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DNA methylation is one of the most studied epigenetic modifications that has applications
ranging from transcriptional regulation to aging, and can be assessed by bisulfite
sequencing (BS-seq) or enzymatic methyl sequencing (EM-seq) at single base-pair
resolution. The permutations of methylation statuses given by aligned reads reflect the
methylation patterns of individual cells. These patterns at specific genomic locations are
sought to be indicative of cellular heterogeneity within a cellular population, which are
predictive of developments and diseases; therefore, methylation heterogeneity has
potentials in early detection of these changes. Computational methods have been
developed to assess methylation heterogeneity using methylation patterns formed by
four consecutive CpGs, but the nature of shotgun sequencing often give partially observed
patterns, which makes very limited data available for downstream analysis. While many
programs are developed to impute genome-wide methylation levels, currently there is only
one method developed for recovering partially observed methylation patterns; however,
the program needs lots of data to train and cannot be used directly; therefore, we
developed a probabilistic-based imputation method that uses information from
neighbouring sites to recover partially observed methylation patterns speedily. It is
demonstrated to allow for the evaluation of methylation heterogeneity at 15% more
regions genome-wide with high accuracy for data with moderate depth. To make it
more user-friendly we also provide a computational pipeline for genome-screening, which
can be used in both evaluating methylation levels and profiling methylation patterns
genomewide for all cytosine contexts, which is the first of its kind. Our method allows
for accurate estimation of methylation levels and makes evaluating methylation
heterogeneity available for much more data with reasonable coverage, which has
important implications in using methylation heterogeneity for monitoring changes within
the cellular populations that were impossible to detect for the assessment of development
and diseases.
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1 INTRODUCTION

Methylation is one of the most studied epigenetic modifications
(Moore et al., 2013). It is known to be involved in a wide range of
key biological processes including regulation of gene expression,
developments (Hsieh et al., 2020), aging and silencing of
transposable elements (Jin et al., 2011). The study of
methylation at single nucleotide resolution is made possible
through next generation sequencing when it is coupled with
bisulfite treatment (Barros-Silva et al., 2018) or enzymatic
methyl sequencing (EM-seq) (Vaisvila et al., 2021).
Methylation level is used extensively in comparing between
samples of different conditions (Hsieh et al., 2020) and their
correlation with gene expression is usually studied (Hanley et al.,
2017). When looking at reads covering multiple cytosines there
are also methylation patterns, or permutations of methylation
statuses spanning multiple cytosines in a row. As a read
represents a cell within a bulk sequencing data, therefore the
methylation patterns observed from different reads can be used to
study the heterogeneity of multiple cells, i.e., cellular
heterogeneity. Cellular heterogeneity was found to be closely
associated with diseases. For example, in the course of cancer
progression (Jin et al., 2011); the more heterogeneous the
tumours are, the worse the clinical outcomes (Landau et al.,
2014). A few methods had been proposed to study cellular
heterogeneity. Single cell bisulfite sequencing (scBS-seq) is a
typical approach; however, it is known to have significant
challenges such as technical difficulty in isolating individual
cells and DNA samples being destroyed by bisulfite treatment.
A new method is to quantify methylation heterogeneity using
methylation patterns that are formed by methylation statuses of
several cytosines within the same reads in bulk sequencing data
(Shannon, 1948; Hill, 1973; Zhang et al., 2011). However, owing
to the nature of shotgun sequencing, the average depth and
coverage in most whole genome bisulfite sequencing data
(WGBS) and reduced representation bisulfite sequencing
(RRBS) data are not sufficient for estimating methylation
heterogeneity accurately, e.g., the depths at individual cytosine
sites do not constitute enough methylation patterns at each
cytosine.

