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ABSTRACT

CRISPR/Cas base editors promise nucleotide-level
control over DNA sequences, but the determinants
of their activity remain incompletely understood. We
measured base editing frequencies in two human cell
lines for two cytosine and two adenine base editors at
∼14 000 target sequences and find that base editing
activity is sequence-biased, with largest effects from
nucleotides flanking the target base. Whether a base
is edited depends strongly on the combination of its
position in the target and the preceding base, act-
ing to widen or narrow the effective editing window.
The impact of features on editing rate depends on
the position, with sequence bias efficacy mainly in-
fluencing bases away from the center of the window.
We use these observations to train a machine learn-
ing model to predict editing activity per position, with
accuracy ranging from 0.49 to 0.72 between editors,
and with better generalization across datasets than
existing tools. We demonstrate the usefulness of our
model by predicting the efficacy of disease mutation
correcting guides, and find that most of them suf-
fer from more unwanted editing than pure outcomes.
This work unravels the position-specificity of base
editing biases and allows more efficient planning of
editing campaigns in experimental and therapeutic
contexts.

INTRODUCTION

The CRISPR/Cas toolkit has enabled increasingly fine con-
trol over DNA sequences (1). This technology has already
uncovered myriad findings in basic research, identified new
cancer targets, and offered novel therapeutic avenues for ge-
netic disorders (2–5). However, the limitation of generating
only insertions and deletions without templated repair, and

the stochasticity of outcomes have motivated the develop-
ment of alternative effector proteins such as base editors (6–
10) for more precise genome manipulation.

Base editors reduce the range of mutations generated by
Cas9 to primarily base substitutions, and alter DNA with-
out potentially apoptosis-inducing double strand breaks
(11,12). They consist of a catalytically impaired Cas9 fused
to a deaminase and domains that modulate the DNA repair
pathways (8,9). There are two main classes of base editor:
adenine base editors that convert adenines into guanines us-
ing an adenosine deaminase, and cytosine base editors that
convert cytosines into thymines using a cytidine deaminase
(13). Once at the target determined by the gRNA, the base
editor deaminates suitable nucleotides, which are then con-
verted to another base via DNA repair. The original reports
of feasibility (8,9) have been built on to develop increasingly
precise and active enzymes (13–18), and also to expand to
C to G editing (19,20).

While powerful, base editors have variable efficacy across
loci and within the target (8,9,21,22), as well as unintended
activity (17,21–26). The window of activity for the most
popular base editors is in positions 4 to 8 of the tar-
get sequence (8,9,21,22) (‘canonical window’), where the
protospacer-adjacent motif is at position 21–23. First re-
ports have attributed some of the variability of base edit-
ing efficacy across loci to the APOBEC deaminating do-
main (27,28), which has a preferred TCW sequence motif,
but other sources of variation are less understood. Unin-
tended edits can be frequent, both via off-target editing at
unintended locations in the genome (17,23–26), and via by-
stander editing of bases near the target (21,22,26,29). Both
types of unintended edits depend on the targeted sequence
and position within it (8,9,21,22,24,26). However, the in-
terplay of position, sequence, and other features that drive
variation in editing rate, and could help predict editing out-
comes, remains poorly characterized.

Here, we measure the editing frequency of two cytosine
base editors (BE4GamRA (30) and FNLS (30)) and two
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adenine base editors (ABE8e (31) and ABE20m (18)) at
thousands of target sites, and uncover new sequence biases
that strongly confound the known position-specific editing
rates. We use this understanding to build position-specific
models of base editing and present a new tool that accu-
rately predicts editing frequency across a range of datasets.

MATERIALS AND METHODS

Cell culture and cell line generation

K562 cells were cultured in RPMI, HEK293FT cells were
cultured in Advanced DMEM (Gibco), and HAP1 cells
were cultured in IMDM with GlutaMAX (ThermoFisher,
cat. no. 31980048). In all cases, supplemented with 10%
FCS, 100 U/ml penicillin and 100 mg/ml streptomycin.
K562 and HEK293FT media were further supplemented
with 2 mM glutamine. Cells were cultured at 37◦C, 5%
CO2. K562 cells endogenously expressing BE4 and FNLS
were generated by infecting K562 cells with a lentiviral vec-
tor carrying a base editor and puromycin resistance genes
(pLenti-BE4GamRA-P2A-Puro, Addgene 112673; pLenti-
FNLS-P2A-Puro, Addgene 110841) (30). Lentivirus was
produced and wildtype K562 cells were infected as de-
scribed below. Twenty-four hours later, selection with 2
�g/ml puromycin was started. After 1 week, the selection
was stopped and cells were expanded. After 10 days of ex-
pansion, cells were treated for an additional 3 days with 0.5
�g/ml puromycin to enrich for cells with desired constructs.

Lentiviral library

The lentiviral library used in this study was the same one
used in Allen et al. (32). Briefly, the library uses the pKLV2-
U6gRNA5-PGKpuro2ABFP-W (33) backbone and en-
codes 41 630 gRNA–target constructs. The gRNA is 20 nt,
with the first base of the gRNA always being a G to improve
expression from the U6 promoter (leaving a 19 nt of match
with the target), and the complete target construct compris-
ing the spacer, PAM, and additional sequence context is 79
nt, flanked with PCR priming sites.

Lentivirus production and titration

Lentivirus was produced using HEK293FT cells that were
transfected with Lipofectamine LTX (Invitrogen). 5.4 �g of
a lentiviral vector, 5.4 �g of psPax2 (Addgene 12260), 1.2
�g of pMD2.G (Addgene 12259) were mixed in 3 ml Opti-
MEM together with 12 �l PLUS reagent and incubated for
5 min at room temperature. 36 �l of the LTX reagent was
added and the mix was incubated for another 30 min at
room temperature. 3 ml of the transfection mix was then
added to 80% confluent cells in 10 ml DMEM media in a
10-cm dish. After 48 h the supernatant was collected and
stored at 4◦C. Fresh media was added to the cells and har-
vested 24 h later. The supernatants from both harvests were
mixed and centrifuged overnight at 6000g at 4◦C and then
for another 2 h at 20 000g. The supernatant was removed
and the viral pellets were resuspended in DPBS resulting
in 50× concentration of the virus. The virus was stored
at −80◦C. The procedure was scaled up accordingly for a
larger production of virus.

For virus titration, K562 cells were seeded into a 96-well
plate at 5 × 104 cells/well. Increasing amounts of virus and
8 �g/ml polybrene (hexadimethrine bromide, Sigma) were
added to each well. The plate was centrifuged at 1000g for
30 min at room temperature. The cells were resuspended
and cultured for 72 h before harvesting for FACS analysis.
The viral titer was estimated based on BFP+ cells and scaled
up for the following screens. Data was analyzed by FlowJo.

