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Introduction
Sepsis is a debilitating systemic inflammatory process involv-
ing multiple organ systems that is preceded by an infection. It 
is the 10th leading cause of death in the United States with an 
annual financial burden for patients and survivors that exceeds 
$20 billion.1 Through mechanisms that remain largely poorly 
understood, sepsis can induce acute and chronic changes in the 
central nervous system (CNS), particularly at the blood-brain 
barrier (BBB). A compromised CNS can lead to sepsis-associ-
ated encephalopathy (SAE), a well-characterized state of cog-
nitive impairment and neurological dysfunction often seen in 

the acute phase of sepsis. Multiple pathways have been investi-
gated for their contribution to the sepsis-associated compro-
mise of the BBB.2,3 This review integrates current clinical 
knowledge of sepsis with mechanistic insights from both clini-
cal studies and preclinical animal models of sepsis. The overall 
goal of this review is to understand how sepsis pathophysiology 
perturbs the integral functions of the cells and proteins that 
comprise the BBB. Thus, we provide insights to uncover how a 
compromised BBB may lead to SAE or permanent brain dys-
function in sepsis survivors.

Sepsis Pathophysiology
Clinical sepsis presentation

The current definition from the Sepsis-3 consortium describes 
sepsis as a life-threatening organ dysfunction caused by a 
dysregulated host response to an infection.4 The most com-
mon precipitating sites for sepsis are the respiratory system, 
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genitourinary system, and the abdomen. Sepsis may present as 
a combination of various non-descript signs and symptoms 
making early diagnosis difficult. For example, patients may 
present with fever, cold, pain, delirium, increased heart rate, 
shortness of breath, diarrhea, and/or low blood pressure. The 
diagnosis and management of sepsis has changed dramatically 
over 30 years. The historical definition of sepsis was focused 
primarily on inflammation and incorrectly portrayed sepsis as 
a sequential process that eventually ends in septic shock 
(Figure 1A). In 2016, Sepsis-2 criteria were revised to current 
Sespis-3 criteria to improve consistency in classification in 
epidemiological and clinical trials. The revised Sepsis-3 clas-
sification shown in Figure 1B focuses on accelerated recogni-
tion and management of sepsis.5

In recent years, the focus in clinical treatment has shifted to 
severe sepsis and septic shock, which has increased survival in 
hospitalized patients diagnosed with severe sepsis and criti-
cally ill patients with septic shock who have a higher risk of 
multi-organ failure complications and death.8 This heteroge-
neous presentation of clinical sepsis makes disease management 
and appropriate therapeutic interventions difficult. Some 
challenges associated with the management of sepsis include 
late diagnoses, poor prognoses, inadequate therapeutics, and 

post-sepsis complications. These challenges stem from late 
recognition and difficulties associated with differentiation of 
sepsis from other illnesses in its early stage. In the later stages 
of sepsis, recognition becomes easier, yet sepsis is more diffi-
cult to treat and often coincides with multi-organ failure.5,8,9

Most sepsis cases are hospital acquired and are often 
comorbid with prior injury, such as stroke, trauma, or post-
surgery. Most cases of hospital-acquired sepsis are treated in 
the intensive care unit (ICU). However, ICU heterogeneity 
can make sepsis more common in one ICU versus another. For 
example, there is a higher incidence of sepsis in a trauma ICU 
as opposed to a surgical ICU.8 Alternatively, a significant 
number of sepsis patients are admitted to the hospital or 
directly to the ICU via the Emergency Department (ED); 
most of these patients present with community-acquired sep-
sis from pneumonia or complications from other comorbid 
conditions such as diabetes.10,11 In addition to the patient set-
ting, the development of sepsis often depends on several risk 
factors, such as age, where a proportionate relationship exists 
between increasing age and sepsis acquisition.12,13 Male sex, 
non-white ethnicity, and preexisting conditions such as 
Alzheimer disease (AD), HIV, or cancer are also risk factors 
for acquisition.8,13–15

Figure 1. Comparison of the past and present guidelines for diagnosis of sepsis and septic shock. (A) Past guidelines stressed that the diagnosis and 

progression of sepsis from a systemic inflammatory response to multiple organ dysfunction was sequential rather than multifactorial. (B) The current 

guidelines for defining sepsis and septic shock stress that multiple linked considerations are necessary for an accurate diagnosis. Both the past and 

present guidelines involve a clinical screening tool for patients likely to have sepsis that includes a clinical characterization of the severity of the disease. 

