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ABSTRACT: In the rapidly evolving Internet of Things (IoT) society,
the demand for microbatteries with high areal energy density is surging.
As a promising strategy to enhance areal energy density, three-
dimensional (3D) batteries have attracted attention. The feature of 3D
batteries is the decoupling of the electrode thickness from the ion-
transport distance through the modification of the spatial arrangement of
the positive and negative electrodes beyond the conventional parallel
plates configuration. This allows for the accommodation of a larger
amount of active materials without increasing internal resistance.
However, identifying the optimal 3D geometry is a complex task, as it
depends on printable materials, the resolution of the fabrication
equipment, as well as battery usage, which constitutes a multiobjective
optimization problem. To overcome this challenge, we propose a novel approach to determine the optimal 3D microbattery
geometry. Our innovative method involves a 3D battery optimization system, which integrates an automatic geometry generator with
a quick and accurate performance simulator. This approach allows, for the first time, the discovery of material- and discharge-
current-dependent optimal geometries. We successfully apply this optimization scheme to two standard electrode pairs (LiFePO4/
Li4Ti5O12 and LiNi0.5Mn0.3Co0.2O2/graphite), demonstrating a significant increase in energy density (30%−40% greater than the
current state-of-the-art geometry), particularly under high current conditions. These findings underscore the importance of tailor-
made batteries for diverse IoT applications and showcase the potential of our approach in realizing such designs.
KEYWORDS: lithium-ion batteries, 3D microbatteries, electrode design, optimization, machine learning, multiobjective optimization,
regression models

■ INTRODUCTION
The proliferation of the Internet of Things (IoT) society, driven
by advancements in information and communications technol-
ogy (ICT) and the miniaturization of electronic devices and
sensors, has necessitated the development of smaller devices in
various fields such as mobility, housing, and healthcare. In this
context, microbatteries, which are comparable or smaller in size
to these miniaturized devices, have emerged as a critical
component for their off-grid operation.1,2 While thin-film
microbatteries have been developed and commercialized,3

they suffer from a low areal energy density (1 mWh/cm2),4

which restricts their application to IoT devices or limits the
devices’ functionality. Increasing the thickness of the electrodes
can increase the theoretical capacity; however the resulting
longer ion-transport distance prevents access to the added
materials during operation (Figure 1A), thereby not improving
the areal energy density for practical applications.4,5 This
highlights the importance and need for further research and
development in the field of microbatteries.
To enhance the areal energy density of microbatteries, one

promising strategy is to decouple the electrode thickness and the
ion-transport distance.4,6 This can be achieved by designing the

spatial arrangement of the positive and negative electrodes
three-dimensionally without using the conventional parallel
plates configuration. Microbatteries having such electrodes are
called three-dimensional (3D) microbatteries.6−8 One example
of such batteries is the interdigitated electrodes configuration
shown in Figure 1B and, the figure clearly shows that the
configuration realizes the decoupling of the electrode thickness
and the ion-transport distance. To date, various fabrication
technologies for 3D batteries, such as lithography9,10 and
additive manufacturing,11,12 have been proposed and demon-
strated.2,9,13−19

The common limitation of the 3D battery fabrication
technologies is that the range of the printable materials is
constrained by these methods.20 As the shape of the optimal 3D
electrodes depends on the used materials generally, the
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geometry should be optimized every time when new materials
and fabrication technology are used. Moreover, given that
microbatteries are used in a wide range of IoT devices,
optimizing their performance to meet specific requirements is
crucial. This primarily involves choosing between a high-power
or high-energy orientation, essentially focusing on the
optimization of the Ragone curve.15 However, this constitutes
a multiobjective optimization problem, posing significant
challenges even when computer simulations are employed due
to their high computational cost.21 Indeed, there have been no
reports that address such an optimization problem.
In this paper, we tackle this problem by extending our simple

3D battery optimization system.22−24 Our approach automati-
cally designs the spatial arrangement of the positive and negative

electrodes by combining an automatic geometry generator with
a performance simulator, where the areal energy density is
computed quickly and accurately using an electrochemistry-
based regression model. As the newly proposed regression
models utilize an internal resistance that depends on both
materials and current condition as one of the features for
prediction, accurate prediction of energies for optimal geo-
metries that lie in the extrapolation region is possible. We
successfully demonstrate the effectiveness of the method by
finding material- and discharge-current-dependent optimal
geometries for the first time.