Imputation is a commonly used technique to overcome this
type of problems; however, most imputation methods developed
for methylation data analysis are not designed for imputing the
methylation patterns (haplotypes of methylation statuses).
METHimpute (Taudt et al., 2018), was developed for imputing
methylation levels using WGBS. Melissa (Kapourani and
Sanguinetti, 2019) and DeepCpG (Angermueller et al., 2017)
were developed for imputing methylation levels in single cell
methylomes. Despite their usefulness in inferring methylation
levels genomewide, they were not designed for and hence are
unable to recover read specific methylation patterns that are
needed for the estimation of methylation heterogeneity since it
requires read identity for each methylation status. PReLIM (Scott
et al., 2020), on the other hand, attempts to impute methylation
statuses on individual sequencing reads; however, the method
requires training models using many bins and the program
written is not straightforward.

DNA methylation is catalysed by a family of DNA
methyltransferases (DNMTs) (Jin et al., 2011). Different
contexts of methylation, methylation occurring at CG, CHG,
and CHH contexts where H is any of A,C, or T, are responsible by
different groups of DNMTs. DNA methylation for mammalians
primarily occur at CG (Jin et al., 2011) while methylation at other
contexts CHG and CHH are also common for plants although
their roles are not clear. Currently, most of the studies based on
methylation heterogeneity are for human diseases, hence, only
available for CG methylation but the same concept can be useful
for other contexts as well, for example, for studying DNMTs and
the pathway involved (Harris and Zemach, 2020). Therefore, it is
our aim to develop an imputation method that is accurate, speedy
and produces outputs widely applicable to animals as well as
plants and fungi, with higher resolution (methylation pattern
information).

There is high correlation of methylation among cytosines that
are nearby (Affinito et al., 2020). We use this property extensively
to borrow the most information from nearby sites and developed
a probabilistic-based imputation method to impute accurate
methylation statuses speedily. Our program is the first of its
kind to be able to take any methylation contexts (not limited to
CG) that has accuracy comparable with the only existing method
that imputes methylation statuses. It also has the flexibility for
user to specify window size in number of cytosines fixed across
the genome for imputation and genomewide profiling. After all, it
is easier to use, can be run with one command and outputs results
readily for downstream analyses.

FIGURE 1 | An illustration of both the eligibility and a possible
imputation result for BSImp. Given we are interested in window size of three
cytosines, a region is selected as enclosed by a blue rectangle. Each line of
dots represents a read aligned to a specific genomic region; black
(white) dots represents a methylated (unmethylated) cytosine for the given
read. Four complete patterns are observed, which makes the window
eligible for imputation. Within the window, only reads missing at most one
methylation statuses (dots) are eligible for imputation; there are five in the
example. Looking at the topmost reads with one missing pattern, the rest of
the pattern resembles that of the complete pattern below, so it has a
probability of zero being methylated. The second last read has methylation
pattern (black, white in the second and third position) resembles two other
reads, which have methylation statuses of methylated and unmethylated,
one each, so it has 50% of being either.
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2 METHODS

Considering methylation patterns formed by methylation statuses of
multiple successive cytosines of the same reads, there is usually
missing values of methylation statuses within a window of fixed size
(number of cytosines). We assume that the pattern of methylation is
similar for cells within a population and that the behaviour of cells or
the methylation statuses of a cell at a given position can be predicted
by those statuses nearby and cells nearby; therefore, using law of total
probability, let the methylation status of a cytosine at a position j for
read i be mij, then the probability of mij being methylated, or 1, is

p mij � 1( ) � p m−i,j � 1|mi,−j � s1( )p mi,−j � s1( ) (1)
+p m−i,j � 1|mi,−j � s2( )p mi,−j � s2( ) (2)

+/ + p m−i,j � 1|mi,−j � sn( )p mi,−j � sn( ) (3)
where su are subpatterns of complete patterns within the same
window, or methylation patterns at positions other than j, if they
exist, and p(mi,j = 1|mi,−j = su) is the observed probability of cytosines
being methylated at position j given subpattern mi,−j within the
window is like su. The reads eligible for imputation is specified to be
those missing at most 1 methylation status within the window. Since
mij is the only missing value in the window for the same read, mi,−j

must be equal to one of su where u ⊂ {1, 2, . . . , n}. However, if the
subpattern is not observed, or there is no complete pattern with
subpattern that resemblesmi,−j, it is taken as the methylation level at
position j, or p(mtj = 1) for all reads t that are observed at position j.
An illustration of the eligibility of reads for imputation and a possible
imputation result can be found in Figure 1.

