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Psoriasis is an immune-mediated systemic disease with associated comorbidities,
including metabolic syndrome (MetS) which contributes substantially to premature
mortality in patients with psoriasis. However, the pathological mechanisms underlying
this comorbidity are unclear. Studies have shown that the pathological parameters of
psoriasis mediate the development of MetS. We reviewed the potential mechanisms
which mediate the association between psoriasis and MetS, including endoplasmic
reticulum stress, pro-inflammatory cytokine releases, excess production of reactive
oxygen species, alterations in adipocytokine levels and gut microbiota dysbiosis. Here,
we highlight important research questions regarding this association and offer insights into
MetS research and treatment.
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INTRODUCTION

Psoriasis, one of the most common chronic, recurrent, and inflammatory skin diseases, affects 2~3%
of the total world population (1). There are several clinical cutaneous manifestations of psoriasis.
The disease most commonly presents as chronic, symmetrical, erythematous, scaling papules and
plaques (2). Pathologically, epidermal hyperproliferation and parakeratosis are the main histological
features of psoriasis. Notably, increased release of pro-inflammatory cytokines and the chronic
activation of innate and adaptive immune systems result in long-term damage to multiple tissues
and organs of patients with psoriasis (3). Psoriasis is a systemic disease that is associated with
multiple comorbidities, such as psoriatic arthritis, Crohn’s disease, cancer, depression,
cardiovascular disease (CVD) (4), and metabolic syndrome (MetS). Among these, MetS is one of
the most common and important comorbidities (5–8). An increasing number of clinical studies
have confirmed that psoriasis is often related with MetS, such as obesity, hypertension, diabetes
mellitus, hyperlipidemia, and obesity-associated non-alcoholic fatty liver disease (NAFLD)
(Figure 1) (9–15). Another study views that compared to patients with milder psoriasis, those
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with more severe psoriasis have greater hazard of MetS (16).
MetS directly increases the risk of CVD and premature mortality
in patients with psoriasis (17), thus substantially reducing their
life expectancy. Therefore, it is critical to understand the exact
mechanisms underlying the relationship between psoriasis
and MetS.

Recently, the prevalence of MetS in patients with psoriasis has
attracted the attention of researchers. The precise mechanisms
underlying the association between psoriasis and MetS remain
unknown. Therefore, in this review, we have discussed these
mechanisms, particularly, the pathogenic factors possibly
involved, including endoplasmic reticulum (ER) stress in
multiple cells, pro-inflammatory cytokine profiles, excess
production of reactive oxygen species (ROS), alterations in
adipocytokine levels, and gut microbiota dysbiosis. This review
Frontiers in Immunology | www.frontiersin.org 2
highlights the previously established and the emerging important
mechanisms that link psoriasis with MetS.
PRO-INFLAMMATORY CYTOKINES
LINKING PSORIASIS AND METS

The hallmark of psoriasis is sustained inflammation (18). The
pathogenesis of psoriasis has involvement of dynamic
interactions between multiple cell types and cytokines (19).
Th17 cells produce several cytokines, such as IL-17 (IL-17A/
IL-17F), tumor necrosis factor-a (TNF-a), and IL-22 (4), which
induce altered differentiation and hyperproliferation of
keratinocytes. Therefore, Th17 cells play a predominant role in
the pathogenesis of psoriasis and are indicators of an increased
FIGURE 1 | Metabolic diseases which frequently occur in patients with psoriasis. Psoriasis is often associated with obesity, hypertension, diabetes mellitus,
hyperlipidemia, and obesity-associated non-alcoholic fatty liver disease, all of which belong to metabolic syndrome.
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risk of psoriasis. Moreover, pro-inflammatory cytokines are
implicated in many diseases, including obesity, diabetes
mellitus, hypertension, NAFLD, and hyperlipidemia (20–23). It
is well-known that tissue inflammation plays a critical role in
insulin resistance (IR) (24–26). IR is the key primary defect
underlying the development of type 2 diabetes (T2D), and it is
also a central component of MetS (27).