Screening integrated BE4 and FNLS lines

All cell lines were infected with the construct library aiming
at a multiplicity of infection (MOI) of 0.8 and a coverage
of 800×. Each cell line was infected twice and treated as
two biological replicates. K562-BE4 and K652-FNLS cells
were seeded at a concentration of 1.5 × 105 cells/ml. Cells
were cultured for 27 days and samples were harvested at 3,
6, 10, 14, 17, 21, 24 and 27 days post-infection. Cells were
passaged to maintain higher coverage than at the time of
infection. At 4 days post-infection, a subsample of cells was
harvested for FACS analysis to estimate the MOI based on
BFP + cells. The data was analysed with FlowJo.

Screening ABE8e, ABE20m and BE4 with transient transfec-
tion

All cell lines were infected with the construct library aiming
at a multiplicity of infection (MOI) of 0.8 and a coverage
of 800×. Each cell line was infected twice and treated as
two biological replicates. To screen, 293FT cells were cul-
tured in media containing 2 �g/ml puromycin for one week
to select for infected cells. 6 × 107 cells were then seeded
into six tissue culture dishes with 150 mm diameter in 20
ml media. Twenty-four hours later, the media was refreshed
with 15 ml of media. Transfection mixes were prepared in
two steps (protocol adapted from (34)). First, 16 ml of Opti-
MEM was mixed with 72 �g of base editor encoding plas-
mid (BE4, Addgene #112673, ABE8e, Addgene #138489 or
ABE8.20-m, Addgene #136300), 8 �g of pCS-GFP plas-
mid and 800 �l Plus reagent. Secondly, 16 ml Opti-MEM
was mixed with 400 �l Lipofectamine 3000 (Invitrogen) and
1600 �l Lipofectamine LTX. The two solutions were mixed
together, incubated for 30 min at room temperature and 3.2
ml of the transfection mix was transferred to each tissue cul-
ture plate. Forty-eight hours later, 15 ml of media was added
to cells. After 14 h cells were harvested and a subsample of
cells were used to check for transfection efficiency via flow
cytometry. The data was analysed with FlowJo.

Screening Target-AID

For the Target-AID experiments, gRNAs were cloned into
pAT977-TargetAID (a gift from Charles Boone). This vec-
tor is based on pLentiCRISPRv2 (Addgene 52961), in
which the Cas9 enzyme is replaced with the Target-AID
base editor (35). Guide RNAs were cloned into the vector
using a standard protocol (36) and obtained plasmids were
verified by Sanger sequencing.

Lentivirus was produced using a slightly different pro-
cedure than the one described above. First, 4.2 × 106

HEK293T cells were seeded in a 10-cm dish. The next day,
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9 �g lentiviral vector (pAT977-TargetAID + gRNA), 9 �g
psPax2 (Addgene 12260), and 0.9 �g pMD2.G (Addgene
12259) were added to 0.2 ml Opti-MEM and incubated for
5 min at room temperature. 54 �l TransIT-LT1 transfection
reagent (Mirus Bio LLC) in 36 �l Opti-MEM was added
and the transfection mixture was incubated for another 30
min at room temperature and subsequently added to the
cells. The next morning, the medium was removed and re-
placed with DMEM containing 1% (w/v) bovine serum al-
bumin. After another 24 h, the medium was collected, cen-
trifuged for 4 min at 335g, and the supernatant containing
the lentivirus was stored at −80◦C.

To infect HAP1 cells, 1.5 × 106 cells/well were seeded in
a 12-well plate and polybrene (final concentration 8 �g/ml)
and 1–1.5 ml lentivirus were added to the cells. The plate
was centrifuged for 2 h at 640g and then incubated at 35◦C
(5% CO2) for 4–6 h. Next, cells were collected, divided over
two wells, and incubated at 35◦C (5% CO2). After 2 days,
the medium was replaced with IMDM containing 1 �g/ml
puromycin. Cells were expanded after another 2 days and
collected 3 days later (7 days after infection). Cells were
maintained at 35◦C (5% CO2) during the experiment, as the
Target-AID enzyme has higher activity at lower tempera-
tures (35).

Genomic DNA was extracted from the collected cells us-
ing the QIAamp DNA Mini Kit according to the manu-
facturer’s instructions. Target regions were amplified using
primers in Supplementary Table S2 and Illumina sequenc-
ing adapters were added using PCR. Purified PCR products
were sequenced on an Illumina MiSeq instrument using
paired-end 150-nt reads. Nucleotide substitution frequen-
cies were calculated using CRISPResso2 (37) (Supplemen-
tary Table S6).

Sequencing library preparation

Genomic DNA extraction and sequencing library prepara-
tion for the main screens were done as described in Allen
et al. (32). Briefly, to amplify the target sequence from
the gDNA, primers P1 and P2 (Supplementary Table S1)
were used with the Q5 Hot Start High-Fidelity 2X Mas-
ter Mix (NEB). To ensure coverage for each sample, 416
�g of gDNA was used as template and each PCR reac-
tion was run in 50 �l aliquots containing no more than
5 �g DNA. The PCR reaction was column-purified with
the QIAquick PCR Purification Kit (Qiagen). Sequencing
adaptors and barcodes were added with a second round of
PCR using the KAPA HiFi HotStart ReadyMix (Roche),
primers P3 and P4 (Supplementary Table S1) and 1 ng of
template DNA. Amplicons were purified with Agencourt
AMPure XP beads in 1.2:1 ratio (beads to PCR reaction
volume), quantified with the Quant-iT™ High-Sensitivity
dsDNA Assay Kit (Invitrogen). The amplicons for the BE4
and FNLS screens were sequenced using a NovaSeq S4 XP
and the ABE8e and ABE20m screens using HiSeq 4000
(Supplementary Table S4 for accession numbers).

To measure mismatch rate between guides and targets, we
amplified the target region together with the guide sequence
from the genomic DNA in one of the cell pools above before
editing occurred using primers P5 and P6 (Supplementary
Table S1). The sequencing library was prepared as described

before, using 104 �g of gDNA as template for the PCR. Se-
quencing adaptors and barcodes were added with a second
round of PCR using the KAPA HiFi HotStart ReadyMix
(Roche), primers P3 and P4 and 1 ng of template DNA. The
libraries were sequenced with a HiSeq 2500 using paired end
sequencing, such that the forward reads covered the guide
region and the reverse reads covered the target.

Data processing

We assigned reads to guides, and generated outcome pro-
files using the custom processing pipeline from Allen et al.
(32). Outcome profiles for a guide are represented by pairs
of mutations and the number of guide reads which had that
unique mutation. For convenience, we also stored a matrix
of the fraction of guide reads containing every possible base
substitution at every position in the target sequence (12 sub-
stitutions × 79 positions). To ensure adequate coverage, we
first removed guides with less than 100 reads in any sample
(timepoint or replicate) from the analysis.