Clinicians have traditionally used a Sequential Organ Failure Assessment (SOFA) system to categorize the severity of organ dysfunction in sepsis, which 

associates a higher SOFA score with increased mortality.4,6 New sepsis guidelines employ a quick Sequential Organ Failure Assessment (qSOFA) score, 

which is a modified version of the SOFA score that includes altered mental status, a systolic blood pressure ⩽ 100 mm Hg, and a respiratory rate ⩾ 22/min. 

Patients with a qSOFA score ⩾ 2 have an overall in-hospital mortality risk greater than 10%.4,7 If warranted, further clinical analysis can be completed 

using other SOFA criteria.4
Source: Adapted from Singer et al.4
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Current experimental animal models of sepsis

Understanding the mechanisms involved in the pathophysiol-
ogy of sepsis requires the use of animal models that adequately 
reproduce several features of the human disorder including 
both inflammation and infection. The most common animal 
models are cecal ligation and puncture (CLP), the colon 
ascendens stent peritonitis (CASP) model, endotoxin injec-
tion, and bacterial infusion.16 The CLP model is regarded as 
the gold standard for human-like sepsis progression in animal 
models.17 Execution of this model necessitates leakage of pol-
ymicrobial feces into the peritoneum after the cecum is punc-
tured with a needle. Disease severity is modeled by controlling 
needle size and number of punctures; however, a major limita-
tion of this model is the failure to maintain continuous fecal 
leakage due to abscess formation and necrosis of the punc-
tured bowel. Some investigators also administer antibiotics 
either at the time of injury or at intervals post injury. Although 
antibiotic administration is an additional feature which mim-
ics the treatment regimen in human patients, the use of differ-
ent antibiotic classes and dosing paradigms across laboratories 
may confound the interpretation of findings when results are 
compared between laboratories.16,18 The CASP model is a 
newer model recently introduced to counter the flaws of the 
CLP model.16,19 The model involves the insertion of a stent at 
the ascending portion of the colon, allowing continual leakage 
of feces into the peritoneum.16,20 Despite resemblance to 
human-like sepsis progression, the drawbacks to this model 
include animal variation in colon size, fecal content, and the 
volume of feces that leaks into the peritoneum.16,21 Although 
these two models have provided remarkable insights to under-
stand the pathophysiology of sepsis in humans, they fail to 
fully recapitulate the comprehensive clinical progression of 
sepsis in humans.16

Two alternative sepsis models involve injection or infusion 
of endotoxin or bacteria. The endotoxin model typically 
involves injection of lipopolysaccharide (LPS) endotoxin, a 
component of Gram-negative bacterial cell walls which signals 
most commonly through toll-like receptor-4 (TLR4). 
Administration of LPS via different routes (ie, intraperitoneal, 
intravenous, or intracerebroventricular) initiates a cytokine 
storm that results in the release of tumor necrosis factor alpha 
(TNF-α) and numerous interleukins (ILs; IL-1, IL-6, and 
IL-10). Injection of LPS mimics many classical signs and 
symptoms of sepsis-induced inflammation, thereby providing a 
basic understanding of how inflammation activates the immune 
response in sepsis.16,22 One major limitation of the LPS model 
is the lack of integration of the infection component. A second 
limitation is that very large endotoxin doses are required in 
many rodent models to mimic the pathological profile of the 
clinical sepsis picture observed in humans.23 Bacterial injection 
is a less widely used model involving infusion of a bacterium, 
usually Escherichia coli or Staphylococcus aureus, to initiate both 
inflammation and infection.16,24,25 Different bacterial strains 

used for infection present a challenge in this model, as they will 
produce different patterns of sepsis progression.26 Thus, the 
characteristics of the sepsis model must be considered when 
interpreting the effects of sepsis on the CNS and other organ 
systems.