IL-17 plays a crucial role in inflammation, IR, and T2D,
indicating that it is a potential mediator linking MetS and
psoriasis (28). It promotes a vascular inflammatory response
and plays a critical role in angiotensin II-induced hypertension
and vascular dysfunction (29). Previous studies reported that
serum IL-17 levels were significantly elevated in subjects with
MetS and Type 1 diabetes compared to health group (30, 31).
Secukinumab, anti-IL-17A monoclonal antibody, is an effective
biological agent for the treatment of plaque psoriasis. In patients
with higher response for secukinumab, mean body weight, waist
circumference, and BMI consistently decreased (32). Furthermore,
combined administration of anti-IL-17A monoclonal antibody
(secukinumab and ixekizumab) reduced fasting glucose levels in
imiquimod treated mice and improved hyperglycemia in patients
with psoriasis (33), suggesting that IL-17 may be a key cytokine
linking psoriasis and hyperglycemia (34).

TNF is also closely associated with the pathogenesis of
psoriasis. The Food and Drug Administration has approved
efficacious TNF inhibitors for the treatment of moderate and
severe plaque psoriasis, including infliximab, adalimumab, and
etanercept (35). Patients with psoriasis who have administration
of anti-TNF drugs often show an improvement in MetS. For
patients with psoriasis, it has been demonstrated that the
treatment with etanercept or adalimumab improved metabolic
parameters including blood lipid and glucose levels and systolic
and diastolic blood pressure (36). Another study further
confirmed that anti-TNF treatment improves the metabolic
profile of patients with psoriasis by downregulating their total
cholesterol and low-density lipoprotein (LDL) levels (37).
Mechanistically, TNF-a inhibits THP-1 cell uptake of oxidized
LDL, thus increasing the extracellular accumulation of oxidized
LDL (38). Additionally, the treatment with adalimumab
significantly improves insulin sensitivity in patients with
moderate-to-severe plaque psoriasis (39). TNF-a directly
contributes to IR (40, 41) by activating stress kinases, such as
IkB kinase, c-Jun N-terminal kinase, and p38 mitogen-activated
protein kinase in muscle and fat cells, thereby blocking insulin
signal transduction (42, 43). In some views, anti-TNF-a
antibody is supposed as the first-line treatment for psoriasis
with metabolic syndrome (44). In contrast, a view points out that
the treatment with anti-TNF (infliximab and adalimumab) leads
to no significant changes in insulin sensitivity or fasting glucose
levels, but increased body fat (45). This may be due to the limited
studied population, and only men were included.

Moreover, serum IL-1b, IL-6, and IL-22 levels were
significantly upregulated in patients with T2D (46) and obese
individuals (47, 48). Notably, deletion of IFN-g improves IR and
metabolic parameters in diet-induced obesity models (49). The
above-mentioned studies have demonstrated that the immune
Frontiers in Immunology | www.frontiersin.org 3
system is closely linked to metabolic disorders. Pro-
inflammatory cytokines may link psoriasis with MetS (Figure 2).
ADIPOCYTOKINES LINKING PSORIASIS
AND METS

Adipose tissues secrete adipocytokines that modulate organ
functions and lipid metabolism. Leptin and adiponectin, two
classical adipokines, are well-established endocrine hormones
that act on specific receptors of remote target organs (50).
Adiponectin is an insulin sensitizer that ameliorates IR and
regulates glucose and lipid metabolism by binding to its
receptors, AdipoR1 and AdipoR2 (51). This might be due to
reduction in ectopic lipids in the liver and muscle (52).
Adiponectin induces an increase in serum high-density
lipoprotein (HDL) and down-regulates serum triglycerides
through enhanced catabolism of triglyceride-rich lipoproteins
(53). Adiponectin ameliorates obesity-induced NAFLD by
interacting with hepatic peroxisome proliferator-activated
receptors (54).