For BE4 and FNLS, we calculated the correlation of
C to T editing at positions 4 to 8 between two replicate
screens at each timepoint and found that replicates agreed
with each other less at the later timepoints (Supplementary
Figure S4B). We speculate that this is due to the toxicity
of the editors, an argument that is supported by the de-
crease in average C to T editing at timepoints 21–27 (Sup-
plementary Figure S4A). Thus, we chose to combine time-
points 10–17 (which were highly correlated, Supplementary
Figure S4B) in our BE4 and FNLS data, by pooling to-
gether all the reads assigned to the same guide in each time-
point and treating this as a single screen. We then calcu-
lated the between-replicate correlation of C to T editing on
the dataset of combined timepoints at positions 4 to 8, and
found that replicates were very similar (median Pearson’s R
across positions of 0.87 and 0.91 in BE4 and FNLS, respec-
tively, Supplementary Figure S1A and B).

For all editors, we combined the replicates using the same
method as with timepoints, by adding read counts. We fil-
tered for guides common to the relevant timepoints, re-
moved guides with under 100 reads, and retained guides
for which we had guide-target mismatch information, which
left us with 14 409 guides.

To evaluate the consistency of screening using lentivirus
and transient transfection to deliver the base editor, we cal-
culated the correlation of C to T editing frequency using
BE4 between the approaches. Given high reproducibility
(Pearson’s R of 0.87, Supplementary Figure S1E), we ar-
bitrarily used results from BE4 delivered by lentivirus for
downstream analyses.

Correcting for mismatched guide–target pairs

To correct for recombination during infection of the guide
library, which results in guide-target mismatch in some cells,
we calculated the guide-target match rate for each guide us-
ing data from a long-range PCR on an early time point in
one cell pool. The reads were assigned to guides by first
checking if the forward read was a direct match to any of our
guide sequences and, if matched, that read was assigned to
that target. If the read was not a perfect match, we checked if
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the middle 10 bases of the read matched the middle 10 bases
of any of our guides, as this stretch of bases could uniquely
identify 82% of our guides. Once the forward PCR reads
were assigned to guides, we aligned the expected target of
the assigned guide with the sequence of the reverse read us-
ing the pairwise2 method from Biopython (38). Gaps were
given a penalty of −1 and extending a gap was given a
penalty of −0.1 (pairwise2.align.globalxs(guide1, guide2,
−1, −0.1)). Random alignments of different targets in the
dataset to the wrong guide all had scores below 41 (Supple-
mentary Figure S4C), so we set a threshold of 50 to call a
match, and any reads with an alignment score under this
were considered mismatched from recombination. We cal-
culated the guide-target match rate for a guide as the frac-
tion of matched reads for that guide.

To correct for recombination-induced mismatch, we
scaled the total number of reads in the base editing experi-
ment for each guide by its guide-target match rate to get the
number of reads that came from matching constructs. The
number of reads with edits was left unchanged under the
assumption that the constructs matched to be able to create
an edit.

Measures of gRNA efficacy

DeepSpCas9 scores and RuleSet2 scores were calculated us-
ing the 20 nucleotides of the target sequence. DeepCas9
scores were obtained from the batch prediction tool offered
at http://deepcrispr.info/DeepSpCas9 with default settings,
and RuleSet2 scores were computed using the software from
(39), also with default settings. Empirically measured Cas9
mutation efficacy was obtained from (32), which used the
same guide library as this study in K562 cells.

Other base editing efficiency datasets

Data were downloaded from (22) and (21) and used to cal-
culate editing rates for each substitution at each position
for every guide. We used the mESC-BE4 and mESC-ABE
datasets from (21) as the closest match to our editors, and
because of their high concordance of replicates.

Creating position-specific datasets

To make experiments comparable, we standardized real
editing rates at each position by subtracting the mean edit
rate at that position and dividing by the standard deviation
at that position for each dataset. Guides were converted into
feature vectors by first one-hot encoding the 20 nt guide se-
quence and then appending the melting temperature of the
20 nt guide sequence as calculated using the Biopython (38)
MeltingTemp function.

Train and test data split

We maintained the train and test dataset distinction pro-
vided in the Song et al. data, and randomly partitioned the
guides both in our data and the Arbab et al. data into train-
ing and test sets with 90% for training and 10% for testing.
Models were only trained on training sets and only evalu-
ated on test sets.

To create a combined dataset, we appended the train-
ing sets of our BE4 dataset, our FNLS dataset, the mES-
BE4 dataset from (21) and the cytosine dataset from (22)
together to get a combined cytosine training dataset for
each position. Similarly, we combined the training sets of
our ABE8e dataset, our ABE20m dataset, the mES-ABE
dataset from (21) and the adenine dataset from (22) to get
a combined adenine training dataset for each position. The
test sets for each editor type were also combined in this man-
ner.

Modelling editing rate

We trained and evaluated models with one-hot encoded se-
quence features and different sets of guide efficacy features
on the training set, using 5-fold cross validation, to select
the final set of features used. We found that all combina-
tions of melting temperature, DeepSpCas9 score and Rule-
Set2 score produced similar contributions to predictive ac-
curacy and functioned as proxies for each other, so we chose
to use melting temperature alone.

We predicted standardized editing rate (raw rate lin-
early transformed to 0 mean and unit standard deviation)
for base editing efficacy at each position using gradient-
boosted trees, as implemented in the Scikit-learn package
(40). One gradient-boosted tree model was trained per po-
sition. For each one, we chose to use 100 shallow trees
(n estimators), with maximum depth 4 (max depth), a min-
imum of two samples per leaf node (min samples leaf)
and a learning rate of 0.1. These values were obtained
through 5-fold cross-validation on the training set, inde-
pendently testing values more extreme than the selection
in both directions (n estimators 10–1000, max depth 1–10,
min samples leaf 1–50, learning rate 0.001–1). After train-
ing the final models on the full training set, we evaluated
their performance on the test set by calculating the Pearson
correlation between the predicted standardized rate and the
measured standardized rate, as well as mean squared error.

Model selection

We tested three kinds of models to predict editing rate: lin-
ear regression, gradient boosted trees, and neural networks.
For the linear models, we used the LinearRegression func-
tion from the Scikit-learn package (40) and tested hyperpa-
rameter values of L1 and L2 regularization from 0.0001 to
1 using 5-fold cross-validation. Neural networks were im-
plemented using the PyTorch package (41). We tested vary-
ing numbers of hidden layers from 1 to 5, and layers widths
for each layer of 10 to 500. After training each in the man-
ner described above, we observed that they had similar per-
formances (Supplementary Figure S3A) and settled on the
gradient boosted trees for their ability to combine features
better than the linear models, as well as their increased in-
terpretability relative to the neural networks.

