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Abstract

Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell
lines representative of the primary disease has hampered a full understanding of disease pathogenesis and
development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV
transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5
positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This
cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration
assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has
significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated
distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is
consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice,
producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and
bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene
function in this disease.
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Introduction

Chronic lymphocytic leukemia (CLL) is one of the most
common types of adult leukemia, and is characterized by a
typical immunophenotype of CD19, CD20, CD23 with co-
expression of the pan T-cell marker CD5. Our knowledge of
CLL biology has expanded dramatically with recognition of two
disease subsets which are categorized by the mutational status
of the immunoglobulin heavy chain variable region (IGHV).
Patients with mutated IGHV typically have more indolent
disease, low risk genetic aberrations, lack high risk gene

mutations (p53, NOTCH-1, and SF3B1) and exhibit minimal
clonal evolution over time. In contrast, patients with un-mutated
IGHV disease have an increased frequency of high-risk
genomic features, genetic mutations, and exhibit clonal
evolution [1–7]. In this latter patient group, adverse outcomes
are associated with over-expression of ZAP-70, which may
enhance BCR signaling and migration toward chemokine and
stromal cells [8]. These biologic features translate to clinically
meaningful differences between these two CLL types, where
patients with mutated IGHV have a longer treatment-free
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survival interval, and improved progression-free and overall
survival compared to patients with un-mutated IGHV [9,10].

Despite these biological and clinical differences, both groups
share common features such as differential expression of
certain mRNAs and miRNAs when compared to normal B-cells
[11–14]. Attempts to study the effects of differentially
expressed genes in CLL are complicated by the high
spontaneous apoptosis rate of cultured tumor cells.
Additionally, primary CLL cells are quite difficult to transfect
with expression vectors or siRNA constructs and lack the ability
to expand or recapitulate disease features when engrafted into
immunodeficient mice. Unlike many other hematopoietic
malignancies, the limited number of CLL cell lines has impeded
rigorous mechanistic interrogation of both coding and non-
coding gene function, regulation, and interaction with other
genes, as well as response to CLL therapeutic agents [15].

The resistance of primary CLL cells to viral transformation by
Epstein-Barr virus (EBV) has been cited as a major reason for
this lack representative immortalized cell lines which accurately
reflect the disease [16–18]. The few existing CLL lines have
molecular features of high-risk, IGHV un-mutated CLL and lack
many primary features associated with clinical CLL. The most
well characterized CLL cell line, MEC1, bears mutated TP53 as
well [19]. Attempts to expand the number of available CLL lines
have been reported. CLL cells may be maintained in culture
following EBV transformation using cell feeder layers or other
B-cell activation stimuli; however, over time in culture these
cells may exhibit diminished CD5 expression [20,21]. However
these difficulties may be overcome by developing hetero-
hybridoma cell lines to create stable in vitro cultures from CLL
patient samples [22]. CLL lines with IGHV mutated disease are
not widely available (one previous study describes a CD5+ cell
line with mutated IGHV) [21]. Herein, we describe an EBV-
transformed CLL cell line with mutated IGHV, trisomy 12,
trisomy 19, non-complex karyotype and wild type p53. This
novel cell line displays an immunophenotype similar to human
CLL, remains stable following extended culture, is readily
manipulated by stable gene transfection, and is reproducibly
engrafted into immunodeficient mice. As such, the OSU-CLL
cell line provides a unique tool to rigorously study the biology of
CLL.

Methods

Ethics Statement
Blood was obtained from CLL patients after obtaining written,

informed consent according to an Ohio State University
Institutional Review Board (IRB) approved protocol, in
agreement with the principles of the Declaration of Helsinki.
This IRB approved protocol stated that collected samples will
be used for the following purposes: To establish a tissue
repository of blood, genomic DNA, fibroblast and
lymphoblastoid cell lines from CLL patients. All animal research
was reviewed and approved by The Ohio State University
Institutional Animal Care and Use Committee.

EBV Immortalization
Peripheral blood mononuclear cells isolated from the patient

were infected with the B95-8 strain of EBV virus in the
presence of cyclosporin A. Cells were expanded and cryo-
preserved when the outgrowth of the EBV was evident based
on large clusters of cells. Cell lines were maintained in RPMI
media supplemented with 10% fetal bovine serum and
antibiotics.