Several studies have demonstrated that low adiponectin
concentrations in patients with psoriasis may contribute to the
development of MetS. Of note, the serum adiponectin level is
negatively associated with the TNF-a and IL-6 levels (55). TNF-a
can impair adiponectin multimerization, consequently decreasing
adiponectin secretion (56, 57). This might be a reasonable
explanation for the lower adiponectin concentrations in
patients with psoriasis compared to those of controls.
Moreover, multiple studies postulate that adiponectin links the
pathological processes of psoriasis and obesity (58). A meta-
analysis has shown that patients with psoriasis exhibit low levels
of adiponectin (59). Compared to patients with psoriasis without
metabolic abnormalities, patients with psoriasis and MetS or high
body mass index have significantly lower adiponectin levels. The
psoriasis area and severity index (PASI) score (60) are negatively
correlated with adiponectin levels (61, 62). Overall, low serum
adiponectin levels in patients with psoriasis may be the link
to MetS.

Leptin is a critical hormonal regulator of metabolism, and
leptin concentrations are directly associated with the subsequent
development of metabolic disorders such as IR, T2D, and CVD
(63, 64). The reduction of plasma leptin levels in obese
individuals can restore hypothalamic leptin sensitivity, then
effectively enhancing insulin sensitivity, reduces weight gain
(65). Increased leptin levels are observed in obese people and
in patients with psoriasis (66), and are positively correlated with
severity of psoriasis (67). The systemic anti-inflammatory drug,
acitretin, used to treat psoriasis, reduces leptin levels (68). In
addition, leptin is an important signaling transducer which may
link obesity and psoriasis (69). One study reported that leptin
levels were higher in obese patients with psoriasis than those of
normal-weight patients (70). Moreover, leptin level is affected by
IL-17 (71), which might explain the higher leptin concentrations
observed in patients with psoriasis than controls. These studies
July 2021 | Volume 12 | Article 711060
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suggest that high leptin levels may be an important factor in
psoriasis-associated metabolic diseases.

Moreover, recent studies have hypothesized that several other
important adipokines, such as retinol-binding protein 4, fetuin-A,
and lipocalin-2 are mediators of obesity in psoriasis (58).
Adipokines could serve as a crucial link in the causal relationship
between psoriasis andMetS (Figure 2) andmay serve as biomarkers
for determining the risk of developing psoriasis comorbidities.
OXIDATIVE STRESS STATUS IN PATIENTS
WITH PSORIASIS AND THE ASSOCIATION
WITH METS

Oxidative stress is the dysregulation between the production of
ROS and endogenous antioxidant defense mechanisms, which
causes protein and lipid peroxidation, DNA damage, and cellular
dysfunction, eventually leading to cell death (72). Increased
oxidative stress in adipocytes is one of pathological mechanisms
Frontiers in Immunology | www.frontiersin.org 4
of obesity-associated metabolic diseases (73, 74). Thus, reducing
ROS production can increase insulin sensitivity and alleviate
hyperlipidemia, hepatic steatosis, and IR (75, 76). Additionally,
a positive correlation has been established between oxidative
stress and low HDL levels (77). Furthermore, LDL-related
dyslipidemia and impaired fasting glucose are associated with
increased oxidative stress (78). Quantitative combination of
natural antioxidants (vitamins C and E) prevents MetS by
reducing oxidative stress (79). These results indicate that a pro-
oxidant/antioxidant imbalance plays an important role in MetS
development (80).

Numerous evidences support that increased ROS production
and oxidative stress status are implicated in the progression of
psoriasis. Studies have revealed that in the serum/plasma and
blood cells of patients with psoriasis, oxidative damage markers
increased (81–87). In addition, oxidative stress markers and
PASI score have a positive correlation (88). The salivary total
oxidative status and oxidative stress index may serve as potential
diagnostic biomarkers for plaque psoriasis (89). Of note, the
activated neutrophils/monocytes that generate oxidative damage
FIGURE 2 | Possible mechanisms linking psoriasis and metabolic syndrome (MetS). The increased release of pro-inflammatory cytokines, adipose tissue secretory
adipocytokines, activation of oxidative stress states, increased endoplasmic reticulum (ER) stress, and gut microbiota dysbiosis observed in psoriasis contribute to
the development of MetS.
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may be the main source of oxidative stress in psoriasis. Increased
oxidative stress in psoriasis may be caused by an insufficient
antioxidant system (90). These evidences suggest that oxidative
stress may contribute to the development of MetS in patients
with psoriasis (Figure 2).
ENDOPLASMIC RETICULUM STRESS
LINKS PSORIASIS WITH METS