Figure 1. Comparison of conventional and 3D batteries. (A) Conventional battery with thick electrodes (parallel plates configuration). (B) One
example of the 3D batteries (interdigitated electrodes configuration).

Figure 2. 3D battery optimization scheme utilizing a quick and accurate performance simulator and automatic geometry generator. In this example, 3D
batteries that display high areal power and energy densities are designed. (A) Performance simulator examples, including a three-dimensional porous
electrode model and a linear regression model for calculating energy density. (B) Automatic geometry generator based on Monte Carlo tree search
(AGG-MCTS), which generates high-performance battery geometries based on rewards calculated by the performance simulator. (C) Energy
distribution of 3D batteries generated by AGG-MCTS, and identification of the highest-performance batteries (frontier solutions). (D) Validation of
the highest-performance batteries. Here, the geometry named “New” corresponds to the front side of the new geometry shown in panel (C), and this
geometry remains the same in the depth direction.
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■ METHODS

The 3D Battery Optimization System
We briefly summarize our 3D battery optimization system and
optimization protocol with an example shown in Figure 2. Our
optimization system consists of two key technologies: a performance
simulator (Figure 2A), and an automatic geometry generator based on
Monte Carlo tree search (AGG-MCTS) shown in Figure 2B.

The performance simulator computes the battery properties quickly
and accurately. This includes a transmission line model named the
three-dimensional porous electrode model (3D-PEM) for impedance
calculations22 and principal component regression (PCR) models to
predict energies.23 We demonstrated that PCR models successfully
predict energies of 3D batteries with R2 values of greater than 0.92 and
internal resistance computed by 3D-PEM plays an important role as a
feature of the models to achieve high accuracy.23

AGG-MCTS creates feasible 3D battery architectures without
relying on human intuition and experience for the spatial arrangement
of electrodes. As shown in Figure 2B, each geometry is formed by filling
the vacant cell with cuboid-shaped electrodes (electrode elements).
Since the size of the electrode elements is determined following the
resolution of the fabrication technologies such as 3D printers, only
fabricatable geometries can be generated. In the current implementa-
tion of AGG-MCTS, only 3D batteries with two degrees of freedom in
electrode design are generated, as illustrated in Figure 2. This means
that only the frontal geometry is optimized, and this geometry remains
the same in the depth direction.We have introduced this restriction due
to feasibility concerns. Specifically, at present, 3D printing is the only
possible method to develop intricate 3D batteries, but this technology is
currently limited to creating 2D patterned batteries,16,17 such as the
interdigitated electrodes configuration shown in Figure 1B. We have
demonstrated that such 2D geometric designs significantly impact
battery performance.22−24 The detailed algorithm of AGG-MCTS is
described in the Computational Details section of the Supporting
Information.

Figure 2 illustrates the process of finding optimal geometries that
achieve both high power and high energy densities as an example.
Initially, energy prediction models are developed (as shown in Figure
2A). Using these models, AGG-MCTS generates 3D battery geo-
metries, taking into account their performance (Figure 2B).
Subsequently, as depicted in Figure 2C, all sampled geometries are
plotted to identify the optimal ones, known as frontier solutions. The
optimization process is completed by validating these optimal
geometries. This is done by drawing the Ragone plot through
continuum simulations, or experiments if feasible (Figure 2D).

The effectiveness of our approach was demonstrated by automati-
cally designing a set of 3D battery geometries that have both high areal
power and energy densities, where lithium manganese oxide (LMO)
spinel and graphite (Osaka Gas MCMB 25−10)25 as the active
materials in the positive and negative electrodes, respectively.23,24

Indeed, only our approach realized optimization of an entire battery cell
although many simulation-based 3D battery optimizations have been
reported,21,26−34 i.e., all of the previous works reported optimization of
only the dimensions of the interdigitated or pillar electrode,27−33 or the
simplified battery cell.34

The limitation of our optimization system described in refs22−24. is
that resistivity parameters used in 3D-PEM are determined based on
the Nyquist plots, assuming a battery system is in an equilibrium state.
Thus, nonlinearity in the charge-transfer resistance is not included in
the model. As microbatteries are used under high current conditions,
errors in computed internal resistance by 3D-PEM (Rinter

3D‑PEM) may
become substantial due to the nonlinear effect. In addition, from our
previous study,23 we confirmed that Rinter

3D‑PEM, when used as a descriptor
(feature), significantly contributes to the accuracy of the energy
prediction models. Thus, there is a potential risk of decreasing accuracy
in the energy prediction model if the error in Rinter

3D‑PEM is large. As the
magnitude of the error stemming from the nonlinearity depends on the
current condition as well as used materials, it is mandatory to include
such effect to the model for maintaining the generality of our approach,
leading to the successful discovery of material- and discharge-current-
dependent optimal geometries. Therefore, this problem is tackled in
this paper.