Immunophenotyping
Cell lines were analyzed for a panel of CLL surface markers

using a five color technique with a gating strategy based on
CD45 and side scatter characteristics. Data was analyzed on a
FC500 flow cytometry analyzer equipped with CXP software vs
2.2 and prism plot utility (Beckman Coulter, Miami FL, USA).
Detailed methods and antibodies utilized are described in
supplemental material.

Viability Assays
Cell viability was determined by MTS (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) assay or staining with Annexin V-
FITC and propidium iodide (PI).

Fluorescence In Situ Hybridization (FISH) and
Karyotype

CpG stimulated karyotype and FISH were performed as
previously described [23].

Immunoglobulin Gene Mutational Analysis
DNA from each sample is amplified using IGHV family-

specific primers for the sense strand and antisense
JH degenerate primer. The PCR products are size selected by
electrophoresis in 2% agarose and sequenced directly [24,25].
Nucleotide sequences are analyzed using the ImMunoGenetic
(IMGT) directory [26]. Somatic mutations are identified by
comparison with the most homologous germline IGHV gene.
The mutational status is determined by dividing the number of
nucleotide differences between the 5' end of framework 1
(FR1) and the 3' end of FR3 by the number of IGHV
nucleotides. Sequences with less than 98% homology with the
corresponding germline IGHV gene are considered mutated.

Gene Mutational Analysis
Genomic DNA was extracted from 1x107 cells. All regions of

interest were amplified with primers designed to cover either
entire exons, or specific exons or SNPs which have been
previously identified [27–29]. Primer sequences, PCR
amplification conditions and detailed description methods are
described in supplemental material. Temperature gradient
capillary electrophoresis (TGCE) was performed as previously
described [30], and samples with abnormal peaks were
validated by bidirectional Sanger sequencing.

EBV-Transformed CLL Cell Line
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Immunoblot Analysis
Immunoblots were performed as described [31]. Antibodies

used included EBV proteins LMP1, EBNA2, EBNA3a and
BZLF-1 and Actin (Santa Cruz Biotechnology, Santa Cruz CA).

Migration Assays
Cells were suspended in RPMI at 5x106 cells/mL, and 100 µl

was placed in the upper chamber of a 24-transwell plate with a
5µm filter. Chambers were placed into wells containing media
containing no chemokine (control), recombinant human
CXCL12 (200ng/mL) or CXCL13 (1000ng/mL). Migration was
permitted for 3 hours, and cells in the lower chamber were
collected and counted for 20 seconds on high speed on a
Beckman Coulter FC500 flow cytometer. A 1/20 dilution of
input cells was also determined.

Animal Studies
A total of ten NOG mice (Taconic, Cambridge City, IN) were

engrafted with 1x107 OSU-CLL cells by lateral tail vein
injection. Mice were sacrificed upon development of hind limb
paralysis, at which point peripheral blood, spleen and bone
marrow were collected and analyzed for the presence of
CD19/CD5 positive cells. White blood cell count is determined
by modified Giemsa stain (Fisher Scientific, Pittsburg, PA). All
experiments were carried out under protocols approved by the
OSU Institutional Animal Care and Use Committee.

Statistical Analysis
For the in vitro migration assays, a mixed effects model was

applied to the overall migration (% of input, log-transformed),
and the migration towards CXCL12 and CXCL13 relative to
control was compared between the OSU-CLL and OSU-NB cell
lines using an interaction contrast. Similarly, differences
between the therapeutic antibodies + a-FC crosslinker vs.
untreated were estimated, with 95% confidence intervals (CI)
from a mixed effects model. P-values were adjusted using
Holm’s method to control the family-wise error rate at 0.05.
Four-parameter logistic regression models were used to
calculate IC50 values of drug treatments, where possible [32].
All analyses were performed using SAS/STAT software, v9.2
(SAS Institute, Inc., Cary, NC).

Microarray Analysis
RNA samples from the cell lines were analyzed for

differential expression using Affymetrix U133 plus 2.0
GeneChips (Affymetrix, Santa Clara, CA). Briefly, summary
measures of gene expression were computed using the robust
multichip average method, which utilizes quantile normalization
across arrays. A filtering step was performed to remove probe
sets with expression values <100 in both the OSU-CLL and
OSU-NB cell lines. Fold changes were calculated as the ratio
of expression in one cell line relative to the other. The top 50
genes over- and under-expressed (2-fold cut-off) are
described.