ER is an important organelle with a vast membranous network in
eukaryotic cells (91, 92). The ER has many cellular functions,
including protein synthesis, folding, and transport, lipid and
steroid synthesis, carbohydrate metabolism and calcium storage
(93–96). The altered functions of ER can result in the
accumulation of unfolded or misfolded proteins, which is a
cellular condition named ER stress (97). Prolonged ER stress is
a critical factor in the pathogenesis of MetS (98, 99). Inositol-
requiring enzyme 1, an ER stress sensor, induces malfunction in
both brown and beige fat, eventually leading to obesity (100).
Treatment with the ER stress inhibitor (tauroursodeoxycholate)
can improve metabolic parameters in MetS rat and mitigate the
MetS-induced cardiovascular complications (101). Reducing ER
stress can alleviate IR (102–105). Specifically, the interfered
transport of newly synthesized insulin proreceptors from ER to
the plasma membrane can inhibit the proteolytic maturation of
insulin proreceptors. Consequently, the insulin signaling was
broken by consuming the insulin receptors on cell surface (106).

Studies have shown that pro-inflammatory mediators such as
TNF-a, IL-1b, IL-17A, and IFN-g contribute to the induction of
ER stress in multiple immunocytes such as macrophages and T
cells (107–110). ER stress can be found in patients with psoriasis.
Moreover, the over-expressed ER stress-associated proteins,
including binding immunoglobulin heavy-chain protein, C/
EBP homologous protein, and X-box binding protein 1 in the
epidermis of patients with psoriasis vulgaris suggests that ER
stress is increased in the keratinocytes of these patients (111).
One study reported increased expression of ER stress marker
GRP78/BIP in the subcutaneous fat tissues of imiquimod-
induced psoriasiform in diabetic obese mice (112). Above
evidences show increased ER stress is involved in psoriasis.

Overall, due to the common emergence of ER stress in both
MetS and psoriasis, we may speculate that ER stress mediates
their frequent co-occurrence (Figure 2). However, there is less
evidence on ER stress in the association between MetS and
psoriasis. The ER stress in psoriasis that promotes MetS is
expected to elucidate in further research.
GUT MICROBIOTA IN PATIENTS WITH
PSORIASIS AND ITS ASSOCIATION
WITH METS

In the bodies of adult mammals, skin, oral mucosa and
gastrointestinal tract are heavily colonized by microbiota, with
Frontiers in Immunology | www.frontiersin.org 5
the largest population found in the colon. Microorganisms have
variable relationships with their hosts and exist as mutualists,
symbionts, or pathobionts (113). The gut microbiome plays
important roles in host immunity, metabolism, and the
production of numerous compounds that influence the host
(114, 115). There is an emerging interest in metabolic health
and gut microbiome dysbiosis. After the transplantation of
metformin-treated human microbiome into germ-free mice with
glucose intolerance, the glucose defects were corrected (116).
Moreover, gut microbiota specifically controlled the expression
of microRNAs in white adipocytes, controlling adiposity and
insulin sensitivity in mice (117). Overall, these studies suggest
that the gut microbiota regulates host metabolism and obesity.

Numerous studies have demonstrated the role of
Akkermansia muciniphila in preventing obesity-associated
metabolic disorders in both humans and animal models (118–
121). Importantly, the intestinal microbes of patients with
psoriasis show significant differences from those of healthy
subjects (122–124). Notably, a previous study found that the
abundance of A. muciniphila was significantly decreased in
patients with psoriasis (125). Overall, compared with healthy
controls, patients with psoriasis have a different specific intestinal
microbiome. Therefore, we hypothesize that MetS in patients
with psoriasis may be related to changes in the richness of
specific flora (Figure 2).