Downsampling experiments

In order to test whether our models were sensitive to the
quantity of training data, we performed downsampling ex-
periments. For each model, we sampled 100 new training

http://deepcrispr.info/DeepSpCas9
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sets for each of the fractions of 80%, 50%, 25% and 10%
of the full training dataset randomly without replacement,
and trained the model on these smaller sets. Performance
was evaluated by calculating correlation between predicted
and measured rates on the full test set.

Comparisons with other models of editing rate

We compare FORECasT-BE to two other models, BE-
HIVE (21) and DeepCBE (22). Predictions for DeepCBE
were obtained using the batch prediction tool offered at
http://deepcrispr.info/DeepBaseEditor/. Predictions for
DeepABE were obtained by running the command-line
tool downloaded from https://github.com/MyungjaeSong/
Paired-Library/tree/DeepCRISPR.info/DeepBaseEditor.
Predictions for BE-HIVE were obtained by run-
ning the BE-HIVE command-line tool from https:
//github.com/maxwshen/be predict efficiency. For BE-
HIVE, we specified a mean of 0.5 and a standard deviation
of 0.25 as the scaling parameters; these linearly scale the
outputs and do not affect the correlations to true editing
rates. When using the BE-HIVE model to evaluate guides
from the Song et al. study, we padded the given 30nt
sequences with As to create the required 50nt input.

Endogenous data comparisons

Published endogenous base editing outcomes were obtained
from Song et al. (22), Komor et al. (42) and Richter et
al. (31). Novel data for Target-AID was generated as de-
scribed above. Editing rates for each substitution at each po-
sition for every guide were calculated as described in ‘Creat-
ing position-specific datasets’, and predicted standardized
edited rates as described above. To account for the differ-
ent editing window of Target-AID, we shifted each Target-
AID guide sequence forward by 3nt (such that the origi-
nal position 1 became the new position 4) and then used
our model on these shifted guides. Standardized predictions
were transformed back into absolute efficiencies using per-
position means and standard deviations. Means and stan-
dard deviations for the Song et al. data were obtained from
the Song high-throughput screening dataset (22). For the
remaining datasets, where reliable estimates could not be
obtained with the same approach, we used a fixed mean
and standard deviation for position 6 and then scaled this
to other positions using the scaling observed in our data
(Supplementary Table S3). The mean and standard devia-
tion used for Komor et al. were 0.5 and 0.1, for Richter et
al. 0.8 and 0.1 and for Target-AID 0.5 and 0.2.

When comparing purity of outcomes in the Song et al.
endogenous data, we defined the guide’s purity of editing at
a given position as its fraction of reads with the intended
edit at that position divided by the total fraction of its reads
with any intended edit across all positions.

Prediction in disease contexts

A set of guides targeting pathogenic SNPs correctable by
a C to T or A to G substitution was obtained from (43).
We predicted standardized efficiencies for positions 3–10 in
this guide set and scaled them into real efficiencies by as-
suming a mean of 50% editing at position 6 to match the

maximum rate in (21). We computed the predicted correc-
tion efficiency as the rate of C to T or A to G editing at the
position of the SNP in the guide, and the expected number
of unintended edits as the sum of predicted C to T or A to
G editing at other positions.

RESULTS

Target base context and gRNA efficacy influence editing rate

We set out to quantify the sequence- and gRNA- dependent
frequency of editing by cytosine and adenine base editors.
We chose two cytosine base editors to screen: FNLS (30), a
version of the BE3 editor with an altered nuclear localiza-
tion signal, and BE4GamRA (30) (hereafter referred to as
BE4), an optimization of BE4Gam (42). We also chose two
adenine editors: ABE8e (31) and ABE8.20-m (18) (here-
after referred to as ABE20m), both directed evolutions of
ABE7.10 (9) with mutations selected for increased editing
efficiency. Following (32), we employed a library of self-
targeting constructs which encode both a 23nt protospacer
adjacent motif-endowed target sequence embedded within
56nt of randomized sequence context, and an expression
cassette for a gRNA matching the target. After introducing
these constructs into cells, and allowing editing to occur, we
sequenced the targets (Figure 1A). We measured base edit-
ing frequency in the K562 and HEK293T human cell lines,
with a median screen coverage of 890× for cytosine editors
and 470× for adenine editors, and sequencing coverage of
∼1500× (Methods, Supplementary Data). After filtering,
we recovered the fraction of edited reads (‘editing rate’) for
each base of 14 409 target sequences, and observed excel-
lent reproducibility between replicates (combined Pearson’s
R across all positions from 0.73 to 0.91, Supplementary Fig-
ure S1A–D).

We uncovered both known and novel biases in base edit-
ing outcomes. The median editing rate across targets was
highest at position 6 of the sequence for all editors, and de-
creased with distance from this position (Figure 1B). Cy-
tosines and adenines in the canonical window (positions
4 to 8) were substantially edited, with rates above 20% of
that at position 6, while those outside the canonical window
had rates below 10% (Figure 1B). The editing rate per cyto-
sine did not change depending on the number of cytosines
in the window for cytosine editors (editing rate per cyto-
sine between 0.04 and 0.05 for BE4, Supplementary Figure
S1F), but decreased with more editable adenines in the win-
dow for adenine editors (from 0.13 with a single adenine
to 0.08 with six adenines in ABE8e, Supplementary Figure
S1F). When multiple editable bases were present, editing
rates were highly correlated for neighbouring bases (aver-
age Pearson’s R = 0.74 across all editors, Supplementary
Figure S1G), but only moderately correlated otherwise (av-
erage Pearson’s R = 0.42 across all editors, Supplementary
Figure S1G).

Unintended edits accounted for 35%–42% of all mutation
events across editors (Figure 1C). The most frequent unin-
tended editing event in cytosine editors were C to T edits
outside the canonical window (15% and 17% of all mutation
events in BE4 and FNLS, respectively). G to A editing out-
side the window was the second most common unintended
edit in BE4 (6%) and was relatively frequent in FNLS as well

http://deepcrispr.info/DeepBaseEditor/
https://github.com/MyungjaeSong/Paired-Library/tree/DeepCRISPR.info/DeepBaseEditor
https://github.com/maxwshen/be_predict_efficiency
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Figure 1. (A) A method for high throughput measurement of base editor outcomes. (1) Constructs containing both a gRNA and its target sequence
(matched colors) in variable context (gray boxes) are cloned into target vectors containing a human U6 promoter (green). (2) The constructs are packaged
into lentiviral particles and used to infect cells that either express base editor protein or have been transfected with base editor protein. (3) The base editors
(C to T as an example here) generate base substitutions in the target. (4) DNA from cells is extracted, the target sequence and context are amplified with
common primers, and the mutations in the target are determined by sequencing. (B) C to T and A to G editing is highest at positions 4–8 in the target
sequence. Median C to T (blue bars) or A to G (red bars) editing activity (y-axis) at positions 1–15 in the target sequence (x-axis). Error bars: 95% confidence
intervals from 1000 bootstrap samples. Black dashed line: 20% of the maximum editing value found at any position. (C) Intended edits in the canonical
window are the most frequent outcome for both cytosine and adenine editors. Cumulative frequency (y-axis) of substitution type (color) in the canonical
window (position 4–8, left bars) and outside (right bars) for all four editors (x-axis). (D) Median base editing rate in the canonical window across targets
(y-axis) is influenced by preceding (top) or following (bottom) base (x-axis). Error bars: 95% confidence intervals from 1000 bootstrap samples.