The Three Dimensional Porous Electrode Model
Internal resistance is a fundamental property that strongly influences
the charging and discharging behavior of batteries. Thus, quick and
accurate evaluation of the internal resistance of the 3D batteries is of
importance. This has motivated us to devise 3D-PEM, which is a natural
extension of the conventional transmission line model.22

In 3D-PEM, the battery cell is divided into finite elements; and an
electric circuit is formed by linking the centers of these elements using
impedances as illustrated in Figure S1 of the Supporting Information.
Since the electric circuit is designed based on the shape of the
electrodes, this approach enables the incorporation of geometric effects
into the evaluation of cell impedance.

Current Dependent Charge-Transfer Resistivity. In 3D-PEM,
ionic resistivity (ρion), electronic resistivity (ρe), and charge-transfer
resistivity (ρct) are necessary as input parameters to compute the
internal resistance. Among them, ρion and ρe are computable easily from
experimentally determined materials’ property parameters, that are
merely reciprocals of the ionic and electronic conductivities of the
composite electrode, respectively.23 As for ρct, as mentioned earlier, the
value was computed based on the Nyquist plots under a battery system
in an equilibrium state.22,23 Thus, current condition dependency
stemming from the nonlinear effect is not considered. In addition, the
relationship between ρct and materials parameters was unclear.
Therefore, in this study, we propose a new approach to compute ρct
directly from materials parameters and a current condition.

Figure 3 shows a schematic diagram of electrode reactions in a three-
dimensional battery. Figure 3A illustrates an example of the three-

Figure 3.Definition of the charge transfer resistance used in 3D-PEM. (A) Example of the 3D battery and its enlarged diagram of the interface between
the negative electrode and the separator. Usually, the lithium-ion battery uses porous electrodes. Thus, the electrode region consists of both electrolyte
and electrodematerials. (B) Schematic diagram of the charging reaction at the interface between the electrolyte and the negative electrode particle. (C)
Charge transfer resistance is modeled by the serial connection of the reaction resistance (Rreac) and film resistance (Rfilm).
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dimensional battery and an enlarged view of the interface between the
negative electrode and the separator. It is noteworthy that we assume
porous electrodes for both positive and negative electrodes. Thus, the
electrode reaction takes place at the interface between an activematerial
and an electrolyte in the electrode region. Also, a surface film is assumed
on the active materials as the film dominates the battery performance,
e.g., the solid electrolyte interphase (SEI) on the graphite anode.35

During the operation, lithium ions pass through the surface film then
reaction takes place on the electrode particle as illustrated in Figure 3B.
Therefore, the charge transfer resistance can be modeled as the series
connection of reaction resistance (Rreac) and film resistance (Rfilm)

= +R R Rct reac film (1)

as shown in Figure 3C. In 3D-PEM, Rct is represented using the charge-
transfer resistivity ρct [Ωcm3] and electrode volume V as Rct = ρct/V.

22

Thus, Rreac and Rfilm can also be represented by

=R
Vreac
reac

(2)

=R
Vfilm
film

(3)

where ρreac and ρfilm denote reaction resistivity and film resistivity,
respectively. Here, V is the volume of the electrode region in Figure 3A,
which includes not only the volume of electrode particles but also that
of the electrolyte.

As for ρfilm evaluation, a film resistance per unit reaction surface area
(ρfilm

area [Ωcm2]) is provided as a material property parameter.25 Thus,
Rfilm is computed by

=R
Afilm

film
area

reac (4)

where Areac denotes the reaction surface area. From the comparison of
eq 4 and eq 3, we obtain

= V
Afilm film

area

reac (5)

Thus, if we know the ratio between electrode volume and reaction
surface area, we can obtain ρfilm. If we assume the shape of the active
materials as a sphere, which is a common assumption in the field of
battery simulations,25 Areac = 3ϵsV/rs. Thus,

=
r

3film
s

s
film
area

(6)

where ϵs and rs represent the volume fraction of active materials and the
radius of the active material, respectively. Throughout this paper, we
use eq 6 to evaluate ρfilm.
Rreac is computable by taking the derivative of activation over-

potential η with respect to electric current at the interface between the
active materials and electrolyte (I), i.e., Rreac = dη/dI. Rreac can be
computable analytically if reaction kinetics is represented by the
Butler−Volmer equation with the transfer coefficients of 0.5 as

=
i
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RT
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2
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where I0, F, R, and T represent exchange current, Faraday constant, gas
constant, and temperature, respectively.