Results

Establishment of CLL-like Line
Establishing a lasting source of germ line material for genetic

studies in CLL is challenging due to the disseminated nature of
the disease. Previous studies have shown primary CLL cells
are typically resistant to EBV transformation whereas normal B
lymphocytes are not [17,18], thus prompting exploration of ex
vivo EBV transformation of PBMCs isolated from CLL patients
as a source of germ line DNA derived from normal B-cells. A
total of 21 patient PBMCs underwent EBV transformation, of
which 20 derived a CD19, CD20, CD22, CD79b positive cell
line lacking CD5. Unexpectedly, one line yielded a CLL-like
clone (OSU-CLL) whose immunophenotype differed
dramatically, as it co-expressed CD5, a pan-T cell marker
typically seen in CLL patient samples. However, a companion
cell line (OSU-NB) generated from PBMCs from the same
patient sample five years after derivation of the original line,
resembles a normal EBV-infected B-cell and is CD5 negative.
Both cell lines grow in large clumps which is characteristic of
EBV-infected B-cells (Figure S1A). Immunoblot analysis
indicates that both cell lines express multiple EBV markers,
which were maintained during early, intermediate and late
passages (3, 6, and 9 months in culture, respectively)
indicating that they each were successfully virally transformed
(Figure S1B). These two cell lines exhibit differential
expression of surface IgM, CD22, and CD38, which remains
stable over time in culture, with the exception of CD79b and
CD38, which decrease in the OSU-CLL line after extended time
in cell culture (Figure 1A). Both cell lines maintained high
expression of CD80 and CD86, likely due to activation by EBV.
The potential for these cell lines to be utilized for in vivo and in
vitro analysis of molecular differences in CLL therefore
prompted detailed characterization of OSU-CLL and OSU-NB.

OSU-CLL Line Has Genetic Features Similar to the
Founder Patient’s CLL

OSU-CLL was derived from a previously treated CLL patient.
The patient’s metaphase karyotype when OSU-CLL was
generated was 48, XY, +12, +19. The patient also displayed an
inversion of chromosome 2. Interphase cytogenetic studies for
del(13q14) (D13S319), del(6q22.3) (c-MYB), del(11q22.3)
(ATM), del(17p13.1) (TP53), +3 (BCL6), +8 (MYC), +12
(centromere) and t(11;14) (CCND1-IGH fusion) revealed no
additional genomic lesions common in CLL. Parallel
metaphase karyotype and interphase cytogenetic analysis in
the cell lines demonstrated OSU-NB is cytogenetically normal
(except for the chromosome 2 inversion), whereas OSU-CLL
mirrored findings in the CLL patient (Figure 1B and 1C). This
cytogenetic profile is particularly interesting given that the co-
association of trisomy 12 and trisomy 19 is relatively rare in
CLL. To further determine if OSU-CLL was derived from the
same clone as the patient’s CLL, we examined the heavy chain
mutational status. The patient sample as well as both cell lines
has a VH rearrangement of 3-23. However, OSU-CLL (but not
OSU-NB) also shares the same JH and D rearrangement and
mutated IGHV status present in the patient sample (Figure 2A).
This further confirms that OSU-CLL is derived from the

EBV-Transformed CLL Cell Line
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Figure 1.  Molecular characterization of OSU-CLL and OSU-NB cell lines.  Analysis is performed in patient sample from which
the cell lines were derived as well as cultured cells from both lines (approximate timing: early = 3 months, intermediate = 6 months,
late = 9 months). A. Flow cytometric analysis for CLL related surface molecules. Flow cytometric analysis for selected B-cell
markers, shown as the percent of cells positive. B. Fluorescence in situ hybridization. Interphase FISH analysis for a panel of
cytogenetic abnormalities associated with CLL: trisomy 12 (centromere), del(13q14) (D13S319), del(11q22.3) (ATM), del(17p13.1)
(TP53), t(11;14) (CCND1-IGH fusion), +8 (MYC), +3 (BCL6), and del(6q22.3) (c-MYB). C. Karyotype analysis. Metaphase
karyotype analysis to determine any additional chromosomal abnormalities not identified by FISH analysis.
doi: 10.1371/journal.pone.0076607.g001
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patient’s CLL clone, whereas OSU-NB is derived from a normal
B cell. Finally, we determined the status of several common
sequence variants observed in CLL (p53, XPO1, Notch-1,
MyD88, KLHL6, ERK1, ERK2, BTK, CD37, and SF3B1) using
mutational screening. We found that these mutations were
absent in the patient’s primary CLL cells as well as both cell
lines (Figure 2B). The differences between these two cell lines
on an otherwise identical genetic background provide a very
unique opportunity to study CLL biology.