In our implementation, the imputations are done alongside
genome screening where windows of fixed size of cytosines of the
same methylation contexts are extracted, imputed if valid and
profiled for their copy numbers of methylated, unmethylated
reads and every possible methylation patterns. It is done through
sliding windows with w—1 cytosines overlapping. Only windows
with at least two complete patterns are considered for imputation
and results outputted if a given cytosine has enough depths or
methylation levels above a threshold within the window, as
specified by the user.

3 RESULT

To evaluate imputation performances, different types of data
including WGBS and RRBS are used. The increased genome
coverage after imputation, and the accuracy of prediction
evaluated using both methylation statuses and methylation
level are assessed. The WGBS data selected are from
Arabidopsis thaliana and RRBS data is from human. In the
evaluation only the forward strand is used.

3.1 Imputation can Increase Significantly in
Coverage
The primary purpose of imputation is to increase coverage
genomewide for downstream analysis so we first examine the

increase in coverage of our method. Four WGBS datasets with
average depths of 18x are used. Data of lower depths are obtained
by sampling reads based on ratios calculated as expected depths/
18 to reach desirable average depths. The chosen depths are 5x,
8x, 10x, 15x and 18x. We can see a clear trend of increase in
coverage as depth increases and the coverage for imputed
methylomes are much higher than that before imputation with
maximum linear increase above 15% for depths equals to 8.
Looking at Figure 2A and Figure 2B we also see the coverage for
methylation level is much higher than methylation heterogeneity;
the reason for this being it is much harder to observe complete
methylation patterns compared to reads at individual cytosines
using the same requirements (8 reads at individual cytosine or 8
complete patterns). Also consider it usually requires only 4 reads
for the evaluation of methylation levels, there is a need for
imputation for the evaluation of methylation heterogeneity.

3.2 Imputation Predicts Methylation
Statuses Accurately
Given imputation increases coverage (genomic regions) for
downstream analyses, it is also important to know how much
bias it introduces. We first compare our method with PReLIM
which is the only existing method that also recovers methylation
patterns. The result as shown in Figure 3A is obtained by getting
all complete patterns within windows of 4 CpGs in chromosome
2 of a human cancer data, removingmultiple methylation statuses
at random within each window and impute the missing values
using different methods (BSImp, PReLIM and column mean) for
comparison. Column mean is a method that uses methylation
level for the genomic position as the probability of methylation
for all reads eligible for imputation. The accuracy is calculated as
the mean number of correctly imputed methylation statuses.
Figure 3A shows that our method has higher accuracy (over
85%) than PReLIM and using column mean as probability for
predicting methylation statuses.

Since imputation changes the estimate for methylation level
at each cytosine, we also assess the accuracy (bias) using
absolute changes in methylation level estimated. Figure 3B is
obtained by calculating the mean absolute difference in
methylation level across common regions with estimate of
methylation level between original data (18x) and data of
lower depth by downsampling 50% of reads and imputed
data using different methods as indicated by the x-axis. Four
libraries are obtained by downsampling 50% of the reads; each
boxplot consists of result from 4 libraries. Figure 3B shows our
method does not create much difference in methylation level
compared to data before imputation as indicated by lower depth
and METHimpute introduces much larger bias for these
cytosines.

4 DISCUSSION

There is only one existing method that recovers methylation
patterns, which can be beneficial for the evaluation of methylation
heterogeneity; however, the programwritten is standalone; it only
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imputes or completes a binary matrix of indicator variables that
represent the methylation statuses within a window of given
numbers of CpGs; it is up to the users to extract the windows for
training and predicting and to output results useful for
downstream analyses. On the other hand, our program
(Figure 4) is able to screen for methylation pattern
genomewide, impute missing statuses and output the profiles
of methylation statuses at each cytosine and the copy number of
every possible methylation patterns given the size of the window.