As sinh x = (ex − e−x)/2, this equation can be transformed into

=I
I

F
RT

2sinh
20 (8)

Then, the inverse function of eq 8 is given by
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By taking the derivative of eq 9 with respect to I, we obtain Rreac as

= =

+

+ +
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If we assume that interfacial current density is constant regardless of the
location within the electrode, I equals to the charge or discharge current
of the battery (Iext). Thus, using I0 = i0Areac where i0 denotes the
exchange current density, we arrive at

=
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+ +
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From the comparison of eq 11 and eq 2, ρreac is obtained as

=

+

+ +

=

+

+ +

+

+

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

( )

( )

RT
Fi

V
A

1

1

1

1

I

I

I
I

I
I

I

I

I
I

I
I

reac
0 reac

2 1

2
1
4

2

reac
LFA

2 1

2
1
4

2

I
I

I
I

ext

0
1
4

ext
0

2

ext

0

ext

0

ext

0
1
4

ext
0

2

ext

0

ext

0 (12)

where ρreac
LFA is the reaction resistivity when the Butler−Volmer equation

is linearized, an approximation known as the low field assumption
(LFA).36 If the shape of the active materials is a sphere, ρreac

LFA becomes

= RT
Fi

r
3reac

LFA

0

s

s (13)

From the comparison between eqs 12 and 13, it is clear that ρreac
depends on Iext while ρreac

LFA does not.
As Rct = ρct/V by definition,22 the charge-transfer resistivity can be

computed using
= +ct film reac (14)

Here, it is noteworthy that we derived the analytical form to compute
ρreac by assuming the Butler−Volmer equation with the transfer
coefficients of 0.5 (eq 7). However, ρreac is also computable by taking
the derivative of η with respect to I numerically as long as I and η are
available. Such an approach is especially effective when the analytical
form of ρreac cannot be obtained.

To investigate the consistency of this approach with our previous
parameter determination method, i.e., the method based on the
Nyquist plot,22,23 we computed ρct of the negative electrode using the
materials parameters and discharge-current conditions (i.e., low current
condition of 3.16 mA/cm2 and high current condition of 12.64 mA/
cm2) specified in ref 23. Using this approach, ρct is calculated to be
1.001 Ωcm3 (the sum of ρfilm of 0.9731 and ρreac of 0.0278) and 1.000
Ωcm3 (the sum of ρfilm of 0.9731 and ρreac of 0.0269) at low and high
current conditions, respectively. These values are nearly identical to the
value in ref 23., which is 1.000 Ωcm3. Also, from this comparison, we
find that nonlinear effect in ρct is negligibly small under the materials
and discharge-current conditions used in ref 23.

Since the 3D-PEM operates as a simple electric circuit, computing its
internal resistance is quick. This rapid computation enables the use of
internal resistance as an important feature for accurately predicting the
energy of the 3D battery during optimization in our scheme (Figure 2).

■ RESULTS AND DISCUSSION

Accuracy of Internal Resistance Computed Using 3D-PEM
To investigate the accuracy of the 3D-PEM, the internal
resistance (Rinter

3D‑PEM) of the 3D battery is compared with that
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from continuum simulations (Rinter
CM ). Here, we should note that

Rinter
CM is computed from the polarization of the battery cell (the

difference between the cell voltage and the open-circuit voltage)
at the onset of discharge to disregard diffusion resistance as the
current implementation of 3D-PEM does not take into account
this effect. As for the geometry, the intricate 3D battery shown in
Figure S2 in the Supporting Information is selected. This

geometry was generated in ref 23., using an automatic geometry
generator based on a randomized algorithm under the condition
that the volume ratio of the positive and negative electrode is
1:1, corresponding to the geometry 1 in Figure S3 of ref 23. To
compute Rinter

3D‑PEM, the system is divided into 150 × 30 elements
and, then, the transmission line model is constructed by
connecting the centers of the elements.