OSU-CLL Demonstrates Stable Growth and Genetic
Properties after Prolonged Culture

OSU-CLL has been maintained independently of feeder
layers or additional growth factors for the period of one year.
The growth rate of OSU-CLL is consistent with other reported

lymphoblastoid lines, with a doubling time of approximately 50
hours during early passages which increases slightly as the
cells are cultured over longer periods of time. Serial
assessment of the immunophenotype, karyotype and
interphase cytogenetics during this time demonstrated no
significant change in OSU-CLL, with the exception of the
previously mentioned decrease in CD79b and CD38
expression (Figure 1). In contrast, the doubling time for OSU-
NB is approximately 30 hours early on, gradually slowing until
cells undergo apoptosis (after approximately 35 in vitro
passages).

Figure 2.  Mutational status in OSU-CLL and OSU-NB cell lines.  Analysis is performed in patient sample from which the cell
lines were derived as well as cultured cells from both lines (approximate timing: early = 3 months, intermediate = 6 months, late = 9
months). A. IGHV mutational status. Gene mutational status (relative to the reference genome), and immunoglobulin gene usage
determined by sequence analysis. B. Somatic gene mutation status. Existence of mutations for common CLL variants was
explored by sequence analysis.
doi: 10.1371/journal.pone.0076607.g002
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OSU-CLL Line Gene Expression Profile Accurately
Represents Primary CLL

The mRNA expression levels in the two cell lines were
compared to those reported for normal B-cells and CLL B-cells.
The top 50 over- and under-expressed genes by at least 2-fold
are shown in Tables S1 and S2, respectively. Several genes
known to be deregulated in CLL are similarly recapitulated in
OSU-CLL relative to OSU-NB, such as CD5, LEF1 [33,34],
CXCR4 [35], and BAG3 [36]. In addition, given that OSU-CLL
has an extra copy of chromosomes 12 and 19, we
hypothesized that increased expression of genes on these
chromosomes would be over-represented in OSU-CLL, as this
has been demonstrated in primary CLL with trisomy 12 [37].
We found that 7.9% of genes on chromosome 12 and 4.3% of
genes on chromosome 19 are up-regulated in OSU-CLL
relative to OSU-NB, compared to 2-3% of genes over-
expressed on other chromosomes (Figure S2).

OSU-CLL Line Exhibits Differential In Vitro Migration
Properties

Homing of tumor cells to protective niches in the
microenvironment is accomplished by recruiting CLL cells via
interaction of cell surface receptors with chemokines produced
from stromal cells. In vitro migration assays indicated that
OSU-CLL cells exhibits greater migration towards recombinant
CXCL12 than OSU-NB (P = 0.02) (Figure 3). These migratory
properties are similar to those reported for primary CLL cells
[38], and likely is related to differential expression of CXCR4,
the receptor for CXCL12 (Table S1). Interestingly, the migration

of OSU-CLL towards media containing no chemokine (control)
was also significantly greater than that of OSU-NB (P <
0.0001), indicating that intrinsic differences between cell lines
mediate cell motility independent of chemokine or chemokine
receptor levels. Neither line demonstrated any significant
migration (relative to the control media) toward CXCL13. These
results indicate that OSU-CLL and OSU-NB are valuable tools
to study cell migration and signaling from the microenvironment
in CLL, which contributes to CLL cell resistance to apoptosis.

OSU-CLL Responds to CLL Relevant Therapies
Cell lines are utilized in part to screen therapeutic agents

relevant to the therapy of the respective disease. In this regard,
we evaluated the effectiveness of several different therapeutic
agents currently approved for the treatment of CLL using OSU-
CLL (passage 50). While OSU-CLL responds to chlorambucil
treatment (48 hour IC50 = 4.1) (Figure 4A), there was only a
significant IC50 reached with a super-physiological dose of
fludarabine (48 hour IC50 = 11.1) (Figure 4B) and no significant
IC50 reached with dexamethasone (Figure 4C). In addition to
chemotherapeutic agents, we also tested the ability of OSU-
CLL to respond to biological therapeutic antibodies. OSU-CLL
shows significant response to 48 hour treatment with rituximab
(63.8% vs. 53.4%; P = 0.0020), ofatumumab (63.8% vs. 56.6%;
P = 0.0297) and alemtuzumab (63.8% vs. 46.7%; P < 0.0001)
(Figure 4D). These studies demonstrate that OSU-CLL is a
useful tool for testing CLL therapeutics.