(3.6%), consistent with editing on the opposite strand (Dis-
cussion). We also observed frequent transversion edits in cy-
tosine editors, accounting for 6.8% of all mutation events in
BE4 (3.5% C to A, 3.3% C to G) and 14.5% in FNLS (6.2%
C to A, 8.3% C to G). The adenine editors had different bi-
ases, with the most common unintended edits in both being
A to G and G to A outside the canonical window (27% and
4% in ABE8e, 17% and 5% in Abe20m). Transversion ed-
its were less common in adenine editors, accounting for less
than 1% of mutation events in both ABE8e and ABE20m.
All remaining substitutions combined comprised less than
9% of mutation events in any editor, with less than 2% of the
total each (Figure 1C), and their rates outside the window
were consistent with background rates as measured in con-
trol cells without base editors (Supplementary Figure S1H).
Finally, insertion and deletion frequency in the target win-
dow remained below 0.5% (Supplementary Figure S1I), and
we do not consider them further. Overall, nearly two thirds
of observed edits were the intended transitions in the canon-

ical window, and the bias towards intended transitions was
smaller outside of the window.

Besides position in the targeted sequence, the other
known influences of editing frequency are the identity of
flanking bases and the gRNA efficacy (8,21,22). For all edi-
tors, the rate of the intended substitution was highest when
it was preceded by a thymine (155%, 70%, 25% and 52%
increase compared to the other three bases, in BE4, FNLS,
ABE8e and ABE20m, respectively; t test P < 10−20 in each),
consistent with the editing motifs of APOBEC (28) and
tadA (44). C to T editing by cytosine editors was lower when
preceded by a guanine (82% and 63% decrease in BE4 and
FNLS respectively, t test P < 10−20, Figure 1D). A to G
editing by adenine editors was lowest when preceded by an
adenine (37% and 44% decrease in ABE8e and ABE20m,
t test P < 10−4, Figure 1D). Editing by all effectors in-
creased when a cytosine followed the edited base and de-
creased when followed by an adenine. In general, the TNC
motif was consistently amongst the best edited sequences.
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Sequence identity was important for several unintended
substitutions as well (Supplementary Figure S1J). In partic-
ular, C to G transversions by cytosine editors increased over
4-fold at the TCT motif, and were more frequent when the
C was followed by a T. This effect was recently used to de-
velop C to G editors elsewhere (45–47). Furthermore, there
is evidence that the cytosine base editors also operate on the
opposite strand, as G to A edits were found in much greater
quantity in cytosine editors than in controls with only wild-
type Cas9 (Figure 1C), and these edits also mirrored motif
preferences, albeit with lesser effect on the opposite strand
(300% increase in TC to TT in BE4, 50% increase in GA
to AA). In summary, the base preceding the edited one has
the strongest effect on editing activity for intended transi-
tions, and the following base has an effect on transversions
as well.

Measures of Cas9 gRNA efficacy were also informative
about base editing efficacy. Predictions from two compu-
tational models of gRNA quality (DeepSpCas9 (48) and
RuleSet2 (39)), as well as the empirically measured wtCas9
mutation efficiency (32) were correlated with C to T edit-
ing frequency in cytosine editors (Pearson’s R = 0.13, 0.05
and 0.14, respectively in BE4; 0.11, 0.03, 0.12 for FNLS;
P < 0.01 in both) and A to G frequency in adenine editors
(Pearson’s R = 0.10, 0.11 and 0.09 for ABE8e; 0.11, 0.11 and
0.12 in ABE20m; P < 0.01 in both). The top decile of guides
as scored by DeepSpCas9 were edited 70% more frequently
than the bottom decile in BE4 (35%, 11% and 20% in FNLS,
ABE8e and ABE20m, respectively; P < 10−20 in all editors;
Supplementary Figure S1L). Similarly, the RuleSet2 scores
and measured Cas9 mutation efficacies were 27% and 62%
higher respectively in the top decile of scores compared to
the bottom one in BE4 (13% and 25% in FNLS; 23% and
9% in ABE8; 33% and 24% in ABE20m; P < 10−20 in all
editors; Supplementary Figure S1L). Finally, for better ex-
pression from the U6 promoter, the first nucleotide of each
guide RNA was changed to a guanine, as has been recom-
mended for genome-wide screens (49). Targets with a G at
position 1 therefore have an improved guide-target match,
and this increased editing by 20% over targets that did not
start with a G. Thus, we successfully captured independent
gRNA- and sequence-dependent biases that affected edit-
ing rate, with magnitudes of known effects consistent with
existing studies (21,22) (Supplementary Figure S2A–C).

Sequence effect depends on edited position

Surprisingly to us, the influence of flanking sequence on
editing rate differed substantially across edited positions.
For C to T edits using cytosine editors, the preceding gua-
nine and thymine had the strongest marginal effect on edit-
ing rate (Figures 2 and 3A). The detrimental impact of a
preceding G was larger away from the canonical window
center, with a 49% decrease in median editing at position
6 in BE4, but an 89% decrease at position 9 compared to
other preceding bases (35% and 93%, respectively, in FNLS;
Figure 2). Similarly, a preceding T resulted in a 45% higher
median editing rate at position 6, but a 1900% increase at
position 2 (32% and 1800% in FNLS; Figure 2). Preced-
ing thymines had a similar effect on A to G editing for ade-
nine editors, with a 10% increase in editing at position 6 for

ABE8e (22% for ABE20m) and 377% increase at position 2
(366% for ABE20m; Figure 2). Cumulatively, 38% of all C
to T editing by BE4 across positions 4 to 8 was of the cy-
tosine in the TC dinucleotide, but this increased to 73% for
positions not in the 4 to 8 range, where activity was other-
wise low (35% and 75% in FNLS; Figure 3B). This strong
preference indicates the preceding thymine as a major driver
of out-of-window cytosine editing. The preceding T effect
was less prominent for the adenine editors, shifting the A to
G editing rate from 30% in the window to 47% outside of it
in ABE8e (33% and 54% in ABE20m, Figure 3B).