Table 1. Comparison of the Internal Resistance for the 3D Battery Shown in Figure S2 in the Supporting Information, Using LFP
and LTO as Positive and Negative Electrode Active Materialsa

ρfilm [Ω cm3] ρreac [Ω cm3]

C rate LFP LTO LFP LTO Rinter
3D‑PEM [Ω] Rinter

CM [Ω] Error [%]

1 0.0000 0.0000 0.3649 0.0134 615.9 692.6 11.1
2 0.0000 0.0000 0.1978 0.0134 525.1 603.4 13.0
3 0.0000 0.0000 0.1340 0.0133 486.3 552.9 12.0
4 0.0000 0.0000 0.1011 0.0133 464.1 519.9 10.7
LFA 0.0000 0.0000 0.8189 0.0134 837.6 817.1 2.5

a1C current corresponds to 3.16 [mA/cm2]. LFA represents the results when the low-field assumption is used to compute ρreac. The LFA value for
Rinter
CM is computed from the onset of the discharge curve at 0.001C.

Table 2. Comparison of the Internal Resistance of the 3D Battery Shown in Figure S2 in the Supporting Information, Where
NMC532 and GR Are Selected As Active Materials for the Positive and Negative Electrodesa

ρfilm [Ω cm3] ρreac [Ω cm3]

C rate NMC532 GR NMC532 GR Rinter
3D‑PEM [Ω] Rinter

CM [Ω] Error [%]

1 0.0083 0.0400 0.0062 0.0448 128.9 126.8 1.7
4 0.0083 0.0400 0.0062 0.0412 126.5 124.6 1.5
8 0.0083 0.0400 0.0061 0.0337 121.4 120.6 0.6
LFA 0.0083 0.0400 0.0062 0.0451 129.1 126.9 1.7

aResults are presented as in Table 1.

Figure 4. Results of optimization for the LFP/LTO system. (A) Comparative analysis of true versus model-predicted energy values at 1C. (B)
Comparative analysis of true versus model-predicted energy values at 4C. (C) Energy distribution of geometries sampled using AGG-MCTS for 1C
and 4C (20,869 geometries), where frontier solutions are colored in red. (D)Geometries of the frontier solutions, where (a) − (g) correspond to those
in panel (C). Here, black diamond and blue open circle in panels (A) and (B) represent training and test data; R2 (train.) and R2 (test) represent R2

values of training and test data, respectively. Also,NPC represents the number of principal components to construct the regression model. 1C indicates
the current of 3.16 mA/cm2 in this paper (see Computational Details section in the Supporting Information). In panel (D), the blue color represents
the 20 μm thick separator and the left and right sides of the separator are positive and negative electrodes, respectively.
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For the battery system, we selected systems utilizing LFP/
LTO andNMC532/GR as activematerials. These combinations
are chosen because they are standard, yet their discharge
behaviors are distinctly different.5 Here, LFP, LTO, NMC532,
and GR refer to LiFePO4, Li4Ti5O12, LiNi0.5Mn0.3Co0.2O2, and
graphite, respectively. Corresponding resistivity parameters are
summarized in Tables S4 and S5 in the Supporting Information.
Other computational conditions can be found in the Computa-
tional Details section of the Supporting Information.
Table 1 summarizes resistivity parameters (ρfilm and ρreac) as

well as internal resistance for the LFP/LTO system. As this
system does not have the film resistance, ρct equals to ρreac. From
the comparison between ρreac values of positive and negative
electrodes, the reaction resistivity of the positive electrode is
always greater regardless of the current density and shows a
significant dependence on the current. This result reflects the
difference in the rate constant (k in Table S1 of the Supporting
Information). Furthermore, the decrease in ρreac with increasing
current indicates that the impact of the reaction resistance to the
battery property is greater at lower currents.
As for the internal resistance, Rinter

3D‑PEM decreases with the
increase of the current and the value using LFA differs
significantly compared with the current-dependent values (the
error of greater than a few hundred Ω). This trend agrees well
with that of Rinter

CM . The results indicate that the inclusion of the
nonlinear effect in ρreac is vital to compute Rinter

3D‑PEM for this
system.
As the error of Rinter

3D‑PEM relative to Rinter
CM is only 2.5% with LFA

approximation, the error of around 10% for the current-
dependentRinter

3D‑PEM values mainly comes from the approximation
of the nonlinear term in ρreac (i.e., assumption of the uniform

interfacial current density). However, the error of 10% is still
considered to be small for the approximative model, and it is
possible to use the model for the optimization.37

Table 2 summarizes resistivity parameters and internal
resistance for the NMC532/GR system. In this system, both
ρreac values and their current dependence are smaller than those
for the LFP/LTO system. Thus, in contrast to the LFP/LTO
system, the current dependence on Rinter

3D‑PEM is small and,
interestingly, LFA becomes a good approximation. We confirm
the excellent agreement between Rinter

3D‑PEM and Rinter
CM .