Figure 3.  OSU-CLL and OSU-NB exhibit differential in vitro migration properties towards chemokine.  Cells were suspended
(5 x 106 cells/mL) and placed in the upper well of 24-well transwell plates. The bottom wells contained either media alone, or media
with recombinant CXCL12 (200 ng/mL) or CXCL13 (1000 ng/mL). Cells in the lower chamber were collected after 3 hours; percent
migration is calculated relative to the input.
doi: 10.1371/journal.pone.0076607.g003
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OSU-CLL Engrafts and Produces a CLL Phenotype in
Immunodeficient Mice

Improved animal models to study molecular mechanisms as
well as drug efficacy and toxicity in vivo are always desirable to
further enhance CLL molecular studies. We examined whether
OSU-CLL engraftment into mice would produce a phenotype
similar to that observed in other CLL xenograft models, and
accurately represent human disease. OSU-CLL cells were
transplanted into NOG (NOD/Shi-scid/IL-2Rγnull) mice, which
lack functional B, T and NK cells. This strain was chosen based
on prior attempts to transplant EBV-positive B-cells into CB17-

SCID animals, possibly due to residual NK cell function which
impedes engraftment [39]. A total of 1x107 cells were engrafted
by tail vein injection (N = 10), and animals were monitored
weekly for increased white blood cell count (WBC) and bi-
weekly for human CD19 and CD5 co-expression in PBMCs.
The mice exhibit signs of disease (also common in other
lymphoblast cell line transplant models) by approximately 3
weeks post-engraftment, and all 10 animals were sacrificed
(due to significant hind limb paralysis) between 21-25 days
post-engraftment (Figure 5A). However, unlike many other B-
cell line transplant models, the onset of disease also was
evident by increased WBC count (Figure 5B). Furthermore,

Figure 4.  Viability OSU-CLL in response to CLL therapeutic agents.  A. Viability of OSU-CLL either untreated (media), treated
with vehicle control (DMSO), or increasing doses of chlorambucil (A), fludarabine (B) and dexamethasone (C) for 48 hours
determined by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. D. Viability
at 48 hours in response to the indicated therapeutic antibodies was determined by AnnexinV/ propidium iodide (Ann/PI) staining.
Antibodies were used as a concentration of 10 µg/mL in the presence of 50 µg/mL anti-Fc crosslinking antibody. Abbreviations:
Trastuzumab (Tras, HER2), Rituximab and Ofatumumab (Ritux and Ofa, CD20) and Alemtuzumab, (Alem, CD52). All results shown
are representative of 4 independent experiments.
doi: 10.1371/journal.pone.0076607.g004
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these mice developed enlarged spleens (Figure 5C) and flow
cytometric analysis of peripheral blood, spleen and bone
marrow cells revealed numerous CD19+/CD5+ leukemic cells
(Figure 5D, Figure S3), indicating that transplanted cells could
migrate to secondary lymphoid organs. Relative to a non-
engrafted control, full pathology evaluation of OSU-CLL-
bearing mice (N=2) revealed a consistent set of macroscopic
and microscopic findings including moderate weight loss (just
under 20%) accompanied by lymphocytic leukemia with

widespread infiltration of large neoplastic lymphocytes into
multiple organs (bone marrow, spleen, liver, kidney, ovaries,
epidural space, and pharynx/larynx). These results provide
evidence that engrafting OSU-CLL into immunodeficient mice
is feasible and that this xenograft model represents an
aggressive form of CLL-like disease.