Position-dependent sequence biases were also present for
unintended edits. C to G editing rate in cytosine editors
was higher when preceded by a T (88% increase at posi-
tion 5 and 1186% at position 9 for BE4, Supplementary Fig-
ure S2D, 71% and 1347% for FNLS, Supplementary Figure
S2E), and lower with a preceding G (38% decrease at posi-
tion 5, 93% decrease at position 9 for BE4, Supplementary
Figure S2D, 28% and 96% for FNLS, Supplementary Fig-
ure S2E). In addition to the preceding base, a following T
increased C to G editing across all positions in cytosine ed-
itors (173% increase at position 5 and 94% increase at posi-
tion 9 in BE4, Supplementary Figure S2D). G to A editing is
also increased by a following A, consistent with a TC motif
on the opposite strand. Altogether, several unintended ed-
its, especially in cytosine editors, exhibited substantial se-
quence bias that varied across the target (Supplementary
Figure S2D–G).

The large variation in editing rate due to the preceding
base suggests a more nuanced redefinition of the cytosine
and adenine editing windows. A threshold of 20% of max-
imum editing for the target produces the canonical win-
dow for marginal editing, but gives different editing win-
dows when stratifying by the preceding base. In cytosine ed-
itors, the window for cytosines preceded by Cs is positions
4–8, consistent with the canonical window, while a preced-
ing A leads to a window of 4–7. However, with a preced-
ing T, the window broadens to positions 3–9, and a preced-
ing G shrinks it to positions 5–7 (Figure 3C). Similar trends
hold for adenine editors, where the A to G window stretched
from positions 3 to 11 when adenines were preceded by a T,
but was reduced to positions 4 to 8 when preceded by an A
or G (Figure 3C). These biases were also present in other
large scale measurements of editing rates (21,22) (Supple-
mentary Figure S2C).

Motivated by the position-dependent sequence effects, we
next queried whether the impact of features that capture
aspects of gRNA sequence and secondary structure also
varies along the target. For cytosine editors, correlation be-
tween gRNA features and editing efficacy was strongest at
position 6 (Pearson’s R = 0.22, 0.12, 0.27 for DeepSpCas9
score, RuleSet2 score and measured Cas9 mutation efficacy
respectively in BE4, Figure 3D), but declined with increas-
ing distance from this position. Interestingly, this trend did
not hold for the adenine editors, with the largest correla-
tion between A to G editing and the metrics occurring ear-
lier in the sequence for DeepSpCas9 and RuleSet2 scores,
or staying consistent across the sequence for the measured
Cas9 mutation efficacy (Figure 3D). These effects were also
present in other datasets (Supplementary Figure S2C). Fi-
nally, a G at position 1 in the target was associated with
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Figure 2. Position-dependent effect of the preceding base. Percentage change in editing rate (y-axis, logarithmic intervals) from having a base preceding
the target base (color, rows) compared to all other bases, at different positions in the target sequence (x-axis) for all assayed editors (A–D).

increased editing at positions 3 and 4 in all editors and ex-
tending to positions 5 and 6 in cytosine editors (Figure 3D).
These patterns of feature relevance suggest that gRNA fea-
tures add bias to the already high editing rates at central po-
sitions (especially for cytosine editors), but are less relevant
elsewhere. Conversely, sequence bias is lowest centrally, but
dominates at outside positions.

Accurate prediction of per-position editing

Given the improved understanding of position-dependent
editing rates, we proceeded to build a position-specific edit-
ing model of base editing activity. We first split our data into
training and test sets for each position (Figure 4A). Then, to
better generalize across cell types, we combined our training
data with that from previously published datasets (21,22),
and trained FORECasT-BE, a gradient boosted tree model
(50) (Supplementary Figure S3B), to predict the normalized
editing frequency at positions 3–10 in the target sequence, as
well as total fraction of reads edited at any position. Inputs
to this model are nucleotide identities at each position in the
guide and the melting temperature between the guide and
target (Methods). When evaluated on the test set of guides
from our experiment only, FORECasT-BE achieved a Pear-
son’s R of 0.72 across all positions in BE4 (0.71, 0.49, 0.56
in FNLS, ABE8e and ABE20m, respectively, Figure 4B),
with highest accuracies at outside positions (Supplementary

Figure S3C). Feature importances in the model reflected
the identified sequence biases, with the identity of the base
preceding the edited one being most important (Supple-
mentary Figure S3D–E). To determine whether the quan-
tity of training data was a bottleneck to performance, we
performed downsampling experiments where the training
dataset was randomly reduced to 80%, 50%, 25% and 10%
of the original size (Methods) and observe that performance
plateaus at 80% of the full training set (Supplementary Fig-
ure S3F), suggesting that more training data would offer
very marginal improvement. We incorporated FORECasT-
BE into a command line tool (available at https://github.
com/ananth-pallaseni/FORECasT-BE) and a web applica-
tion (available at https://partslab.sanger.ac.uk/FORECasT-
BE), which can be used to predict base editing rates for cy-
tosine and adenine editors.

Recently, other methods have been developed for base
editing rate prediction using cytosine and adenine edi-
tors: BE-HIVE (21), an autoregressive neural network, and
DeepCBE/DeepABE (22), a convolutional neural network.
Like FORECasT-BE, both models use the one-hot encoded
guide sequence as input. We compared the performance of
FORECasT-BE, which is a gradient-boosted tree, to these
two models on each model’s test set. We chose to use the
BE-HIVE models for the BE4 and ABE editors, trained
on measurements in mouse embryonic stem cells (mESCs;
hereafter called the Arbab dataset), because the editors clos-

https://github.com/ananth-pallaseni/FORECasT-BE
https://partslab.sanger.ac.uk/FORECasT-BE
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Figure 3. (A) Preceding thymines are a driver of out-of-window cytosine editing. Median editing rate across targets (y-axis), for every preceding base
(colors), inside and outside canonical target window (x-axis), for cells with base editors (BE4, FNLS, ABE8e, ABE20m) and wild type ones without
(WT) compared to the total fraction of C to T or A to G edited reads in the experiment. Canonical window: positions 4–8. Error bars: 95% confidence
intervals from 1000 bootstrap samples. (B) Same as (a), but fraction of editing outcomes of the total. (C) Window of editing changes depending on the
base preceding the edited one. Median editing rate (y-axis) of bases at positions −5 to 17 in the target (x-axis) for each preceding base type (colors) for
each editor (panels). Black dashed line: 20% of the maximum editing rate at any position for all preceding bases. Linked dots: positions at which editing
is above 20% of the maximum. (D) Correlation between gRNA quality and editing rate depends on the position. Pearson’s R (color) between measures of
gRNA quality (y-axis) and the position of the edited base in the target sequence (x-axis) for each editor (panels).

est matched our own, and their mESC dataset was the most
replicable of those reported. The DeepCBE/DeepABE
models were trained on data from HEK293T cells (hereafter
called the Song dataset). FORECasT-BE was trained on the
training sets of both of these datasets as well as our own
measurements in K562 and HEK293T cells. Each model
predicts both a total editing rate per guide, as well as a
set of specific outcomes, so we evaluate them separately for
these tasks. First, we predicted the total fraction of reads
containing any mutation across all positions, and observed
improved performance of FORECasT-BE relative to other
models (Pearson’s R of 0.59 for cytosine editors and 0.59
for adenine editors for FORECasT-BE, 0.55 and 0.58 for
BE-HIVE, and 0.54 and 0.13 for DeepCBE/ABE).