3D Battery Optimization Using AGG-MCTS

3D battery optimizations are conducted for both the LFP/LTO
and NMC532/GR systems following the protocol illustrated in
Figure 2. To directly compare the performance of the optimized
geometries with those in the previous work,24 optimization
conditions, such as the dimensions of the battery geometry and
design resolution, are taken from ref 24. The PCR models to
predict energies are combined with AGG-MCTS to optimize 3D
batteries. From a couple of energies under different current
conditions, the shape of the Ragone curve is predicted. Detailed
computational conditions can be found in the Computational
Details section of the Supporting Information.

The LFP/LTO System. Optimization results for the LFP/
LTO system are summarized in Figure 4. Figure 4A and Figure
4B show the performance of the energy prediction models at 1C
and 4C. R2 values are greater than 0.955, meaning our regression
models accurately predict the energies by continuum
simulations. Here, we should note that R2 values of test data
for 1C and 4C are 0.88 and 0.86 respectively if only Rinter

3D‑PEM and

Figure 5. Results of optimization for the NMC532/GR system. (A) Comparative analysis of true versus model-predicted energy values at 1C. (B)
Comparative analysis of true versus model-predicted energy values at 4C. (C) Comparative analysis of true versus model-predicted energy values at
8C. (D) Energy distribution of geometries sampled using AGG-MCTS for 1C and 4C, where frontier solutions are colored in red. (E) Energy
distribution of geometries sampled using AGG-MCTS for 4C and 8C, where frontier solutions are colored in red. (F) Geometries of the frontier
solutions, where (h) − (o) correspond to those in panels (D) and (E). Total number of geometries sampled using AGG-MCTS is 32,732 geometries,
that are used to create panels (D) and (E). Data are plotted as in Figure 4.
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volume-scaled Rinter
3D‑PEM are used. This indicates that Rinter

3D‑PEM

plays a major role in the accuracy of the regression model.
The energies of all the geometries sampled using AGG-MCTS

(around 20,800 geometries) are plotted in Figure 4C and
frontier solutions (a)− (g) are found. As is clear fromFigure 4D,
frontier solutions have similar geometrical features that they are
composed of two types of electrode teeth: one with a constant
width of 40 μm and another where the width varies, taking on
either 40 or 100 μm. Interestingly, the geometrical features are
different from the optimized geometries for the LMO/GR
system,24 a representative of those is shown in Figure S6 in the
Supporting Information.

The NMC532/GR System. Figure 5 summarizes optimiza-
tion results for the NMC532/GR system. Figure 5A, Figure 5B,
and Figure 5C show the performance of the energy prediction
models for 1C, 4C, and 8C, respectively. Excellent agreement
between predicted and true values is confirmed (R2 of greater
than 0.988).
Energy distribution of the sampled geometries for 1C and 4C,

and that for 4C and 8C are presented in Figure 5D and Figure
5E, respectively. As a result, frontier solutions (h) − (o) in
Figure 5F are confirmed. Overall, electrode teeth widen as they
get closer to the opposite current collector for this system.
However, the optimal shape becomes more complex as the
discharge current increases. This geometrical feature is
completely different from both the LMO/GR system24 and
the LFP/LTO system.
Tables 1 and 2 demonstrated that Rinter

3D‑PEM strongly depends
on the applied current due to the nonlinear effect in ρreac (eq 12).
Thus, we investigate the contribution of such effect to the
accuracy of the regression models. Figures S7 and S8 summarize
the accuracies of the regression models constructed using the
same features as those used to create the regression models in
Figures 4 and 5, except for Rinter

3D‑PEM, which is computed using
LFA. From the comparison between Figure 5 and Figure S8, we
do not observe a reduction in accuracy due to LFA regardless of
the current condition. This is understandable considering the
fact that the nonlinear effect is small for the NMC532/GR
system, as shown in Table 2. Regarding the LFP/LTO system,
from the comparison between Figure 4 and Figure S7, while the
accuracy of the regression model at 1C remains unchanged, a
drastic reduction in the R2(test) value for the LFP/LTO at 4C
(from 0.955 in Figure 4B to 0.855 in Figure S7B) is confirmed.
This reduction corresponds to approximately twice the root-
mean-square error (RMSE) for the test data, increasing from an
RMSE of 8.51 × 10−5 mWh/cm2 to 15.26 × 10−5 mWh/cm2.