Figure 5.  OSU-CLL engrafts into immunodeficient mice.  A. Survival curve for NOG mice engrafted intravenously with OSU-
CLL (1 x 107 cells; N = 10). B. White blood cell count (WBC) at 7, 14 and 21 days post-engraftment, determined by Giemsa staining
of peripheral blood smears. C. Spleens collected at the time of sacrifice from a non-engrafted control animal (left) and two animals
engrafted with OSU-CLL (middle, right). D. Flow cytometric analysis of surface human CD19 and human CD5 in a non-engrafted
control animal and two representative animals engrafted with OSU-CLL. Leukemic cells were detected in both the peripheral blood
and spleen cells of the engrafted animals.
doi: 10.1371/journal.pone.0076607.g005

EBV-Transformed CLL Cell Line

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e76607



Discussion

Herein we describe two new cell lines derived from a CLL
patient following EBV transformation which bear distinct
genetic features atypical of other available lines. A recent
review demonstrates that several immortalized cell lines
generated from CLL patients in fact were not derived from the
CLL clone [15]. We validated through analysis of IGHV
rearrangement that not only is OSU-CLL derived from the
originating patient’s CLL clone, but the companion OSU-NB
originates from the normal B cell population within this patient.
These cell lines therefore add to the limited repertoire of CLL
lines available for in vitro and in vivo studies of CLL biology.

The use of transformed cell lines with high EBV levels can
introduce several obstacles to in vitro studies, including
enhanced and constitutive NF-κB activation. However, we have
determined that even though OSU-CLL has a high level of
basal NF-κB activity, this line still responds to NF-κB activation
mediated by CD40L and CpG (Figure S4). Yet expression
studies of some genes may be impacted by the EBV. The
expression of BCL2, which is regulated by NF-κB, was not
detected as differentially expressed between OSU-CLL and
OSU-NB even though this gene is significantly over-expressed
in primary CLL relative to normal B cells. EBV infection that up-
regulates NF-κB in both cell lines may be responsible for the
lack of differential BCL2 expression. However many differences
between CLL B-cells and normal B-cells are recapitulated in
the cell lines, including increased expression of LEF1, ID3 and
CD22; and reduced expression of AICDA in OSU-CLL relative
to OSU-NB. This indicates that these cell lines are useful tools
for studies in CLL gene expression and biology.

OSU-CLL exhibits trisomy 12, which has recently been
reported to be associated with the mutation of NOTCH1 [40].
Despite this association in patients, we found that OSU-CLL
has wild-type NOTCH1. This discrepancy is important, because
mutant NOTCH1 also commonly occurs with unmutated IGHV
and high CD38 expression, both characteristics lacking in
OSU-CLL. While trisomy 12 is one of the more common
chromosomal abnormalities present in CLL, the recent
identification of trisomy 12 as a driver mutation suggests that
additional studies into the mechanism(s) of disease
progression that may be regulated by genes on this
chromosome are warranted [27]. The OSU-CLL cell line
therefore provides the perfect tool for these studies.

Interestingly, OSU-CLL also has an additional copy of
chromosome 19, an abnormality that is relatively rare in CLL.
Among the genes present on chromosome 19 are those
involved in BCR signaling (CD22), pre-B cell development
(LILRA4), and B cell survival and proliferation (TCF3/E2A, and
ATF5). CD22 is of particular interest as it is a target approved
for monoclonal antibody therapy in several B-cell leukemias
and lymphomas. Knock-down of TCF3/E2A in CLL cells causes
an increase in spontaneous apoptosis and decreased
expression of cell survival genes (p21, p27 and Mcl-1) [41].
Similarly, ATF5 is involved in cell cycle progression and
apoptosis, and has been shown to be over-expressed in CLL
with 11q deletions or trisomy 12 versus other cytogenetic sub-
groups and associated with shorter time to treatment [42]. The

significance of these genes present on chromosome 19 to CLL
cell transformation deserves more study.

The OSU-CLL line has migratory properties similar to
primary CLL cells, migrating more readily toward CXCL12
compared to OSU-NB. This difference could be due in part to
the increased expression of CXCR4 in the OSU-CLL. However
OSU-CLL exhibits enhanced migration relative to OSU-NB
even independently of chemokine, indicating the involvement of
other factors, such as enhanced BCR signaling. While the
migration of OSU-CLL is similar to that described for other B
cell lines, the ability of OSU-CLL to generate substantial
peripheral disease makes this line more attractive as a
xenograft model, as it would allow in vivo studies of CLL cell
migration. Aggressive expansion similar to OSU-CLL has been
described previously only with serial transplantation of spleen
cells from a TCL1-transgenic mouse [43].

