
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3.3.3. Mean-of-difference Analysis of Symmetric Regions

To analyze time difference between symmetric regions of left and right face sides,
we compared and analyzed their time lags from Table 2. The maximum time difference
between two symmetric areas was found in chin as −0.620 − (−2.245) = 1.625 ms, and the
smallest was found in upper peri-oral as −4.291 − (− 4.492) = 0.201 ms. Time difference
for forehead and nose bridge were significant, at −7.090 ms and −6.381 ms respectively.

Table 2. Time difference between the face region and reference region.

Factor DF-err SSE F-value p-Value

forehead −0.9 ± 9.8 6.2 ± 9.8 −7.1 ± 13.0 2.7 × 10−5

nose bridge −5.3 ± 10.3 1.0 ± 10.8 −6.4 ± 8.7 3.1 × 107

middle cheek −12.3 ± 10.1 −13.1 ± 11.0 0.798 ± 7.2 0.640
nasolabial fold −8.1 ± 11 −6.8 ± 10.5 −1.3 ± 8.3 0.633
upper peri-oral −4.3 ± 11 −4.5 ± 12.0 0.2 ± 8.95 0.516

chin −0.6 ± 13 −2.2 ± 12.1 1.6 ± 9.3 0.257

The diagram of time lag comparison and mean-of-difference between samples from
symmetric regions were analyzed and shown in Figure 8a,b. There is significantly positive
mean-of-difference between right and left in forehead and nose bridge regions. The mean-
of-difference of the other areas is around zero (the zero baseline has crossed the 95% CI
areas). As the p-value in Table 2 has shown, upper peri-oral, mid cheek, nasolabial fold
and chin don’t have significant difference between left and right.

Figure 8. The phase comparison of the symmetrical regions of the left and right faces; (a) shows lines
between the sample points of the corresponding region of the left and right face sides. The horizontal
axis is the corresponding region, and the vertical axis is the time difference between the sample point
and the reference point. (b) is the distribution map of the difference between the corresponding
regions of the left and right faces. The horizontal axis marks the subtracting regions, and the vertical
axis represents the time mean-of-difference between regions.

3.3.4. Distribution of Pulse Amplitude and Time Lags

We applied imaging analysis for intuitively observing the difference between iPPG
intensity and time lags over face distributions. From the original facial video, Figure 9a as
the 1st frame, the heatmap of Goodness matrix was calculated, shown as Figure 9b. The
color distribution illustrates the area outside of the face not affected by pulse rate. The
influence of heart-rate can be clearly distinguished by the red and yellow marks. iPPG
intensity was calculated as the weighted AC image (Figure 9c), which demonstrated the
effective intensity distribution of the face. The forehead and cheek had large amplitude,
while the lower jaw has relatively lower. Imaging analysis of other subjects showed that
areas composed of mainly heart rate signals were cheeks, forehead and jaws. Time-lag
distribution was calculated as Figure 9d, demonstrating that forehead, nose bridge and chin
have similar peak times. However, cheeks significantly increased in time lag in comparison.
The results of visualization were consistent with results from statistical analysis.
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Figure 9. iPPG imaging analysis. (a) the original image, candidate’s 1of a period the video after
EVM process (above row), and the bottom row is the iPPG waveforms of right-cheek (blue) and
forehead ( frame image under 530nm’s green light; (b) the Goodness Matrix; (c) image of weighted
AC, red means large-amplitude and represents the region with strong pulse-rate intensity; blue
means small-amplitude and represents the region with weak pulse-rate information;(d) Time lag
between forehead’s iPGG signal and each selected ROI’s iPGG signal.

3.3.5. iPPG Enhancement and Visualization

To intuitively observe time lags between forehead and cheek, we can visualize the iPPG
time lag from one period of a video sequence from a subject with a relatively slow heart-rate.
Usually, it is difficult for the naked eye and the camera to distinguish heart rate change
information; however, changes of facial color amplitude and brightness after EVM and be
directly visualized, with pixel intensity of the face’s ROI changes periodically according to
the heart rate. The brightness changed significantly in Figure 10, and pulse rhythm after
EVM was illustrated below the iPPG waveform. Forehead’s peak time occurred at 33th
frame, and the cheek’s peak occurred at 31th frame; thus there is a time difference. The
forehead reached a peak later than the cheek, as similar to statistical analysis.

Figure 10. Illustration of EVM enhancement and visualized using video frames and iPPG waveform.
This figure demonstrates 10 frames of a period the video after EVM process (above row), and the
bottom row is the iPPG waveforms of right-cheek (blue) and forehead (red) ROI. Two vertical black
line shows the gap of two peaks, cheek reach peak at 31th frame and forehead at 33th as expected.
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4. Discussion

In this study, we introduced a user-friendly equipment for facial video recording, and
our system showed strong robustness in iPPG extraction and pulsation distribution for
high-dimension spatiotemporal applications. Typical physiological indices can be derived
using multi-step iPPG processing. Facial regional analysis provides time lags between
meta-region and the reference region by averaging the peak arrived time differences.
ANOVA analysis demonstrated the significant time lag between forehead and cheeks while
left-right regions are symmetric. Associated with video amplification algorithms, we also
used this device to deliver visualization characteristics of the microcirculatory system, and
subtle differences between different regions for potential applications of cardiovascular
disease diagnosis.

Previous studies on facial region signal mainly focused on signal intensity or pulsation
amplitude. In research [30], it suggested that watching a comedy movie increased the
cheeks’ blood flows significantly. In [31], it discovered that painful tooth stimulation could
induce temporal vasodilatation on bilateral cheeks. In this study, the signal’s physiolog-
ical characteristics were explored from the time lag of signal waveform rather than just
amplitude. This work reveals that the iPPG signals arrive in bilateral mid cheeks earlier
than in other regions’ generally; in other words, this means the cardiovascular activities in
bilateral mid cheeks have less delay than those of other regions.

The cause of facial distribution of iPPG intensity remains to be disclosed. [14] sug-
gested that migraine is associated with lateralization of blood perfusion and asynchronous
blood pulsations in the facial area. In [32], the partial correlation between facial regions’
signals and cold pattern questions was studied, and suggested that certain diseases would
lead to a specific facial imaging pattern. In [28], researchers suggested that blood flows
change for people with different emotions. In [33], it was proposed to match the spa-
tiotemporal patterns of facial cardiovascular activities with cardiovascular diseases by
decomposing regional iPPG signals into independent components and analysing their
phase spectrum. There is a physiologically and psychologically diagnostic significance of
studying the inter-regional difference and symmetry of iPPG patterns.

5. Conclusions

A multi-functional non-contact device has been developed to measure physiological
signals based on the facial video. It is designed to be applicable pervasively while allowing
for high quality iPPG extraction. A wide range of applications can be implemented,
including multiple physiological indices, hemodynamic patterns and time lags from iPPG
multi-step derivation or enhancement.

Integrated with advanced analysis algorithms, results showed that the new system
was sensitive, rapid, and smart in cardiovascular hemodynamics screening. The device
and the visualization processing provide a new option for monitoring vascular dynamic
characteristics and allow intelligent health screening in both home circumstance and public
healthcare applications.
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