This result is consistent with the observation from Table 1,
where the nonlinear effect is the largest for the LFP/LTO system
at 4C. Moreover, the error in Figure S7B increases with the
magnitude of the energy. This indicates that including the
nonlinear effect is vital for quantitatively predicting the energy of
high-performance batteries during optimization. Here, it is
noteworthy that although the accuracy of the regression models
did not change, except for the LFP/LTO system at 4C,
predicting the error due to the nonlinear effect on regression
accuracy is difficult. Thus, including this effect is compulsory
from the viewpoint of the generality of the optimizationmethod.

Accuracy of the Regression Models for Optimal
Geometries. The search for optimal geometries inherently
involves an extrapolation problem, since these geometries are
expected to lie outside the data region used for constructing the
regression models (the extrapolation region). Property
prediction in the extrapolation region is generally challenging
using the regression model, thus, we have investigated the
accuracy of the energy prediction models for the optimal
geometries.

Predicted and true energies for the LFP/LTO system and the
NMC532/GR system are summarized in Tables S6 and S7 in
the Supporting Information, respectively; and those data are
plotted along with the training and test data in Figures S9 and
S10 in the Supporting Information. As is clear from Figures S9
and S10, the optimal geometries lie in the extrapolation region,
however the regression models well predict the energies of the
optimal geometries. All the models exhibited the prediction
error of less than 9%, except for the energy at 1C for the LFP/
LTO system. As for the energy at 1C for the LFP/LTO system,
the model successfully captures the relationship between the
geometry and energy even for the extrapolation region although
the prediction accuracy is slightly worse than the other models
with the average error of around 24%.

Although the model for the LFP/LTO system at 1C
effectively represented the connection between geometry and
energy in the extrapolation area, it is desirable to improve the
accuracy of the model and confirm the validity of the optimal
geometries. As the model exhibited great accuracy for the
training data (R2 of 0.99, as shown in Figure 4A), we suspect that
the model slightly overfitted to the training data, which might
lead to the decrease in the accuracy in the extrapolation region.
On the other hand, as the model captures the relationship
between the geometry and energy in the extrapolation region,
we assume that only small modifications are necessary for the
improvement. Thus, we redeveloped the regression model by

Figure 6. Performance comparison of optimal geometries and reference geometries. (A) Ragone plot of the optimal 3D batteries for the LFP/LTO
system. (B) Ragone plot of the optimal 3D batteries for the NMC532/GR system. LMO/GR(OPT) represents the results of the optimal geometry for
the LMO/GR system (see Figure S6 in the Supporting Information).
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adding energy data of the optimal geometries in the test data
without changing the training data. This treatment adjusts the
number of principal components as that number is determined
tomaximizeR2 of the test data (see Computational Details in the
Supporting Information). Indeed, the prediction accuracy of the
optimal geometries increased drastically (the averaged error of
only 1.7%) at the cost of a very slight reduction of R2(train.)
value, which is 0.986, as shown in Figure S11 in the Supporting
Information. Although we reoptimized geometries using this
model with AGG-MCTS, we did not find new optimal
geometries. Thus, we conclude that geometries (a) − (g) in
Figure 4 are the optimal geometries for the LFP/LTO system.
Performance of Optimal Geometries

To investigate the performance of the optimal geometries,
theoretical Ragone plots are compared in Figure 6. Associated
performance data are summarized in Tables S8 − S13 in the
Supporting Information. For comparison, performance data for
the conventional parallel plate configuration (PPC) and the
optimized geometry for the LMO/GR system (LMO/GR-
(OPT)),24 illustrated in Figure S6 in the Supporting
Information, are also included in Tables S8 − S13. Only the
data for LMO/GR(OPT) is included in Figure 6 as the energy of
PPC is very low.
First, we take a look at the results of the LFP/LTO system.