One limitation of pharmacologic studies with primary CLL
cells is the inability to stably transfect genes to study their
function and interactions. We found that Zap70 expression was
evident in early passage OSU-CLL, but decreased over time in
culture (Figure S5A), providing a nice system to over-express
Zap70 for functional studies. We have successfully transduced
Zap70 into OSU-CLL via retroviral infection using both a
constitutive and a tetracycline-inducible vector (Figure S5B).
The ability to easily transduce OSU-CLL allows interrogation of
gene function for molecular studies, and demonstrates the
potential manipulation of OSU-CLL to study function of genes
relevant to CLL biology. Additionally, our data demonstrate that
OSU-CLL responds to therapeutics approved for clinical
treatment of CLL, including antibody therapies. Therefore this
cell line provides a new model for pre-clinical testing of new
agents, as well as studies in drug resistance due to oncogene
over-expression.

Finally, while spontaneous models of B-cell malignancy
(such as the TCL1 mouse) are useful tools, they carry certain
disadvantages such as the inability to evaluate anti-human
therapeutic antibodies which are usually not cross-reactive with
the equivalent mouse protein. Therefore having a CLL-derived
cell line for use in xenograft studies could be particularly
beneficial for this purpose. Several CLL xenograft models have
been described, however many of these models use cell lines
with an atypical CLL phenotype (i.e. lacking CD5 expression),
and exhibit either minimal or no peripheral disease [44–47].
These studies indicate the necessity for the development of
novel xenograft models for the study of this disease. We
demonstrate that OSU-CLL is able to engraft into
immunodeficient mice, and in this setting produces a
phenotype that facilitates monitoring disease in different
compartments (blood, bone marrow, and spleen; Figure 5 and
Figure S3). The localization to the secondary lymphoid organs
provides a xenograft model that will allow for studies
investigating CLL B cell migration, and possibly lymphocytosis
which is observed in response to many CLL therapeutic
agents.
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Supporting Information

Figure S1.  Morphology and viral protein expression in
EBV transformed cell lines. A. Phase contrast images (10X
resolution, inset at 20X) of OSU-NB (left) and OSU-CLL (right).
B. Immunoblot analysis for EBV proteins (LMP1, EBNA2,
EBNA3a and BXLF1) in the OSU-NB, and OSU-CLL cell line at
various times in culture. Blots are probed with actin as a
loading control. Results shown are representative of 3
individual experiments.
(TIF)

Figure S2.  Chromosome specific gene expression in the
OSU-CLL and OSU-NB cell lines. The total number of genes
and the percent (based on the total number of genes on the
indicated chromosome) is shown for chromosomes 12 and 19.
The same analysis is shown for chromosomes 1 and 2 for
comparison purposes.
(TIF)

Figure S3.  Flow cytometric analysis in spleen and bone
marrow of engrafted animals. Flow cytometric analysis of
surface human CD19 and human CD5 in peripheral blood,
spleens and bone marrow in additional animals engrafted with
OSU-CLL.
(TIF)

Figure S4.  NF-κB activation in the OSU-CLL and OSU-NB
cell lines in response to cell stimulation. OSU-NB and OSU-
CLL cell line (passage 25) were treated with 1.7 µM CpG for 3
hours or 500 ng/mL recombinant CD40L for 1 hour. Nuclear
and cytosolic lysates were prepared and immunoblot analysis
was performed for NF-κB proteins (RelB and p65). Blots are
probed with Brg1 and Tubulin as controls for the nuclear and
cytosolic isolation. Results shown are representative of 3
individual experiments.
(TIF)

Figure S5.  Zap70 protein expression and retroviral
infection in OSU-CLL. A. Immunoblot analysis for Zap70

protein in OSU-NB, and OSU-CLL cell line at various times in
culture. Blots are probed with actin as a loading control.
Results shown are representative of 3 individual experiments.
B. OSU-CLL cells were stably transduced with both a
constitutive (left) and a doxycycline inducible (right) expression
construct for Zap70. In the inducible cell line, immunoblot
analysis was performed for Zap70 protein after 48 hours with
and without induction with 500 ng/mL doxycycline.
(TIF)

Table S1.  Top 50 Up-Regulated Genes in OSU-CLL versus
OSU-NB. Gene expression analysis results from Affymetrix
U133 microarray for the OSU-NB and OSU-CLL cell lines,
analyzed at passage 25.
(TIF)

Table S2.  Top 50 Down-Regulated Genes in OSU-CLL
versus OSU-NB. Gene expression analysis results from
Affymetrix U133 microarray for the OSU-NB and OSU-CLL cell
lines, analyzed at passage 25.
(TIF)
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