Next, we compared prediction performance of mod-
els trained on different datasets. To delineate the impact
of model choice from the value of a broader training
dataset, we also include a gradient boosted tree model like
FORECasT-BE, but trained exclusively on our data (re-
ferred to hereafter as FORECasT-HEK293 or FORECasT-
K562). Models trained on a single dataset perform bet-
ter on that test set than models trained on different data

(Figure 4C and D). For example, predictions of Deep-
CBE are best correlated to the measurements from Song
HEK293T cytosine test dataset from its publication (Pear-
son’s R = 0.76 at position 6 versus 0.64 for FORECasT-
BE, the second-best model), but worst correlated to the
measurements from the Arbab mESC BE4 dataset (Pear-
son’s R = 0.38 at position 6, Figure 4C). FORECasT-BE,
trained on multiple datasets, achieved at least 88% of the
best Pearson’s R for every dataset and position, and when
averaged across positions, performed achieved at least 97%
on cytosine editors and 112% on adenine editors (Figure
4E, Supplementary Figure S3G and H). Other models failed
to generalize as well beyond their training dataset (aver-
age of 93% of best Pearson’s R for DeepCBE, 72% for
DeepABE, 82% for BE-HIVE CBE, and 88% for BE-HIVE
ABE; Figure 4E, Supplementary Figure S3G and H). Fi-
nally, we compared each model using the mean squared er-
ror, which highlights the absolute differences between mea-
sured and predicted editing instead of the trend. Using this
metric, FORECasT-BE often outperformed the other mod-
els even on the datasets on which they were built (Figure
4F, Supplementary Figure S3I and J). For example, the av-
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Figure 4. (A) Schematic of datasets used to train FORECasT-BE. Raw base editing efficiencies from this study (green), Song et al. (orange) and Arbab
et al. (purple) are normalized independently to z-scores (opaque boxes), split into training and test sets (light and dark boxes), and combined into final
training set and test sets employed by FORECasT-BE. (B) FORECasT-BE accurately predicts editing rate. Measured (x-axis) and predicted (y-axis)
standardized editing rate (Methods) for guide RNAs (markers) in each editor we screened (panels). Dashed line: y = x. Label: Pearson’s R between
measured and predicted scores. (C, D) FORECasT-BE accurately predicts in a variety of contexts. Pearson’s R between measurements and predictions
of editing rates at different positions in the target (x-axis) for models (y-axis) trained on different cell types (panels) when using cytosine editing (C) or
adenine editing (D) datasets. Models: FORECasT trained on only K562 (C) or HEK293T cells (D; top row), FORECasT-BE trained on combined dataset
(second row), DeepCBE/DeepABE trained on HEK293T cells (third row) and BE-HIVE trained on mES cells (bottom row). Colors and datasets: as in
(A). (E, F) FORECasT-BE generalizes well to many datasets. Average performance of models at all positions (y-axis) as measured using Pearson’s R (E,
blue heatmaps) and mean squared error (F, red heatmaps) when evaluated on a test set from one cell type (x-axis). Models: as in (C) and (D). Bold outlines:
model and dataset from same publication. DeepBE: DeepABE or DeepCBE, depending on the dataset.

erage mean squared error across all positions was 0.54 for
FORECasT-BE on Song HEK293T cytosine data, but 0.65
for DeepCBE. Overall, we find that FORECasT-BE can ac-
curately predict cytosine and adenine editing at par or bet-
ter than existing models in a variety of high-throughput cell
contexts.

We next tested whether our model generalizes to mea-
surements at endogenous target sequences. To do so, we
gathered rates from experimental contexts presented in

Song et al. (22) (170–230 guides per cell type, using CBEs
and ABEs, in HCT116, HEK293T and U20S cells), Komor
et al. (42) (six sites, using BE4, in HEK293T cells), Richter
et al. (31) (7 sites, using ABE8e, in HEK293T cells), and a
novel set of 15 sites screened using the TARGET-AID edi-
tor (35) in HAP1 cells (Methods). Pearson’s R between pre-
dicted and observed editing in these datasets ranged from
0.30 to 0.75 (Figure 5A–E), similar to performance on the
synthetic construct data used to train the model, and sug-
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Figure 5. (A–E) FORECasT-BE accurately predicts position-specific editing rate in endogenous contexts. Measured (x-axis) and predicted (y-axis) editing
rate (Materials and Methods) for guide RNAs (markers) at the different genomic positions tested in the Song et al. CBE dataset (A), Song et al. ABE
dataset (B), Komor et al. BE4 dataset (C), Richter et al. ABE8e dataset (D), and a TARGET-AID dataset presented here (E, Materials and Methods).
Label: Pearson’s R between measured and predicted editing. (F, G) FORECasT-BE accurately predicts the purity of edited products in endogenous contexts.
Measured (x-axis) and predicted (y-axis) purity of edits (Materials and Methods) across all editable positions (markers) for guide RNAs in the Song et
al. CBE dataset (F) and Song et al. ABE dataset (G). Label: Pearson’s R between measured and predicted purity. (H) Substantial editing of non-targeted
cytosines and adenines for pathogenic corrections. Predicted fraction of impure edits in positions 3–10, (y-axis; grey bars) and edits that will correct the
pathogenic SNP (y-axis; pink bars) for increasing number of editable cytosines (left) or adenines (right) in the window (x-axis). Error bars: 95% confidence
intervals from 1000 bootstrap samples.

gesting that the predictions generalize to edits in endoge-
nous contexts.