In other words, it is the first of its kind and all in one. The results
produced include number of methylated and unmethylation
cytosine at each position given the depth is enough and the
copy numbers of every possible methylation patterns starting at
the same position, which can be easily used to evaluate
methylation levels and methylation heterogeneity. We
compared the accuracy of BSImp in terms of accurate
prediction of methylation statuses with PReLIM as it is the
only method that recovers methylation patterns and to our

FIGURE 2 | An illustration of increases in coverage for the evaluation of methylation level and methylation heterogeneity for WGBS data with common depths. (A)
Coverage (percentage of genomic regions in terms of windows) of possible evaluation of methylation level before and after imputation evaluated with requirement of
minimum depth of 8 reads at each cytosine. (B) Coverage (percentage of genomic regions in terms of windows) of possible evaluation of methylation heterogeneity
before and after imputation using window size of 3 CpG and minimum 8 reads per window. Eight was chosen for it is the minimum number of reads required for us
to see all possible patterns, if they all appear. Each boxplot is based on 1 chromosome and 4 libraries (WGBS) (4 data points). Since methylation patterns are profiled
using sliding windows of one cytosine and a window is 3 CpG so coverage is calculated as the number of windows available for downstream analyses divided by total
number of CpGs within the chromosome.

FIGURE 3 | Evaluation of accuracy of BSimp by comparing with existing methods. (A)Boxplot of accuracy of methylation statuses imputed compared with PReLIM
and column mean. Non-overlapping windows of four CGs are extracted, multiple methylation statuses removed at random and imputed using all three methods to
calculate mean accuracy of prediction for each window. PReLIM needs training of models, (complete parts of) all windows included in the evaluation were used for
training. Column mean is a method that uses methylation level for the genomic position as the probability of methylation for all reads eligible for imputation. The
results are based on 783 windows. (B) Boxplot of mean difference in methylation level of common regions compared with METHimpute and data of lower depths. Four
libraries were obtained by downsampling 50% of reads independently and imputed using METHimpute and BSImp. Methylation levels obtained before and after
imputation are compared with library before downsampling as treating it as the correct answer. Only common regions (CG) are considered. Each boxplot is based on four
results.
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surprise, PReLIM performs a lot worse and we also ran an
analysis of the breakdown of methylation levels of the
windows we used in the evaluation and it turns out that
PReLIM performs bad when methylation levels are high,
which might requires some tuning of parameters as high
methylation level can be common for most methylation
contexts of interest; i.e., CpG for human.

As for methylation, existing methods that impute
methylation levels were mostly developed for imputing whole
methylome of sparse data such as single cell methylomes;
however, METHimpute is developed for imputing
methylation level of entire methylomes using WGBS, which
is closer to our aim; therefore, we only compared with
METHimpute using the sites with common coverage (of
METHimpute and BSImp using WGBS) where BSImp has
lower and the result indicates our method is comparable to
METHimpute at predicting methylation level and the bias is
only slightly larger than that of lower depth (data before

imputation) by treating original data (not downsampled) as
target.

In the evaluation we had put less emphasis on non-CpG
contexts as there are not as many studies in methylation as
CG; hence, fewer programs to compare with. Non-CpG
methylation can be more prominent than CG for species of
plants and fungi, and play important roles in their development.

Non-CpG sites are denser on the genome, meaning there
are generally more non-CpG sites than CpG sites within a
read, allowing for the evaluation of methylation heterogeneity
using larger window sizes. This takes advantage of the
complexity resulted of the possible combinations of
methylation patterns. However, it would in turn requires
higher depths for accurate estimation of heterogeneity.
Considering there will always be reads at either ends of the
windows, imputation would still be beneficial to reach
desirable depths for methylation patterns.

Although the non-CpG methylation levels are generally low,
we can set a parameter to place a threshold on the minimum
methylation level for any given window for the consideration in
our program. This speeds up the program and only outputs
results in regions that might be of interest to the users. Our
programs allow for systematic evaluation of methylation
heterogeneity using either methylation contexts, which will
make significant contributions to the understanding of their roles.
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