The intestinal microbiota plays critical roles in preserving
epithelial barrier integrity, forming a mucosal immune system to
battle with exogenous pathogens (126, 127). There are differences
in intestinal permeability between individuals with and without
T2D (128, 129). The disruption of barrier integrity is closely
related with the emergence of metabolic disorder, such as obesity
and T2D (127–130). Alleviated metabolic endotoxemia and
enhanced intestinal barrier function causes significant weight
loss and improves IR in diet-induced obese mice (131). The loss
of intestinal barrier can cause the bacteria translocation and
produce endotoxins or harmful metabolites, then induce
systemic inflammation and aggravate MetS (132). For instance,
elevated bacterial lipopolysaccharides in the circulation and
organs activate the transcription of cytokines via toll-like
receptor 4, promoting IR and metabolic diseases (133). Thus,
the injured mucosal barrier induced by the gut microbiota
involves in the development of MetS.

It has been found that barrier integrity injury and bacterial
translocation are involved in the development of psoriasis (134).
Bacterial DNA was detected in the peripheral blood of patients
with psoriasis (135). In patients with moderate-to-severe
psoriasis, serum markers of intestinal barrier integrity injury
increased (136). For example, intestinal fatty acid binding
protein, a biomarker of intestinal barrier damage, significantly
elevated in patients with psoriasis compared to that in controls
(137). From these studies, bacterial translocation may occur in
psoriasis (138). Therefore, intestinal barrier impairment and
bacterial translocation caused by dysbiosis of the gut
microbiota may explain pathologically metabolic diseases in
patients with psoriasis. Dysregulated gut microbiota in patients
with psoriasis may be a novel therapeutic target in MetS.
July 2021 | Volume 12 | Article 711060
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PERSPECTIVE

Accumulating evidence suggests there is a relationship between
psoriasis and increased risks of MetS. However, major gaps in
understanding of MetS in patients with psoriasis remain. In this
review, we summarized numerous studies that links psoriasis and
MetS. We assume that the emergence of some factors, including
ER stress, pro-inflammatory cytokine releases, excess production
of ROS, alterations in adipocytokine levels and gut microbiota
dysbiosis, may be predictors of MetS in patients with psoriasis.

Specifically, it seems that the pathogenic pathways in psoriasis
and MetS have considerable overlap. Thus, there is a possible
interaction between the psoriasis and MetS. Psoriasis and MetS
both show the chronic inflammatory state (139). Notably, some
inflammatory factors, such as IL-17 and TNF, can both mediate
the occurrence of psoriasis and MetS. Besides, adipocytokine, a
vital meditator of MetS, can regulate body metabolism
meanwhile contribute to the development of a pro-
inflammatory state. Subsequent studies should focus on the
causal relationship between the common pathogenic factors
and psoriasis with MetS. Furthermore, the role of Th17-
derived cytokines in the pathogenesis of psoriasis and MetS is
both increasingly recognized. Anti-IL-17 agents or TNF
inhibitors improved the metabolic disorder when treat
psoriasis. Thus, further long-term and large-scale studies are
warranted to identify whether anti-IL-17 agents or TNF
inhibitors have benefits on psoriasis with MetS. Despite the
pathological mechanism of MetS remains incompletely
understood, oxidative stress and ER stress are considered as
leading causes and can be therapeutically targeted (140, 141). In
order to underly the pathophysiological mechanisms psoriasis
and MetS, more connections from the complex molecular
regulatory network should be established through muti-omics
analysis. Future investigations should aim to determine the
elaborate upstream and downstream signaling pathways that
activate ER stress and oxidative stress in psoriasis complicated
with MetS. What’s more, the dysregulated gut microbiota may
become a novel therapeutic target in patients with psoriasis. The
oral supplementation with A. muciniphila should be applied to
investigate the effects on metabolic abnormalities in patients and
or animal models with psoriasis. In addition, other possible
targeted microbiotas should be screened in psoriasis and MetS
through genomics and metabolomics. These selected microbiotas
Frontiers in Immunology | www.frontiersin.org 6
could be used as a biological marker for monitoring the MetS
in psoriasis.

Collectively, our review implies that administration of MetS is
of importance in clinical management of patients with psoriasis
in the future. Elucidating the mechanisms linking MetS and
psoriasis could provide potential new therapeutic targets and
specific strategies to combat MetS in psoriasis, even other
autoimmune disease, such as systemic lupus erythematosus
and psoriatic arthritis.
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