An important use case for base editors is the correc-
tion of pathogenic SNPs in clinical contexts, which require
pure edits for safety and efficacy. We first tested the abil-
ity of FORECasT-BE to predict the purity of an edit at
a position (Materials and Methods) in endogenous data
from (22) and achieved high accuracy with both cytosine
and adenine editors (Pearson’s R of 0.68 in cytosine edi-
tors, Figure 5F, 0.80 in adenine editors, Figure 5G). We
then combined the FORECasT-BE predictions of purity
and efficacy to evaluate potential of applying base edi-
tors to correct disease-relevant SNPs. To do so, we pre-
dicted base editing outcomes at 13,591 pathogenic SNPs
from ClinVar which fall within positions 3–10 of a pos-
sible target, and can be converted with cytosine or ade-
nine editors (43). We assumed a 50% conversion rate at
position 6, which is the current expectation in a clinical
scenario (21), and does not impact the resulting purities.
Altogether, 64% of cytosine-targeting guides and 41% of
adenine-targeting ones were predicted to have more com-
bined editing of nearby cytosines or adenines than the tar-

geted SNP (Figure 5H). The correlation between the ex-
pected number of unintended edits and the number of tar-
getable bases in the window was 0.75 for cytosine-targeting
guides and 0.76 for adenine-targeting guides, indicating that
more targetable bases are expected to produce more un-
intended edits. While SNP correction purity is influenced
by window position and nearby targetable bases (Supple-
mentary Figure S3K), we identified 108 cytosine-targeting
guides and 421 adenine-targeting guides that were predicted
to correct the disease-relevant mutations with over 80% pu-
rity, and also were in the top 10% of correction efficien-
cies, and therefore may make reasonable therapeutic targets
(Supplementary Table S5). For sites where this is not the
case, our model can help predict the most frequent unin-
tended edits, which can then be checked for their effect on
the protein sequence.

DISCUSSION

We reported strong position-dependent biases in the de-
terminants of base editing rates from a large survey of
editing outcomes in novel and published datasets of cyto-
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sine and adenine base editors. Our findings indicate a nu-
anced action of cytosine and adenine editing. The editing
window depends on the preceding base, with TC or TA
dinucleotides edited beyond the canonical positions 4 to
8. Transversion edits were moderately frequent, and also
position-dependent with a strong bias from the following
base. In general, as much as 30% of overall editing on av-
erage is either out-of-window or not the intended substi-
tution, with out-of-window edits more frequent if follow-
ing thymines. All the findings on position dependence also
held in existing large-scale datasets that were generated
using different base editor proteins, cell lines, and target
libraries.

A key finding was the position-specificity of sequence fea-
ture influence. This is likely explained by the nature of the
deaminating domain and the linker which connects it to the
dCas9 in the base editor complex. The length of the linker
determines which bases in the target the deaminase is proxi-
mal to, which creates the editing window. The central bases
of the window are best positioned for deamination, while
those further out require flexibility from the linker, result-
ing in lower effective local concentration, and thus less edit-
ing. The observed sequence preferences are then naturally
determined by the preferred motifs of the deaminating do-
mains. The structure of the APOBEC domain in cytosine
editors, as well as the TadA domain in adenine editors, con-
tains a pocket that best fits the TN dinucleotide. This motif
was the strongest determinant of high editing rates, espe-
cially at outside positions where limited access to the deam-
inase means that editing might otherwise not occur at all.
Conversely, central positions are edited more regardless of
sequence motifs, so that gRNA efficacy and guide-target
binding can become limiting, and their variation therefore
has a greater influence on the observed rate.

We incorporated these insights into a predictive model,
FORECasT-BE, and found it to be the most accurate for
edits in our K562 and HEK293T data. In comparisons with
published approaches, each model performed best on the
dataset from its publication and did worse on the others,
but FORECasT-BE performed very close to best in all tests.
This quality is likely due to the diverse data used in its train-
ing, rather than any developments in model architecture or
featurization. The same model trained on a single dataset
performed as well as the model published for that data, in-
cluding the drop in performance on other datasets. Addi-
tionally, while the input features to each model were nearly
identical (one-hot encoded guide sequence and a proxy for
gRNA–target duplex melting temperature), the model fam-
ilies differed substantially, with FORECasT-BE using gra-
dient boosted trees and the other two using different neural
networks. Since all these model types, as well as additional
approaches we tested, performed similarly, it is likely that
they make use of the same signal present in the measure-
ments. We therefore speculate that further advances in base
editing efficacy modelling will require assaying outcomes in
a wider complement of contexts, systematically varying cell
type, repair activity, effector protein, delivery mechanism,
guide RNA expression method, etc. Models that generalize
beyond a single dataset, such as FORECasT-BE will prove
a useful tool when ones specialised to the context of interest
are not available.

Predictions were more accurate at positions further away
from the canonical window center for both existing and our
new models. This is potentially due to increased measure-
ment noise in central positions. While the Pearson’s corre-
lation between editing in replicates is consistent across the
entire window, the mean squared error is much higher at
central positions in all editors that we screened, reflecting
larger absolute differences between replicate measurements
(Supplementary Figure S1A–D). Together, these observa-
tions indicate that it is easier to rank potential bystander
editing events away from editing window center, while both
ranking and absolute rate prediction are relatively more dif-
ficult in the central region with more dynamic range.

Both in vitro genome engineering and in silico machine
learning model building require making choices that can
impact analyses and inferences. First, our data for cytosine
editors was generated using lentiviral infection of the con-
struct in K562 cells, while the adenine editors were screened
using transient transfection of the editor and construct in
HEK293T cells. Given the experimentally determined sim-
ilarity between the two approaches (Supplementary Figure
S1E), along with the confirmation of observed trends in
other datasets, we do not think that this difference had a
substantial effect on the results. Second, measures of gRNA
efficacy such as DeepSpCas9 score, RuleSet2 score and ob-
served editing rate in published Cas9 screens all had low
correlation with base editing efficiency. However, the mea-
sures we chose to use were all generated for cutting Cas9,
while base editors use a nicking Cas9. It is possible that this
is a limiting factor in how informative these measures can
be of editing rate, but is also the closest available match in
the absence of large-scale measurements of nicking Cas9.

Using FORECasT-BE, we find that most pathogenic
SNPs that could be reverted using cytosine base editors are
expected to have more unintended edits than clean conver-
sions, but identify 108 guides for C to T editing and 421
guides for A to G editing with promise to cleanly correct
their targets. The editing of non-targeted cytosines presents
a hurdle for clinical use of base editors. While the technol-
ogy develops to address these issues, predictive models will
remain essential to identify unintentional edits in advance,
to potentially account for their effects (51), and to evaluate
the pathogenicity of a guide when planning therapies.

As base editors are already used in genetic screens (52,53),
have demonstrated feasibility in preclinical settings (54–57),
and will likely soon advance into clinical trials, there is a
need for better understanding of editing determinants and
more accurate models of their effects. This work, and pre-
dictive outcome models in general, will be necessary to sup-
port the use of base editing in scientific and therapeutic ap-
plications.
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