The CNS in sepsis: sickness behavior and SAE
A critical role for the CNS in the pathophysiology of sepsis has 
emerged over the past 2 decades. Several recent reviews address 
this topic in excellent detail.13,27–30 One important contribution 
of the CNS is “sickness behavior.” Sickness behavior is a 
response seen in sepsis characterized by fever, adaptive behav-
ioral changes, and neuroimmune changes.31 The response is 
governed primarily by systemic interactions with the vagus 
nerve (VN) and circumventricular organs (CVOs). The VN is 
an important mediator of inflammation. Septic mice that 
underwent a vagotomy (VGX) surgery exhibited an increase in 
the synthesis of inflammatory cytokines compared with sepsis-
only mice.27,32–34 In contrast, stimulation of the VN in septic 
animals resulted in an overall reduction in the synthesis of 
inflammatory cytokines, leukocyte recruitment, and endothe-
lial activation.34–36 The VN also relays peripheral information 
to the medullary autonomic nuclei, whereas the CVOs may 
serve as sensors for inflammatory mediators, primarily 
cytokines, and serve as the foci for neuroimmune communica-
tion between the peripheral circulation into the brain paren-
chyma. Many of these neuroimmune communication circuits 
are well described, but the underlying mechanisms that regu-
late these pathways remain poorly understood.37,38 For exam-
ple, activation of the nucleus tractus solitarii and locus coeruleus 
by inflammatory mediators subsequently activates autonomic 
nuclei, behavioral, and neuroendocrine centers.39,40 The sum-
mative effect can be observed as depression, social withdrawal, 
increased heart rate, poor blood pressure control, or altered 
vigilance.18

In addition to sickness behavior, patients with acute sepsis 
may have changes in brain function that present as delirium, 
seizures, psychological disorders, abnormal motor movements, 
and increased mortality.39,41 Changes in brain function are 
most commonly manifested as delirium. Whereas sepsis-asso-
ciated delirium usually presents as decreased activity, a hyper-
active form associated with agitation may be seen in some 
patients.39 Tools that can be used to confirm sepsis-associated 
delirium include medical history, blood chemistry, electrolyte 
balance, the ICU screening checklist, Confusion Assessment 
Method, and Glasgow Coma Scale.39,42 Sickness behavior and/
or delirium may progress to a more severe phenotype, SAE, 
which is regarded as a diagnosis of exclusion.43 It is character-
ized by impaired consciousness, seizures, delirium, coma, focal 
cognitive deficits, and alterations in electroencephalogram 
(EEG) patterns.44 Patients with SAE have increased mortality, 
long-term neurological decline, memory lapse, inattentiveness, 
disorientation, and verbal difficulties.45
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Alterations in EEG wave patterns often predict SAE out-
come, and EEG reactivity is associated with mortality even at 
1 year post severe sepsis.44,46 For example, a recent study showed 
resting-state EEG changes in sepsis survivors at 6 to 24 months 
after hospital discharge, including increased delta and sigma 
activity compared with control patients.47 Changes in EEG 
frequencies can be associated with changes in brain function. 
For example, slowing alpha activity with increased theta activ-
ity reflects cortical dysfunction and can occur in patients with 
mild to moderate encephalopathy. Slowing of delta activity is 
often associated with more severe neurocognitive decline and 
indicates impaired function in deeper brain structures, such as 
the basal ganglia.44 Whereas the evaluation of EEG can be 
sensitive to SAE diagnosis in the absence of neurological 
examination abnormalities, it has poor specificity and can be 
hampered by sedation and analgesia.45,48

Ischemia is another common complication of early sepsis 
due to drastic changes in systemic blood pressure.41 A number 
of human clinical studies support the premise of decreased cer-
ebral blood flow (CBF) in acute sepsis.49–52 The abrupt change 
in blood pressure with added sepsis-associated coagulopathy 
causes reduced blood flow to neurons. The hippocampal region 
and watershed areas are affected more often than other brain 
regions when this occurs. Autopsies in patients who died from 
septic shock revealed consistent ischemic and hypoxic insults in 
areas particularly susceptible to low blood flow (eg, amygdala, 
frontal junctional cortex, etc) and in autonomic centers.53 
Furthermore, the autopsies of 7 delirious ICU patients in 
another study revealed pathological lesions in the hippocam-
pus, striatum, and pons triggered by ischemia or hypoxia.54 The 
presence of ischemia in post-mortem studies strongly suggest 
that vascular irregularities and alterations of CBF occur during 
sepsis. Importantly, multiple clinical observations support the 
concept that, in the absence of cerebrovascular occlusion (ie, 
stroke), impaired cerebral autoregulation and hypotension may 
be the primary drivers of tissue hypoxia and cerebral ischemia 
observed in sepsis patients.55–57