From Table S9, it is clear that the energy of PPC for the LFP/
LTO system is much lower than the other systems, indicating
use of the thick electrodes is not an effective option to improve
the areal energy density. Additionally, the impact of the 3D
geometry on energy is significant. Although the Ragone plot
does not clearly show the superiority of the optimal geometries
over LMO/GR(OPT), their advantage is definitively confirmed
in Table S9. At 1C and 2C, all the optimal geometries show
greater energy than LMO/GR(OPT). As for 1C, the optimal
geometries display from 4% to 9% greater energy than LMO/
GR(OPT). For the 2C rate, the superiority of the optimal
geometries is more evident, with the energy advantage ranging
from 14% to 72%. Among the optimal geometries, geometry (b)
demonstrates the best performance at 1C, while geometry (g)
shows the best performance for rates other than 1C. The energy
of geometry (g) is superior to that of the LMO/GR system by
72%, 14%, and 33% for the 2C, 3C, and 4C rates, respectively.
To investigate the reason why optimal geometries show better

performance compared with the LMO/GR(OPT), initial
capacity (Q) and averaged internal resistance (Rave) are
summarized in Table S10 in the Supporting Information.
Overall, the optimal geometries have smaller Q but lower Rave,
compared with LMO/GR(OPT). Thus, the lower internal
resistance contributes to the greater energy. It is interesting that
only the 10 Ω difference between geometry (g) and LMO/
GR(OPT) for 4C leads to the significant difference in energy
(33%). This means that the internal-resistance difference
strongly impacts the battery performance especially when the
current density is high.
In the case of the NMC532/GR system, similar to the LPF/

LTO system, PPC exhibits much lower energies compared to
3D batteries, as shown in Table S12. The advantage of the
optimal geometries over the LMO/GR(OPT) is clear from both
the Ragone plot (Figure 6B) and Table S12. From 1C to 6C, the
geometry (h) shows the greatest energy, and the geometry (o)
for 8C. The advantage of the best geometries over the LMO/
GR(OPT) increases with the strength of the current, i.e., the
difference is around 7% for 1C and 40% for 8C. When

miniaturizing batteries, the energy density at the high current
condition is particularly important. Thus, the results indicate
that the optimization of electrode geometry is crucial for this
system.

Q and Rave of the optimal geometries as well as PPC and
LMO/GR(OPT) are summarized in Table S13 for the
NMC532/GR system. As is the same with the case for the
LFP/LTO system, lower Rave contributes to the greater energy
for the optimal geometries compared with the LMO/GR-
(OPT). At 8C, although the geometry (o) has around 16%
smaller Q compared with the LMO/GR(OPT), the great
reduction ofRave (66Ω) results in 40% greater energy. Again, the
internal resistance plays a key role in improving the energy
density especially when the current is large.

■ CONCLUSIONS
In this paper, we propose an automatic 3D battery optimization
scheme, the key components of which include our previously
proposed automatic geometry generator and the newly
developed electrochemistry-based regression models. These
models are designed for quickly and accurately predicting areal
energy density. To achieve high accuracy with the regression
models, we incorporate the nonlinear effect of the electrode/
electrolyte interface reaction to evaluate the internal resistance,
which is a key feature of the model. This enables the accurate
prediction of energies for optimal geometries that lie in the
extrapolation region, regardless of the materials and current
conditions. In this paper, the accuracy of the regression models
is confirmed by comparing predicted energies with those from
the continuum simulations. Although we utilized the continuum
simulations under crude approximation as a reference, the
simulation methods used are known to reproduce experimen-
tally observed discharge curves (hence, energies) well for both
conventional25 and 3D batteries;32 moreover, optimizations
were carried out in the reports. Thus, we believe that our
regressionmodels can predict the energies of fabricated batteries
as long as the materials parameters are carefully chosen and
stable fabrication processes that reproduce battery properties are
used. The experimental validation is the main focus of our future
work.

To demonstrate the effectiveness of the scheme, we applied it
to find the optimal 3D batteries for two kinds of positive
electrode/negative electrode pairs, namely, the LFP/LTO and
the NMC532/GR systems. These systems were chosen because
they are standard combinations but their material properties are
distinctly different. Using AGG-MCTS combined with the
energy prediction models, we demonstrated for the first time
that the optimal geometry changes with the current condition as
well as with the combination of electrodes. Notably, the merit of
optimization is highlighted under high current conditions, where
the optimal geometries showed 30% and 40% greater energy for
the LFP/LTO and NMC532/GR systems respectively,
compared with the best geometry for the LMO/GR system.

From the results, we conclude that a tailor-made battery is
essential for maximizing the performance of specific applica-
tions, and our method has the potential to realize such designs.
In the field of 3D batteries, a variety of fabrication methods are
proposed, and the available materials are strongly limited by the
methods. Our approach should play an important role in
designing 3D batteries under such limitations.
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