A recent study in rats conducted by Towner et al58 showed 
that CBF in the thalamus and cortex is significantly increased 
24 hours post LPS injection but significantly reduced 6 weeks 
post LPS injection when compared with saline controls. 
Preceding human clinical studies also support the decrease in 
CBF at 24 hours observed by Towner and colleagues, yet there 
remains a paucity of literature on how sepsis may affect long-
term CBF in human patients. Overall, coincident alterations in 
cerebral blood and cardiovascular collapse in sepsis emphasize 
the importance of fluid resuscitation as a crucial component 
of sepsis management. The ideal type of fluid (colloid vs 
crystalloids) and ideal composition used to treat septic patients 
remains controversial. A total of 3 clinical trials demonstrated 
that colloid use in sepsis treatment failed to show a clear 
benefit.59–61 In addition to the findings from this study, the 
restricted accessibility, safety issues, and the expensive value of 

colloids shifted the debate toward identifying the ideal crystal-
loid composition (eg, Ringer lactate, Ringer acetate, etc).62 We 
refer the reader to excellent reviews regarding optimal fluid 
therapeutic strategies in sepsis.62–64

The utilization of magnetic resonance imaging (MRI) in 
the diagnosis of SAE offers a unique opportunity in capturing 
some of the morphologic, ischemic, and metabolic alterations 
associated with sepsis. A summary of MRI findings in acute 
sepsis is shown in Table 1. In particular, diffusion-weighted 
imaging (DWI) and the apparent diffusion coefficient (ADC) 
are 2 MRI modalities currently used in assessing BBB break-
down caused by vasogenic (extracellular) or cytotoxic (intracel-
lular) edema.73 Cytotoxic edema typically caused by ischemia, 
hypoxia, or vasogenic edema is the most consistently reported 
MRI change associated with SAE.73–76 Early detection of BBB 
breakdown by gadolinium (Gd) could establish an adequate 
therapeutic window for current and future septic treatments, 
but human studies are limited.77–79 A recent study in rats 
revealed a significant increase in the infiltration of Gd in the 
cortex, hippocampus, and thalamus 24 hours and 1 week post 
LPS injection.58 Gd use may also cause a substantial risk of 
nephrogenic systemic fibrosis, a risk factor which suggests that 
Gd-based imaging in the CNS should be evaluated on a case-
by-case basis.

Sedatives are often administered in the ICU when treating 
sepsis. A study conducted by Qiao et al80 in rats showed that 
the application of dexmedetomidine and midazolam improved 
survival and reduced cytokine levels and splenic apoptosis in 
septic mice. Another systematic review by Zamani et  al81 
emphasized the importance of the kind of sedative used in 
treating sepsis; the findings from this study revealed that dex-
medetomidine improved short-term mortality when compared 
with other sedatives. It is widely thought that the neuroprotec-
tive effects of dexmedetomidine result from neuronal death 
prevention, suppression of inflammatory cytokines, and modu-
lation of neurotransmitters released in the sympathetic nervous 
system.81–84 However, a limitation noted by Zamani et al was 
the small sample size included in the clinical studies. It is 
important to note that the tools used in the confirmation of 
sepsis-associated delirium are not helpful in ICU-sedated 
patients who may otherwise exhibit signs of delirium.43

Sepsis also affects long-term neurological outcomes. The 
greatest risk factor for long-term impairment is the duration of 
delirium in the acute phase of sepsis and the increased ventri-
cle-to-brain ratio as calculated by MRI.39,41,85,86 A seminal 
study published by Iwashyna et al87 suggested that up to 70% 
of sepsis survivors may exhibit lasting neurological impairment, 
including alterations in mood, cognition, and motor function. 
Cognitive, motor, and mood impairments are three of the most 
common long-term neurological outcomes in septic patients.41 
Current evidence also suggests an increased susceptibility to 
other neurodegenerative disorders such as stroke or AD post 
sepsis insult.88 Thus, patient populations that are the most 
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vulnerable to long-term neurologic decline post sepsis are 
the elderly and patients with preexisting neurodegenerative 
diseases.12,13,39,88 The consequences of sepsis on both acute and 
chronic neurological outcomes demonstrate a critical need to 
understand the mechanisms involved in SAE development. 
Harnessing this knowledge will provide essential therapeutic 
avenues to limit SAE progression and protect against long-
term neurological impairment or dysfunction. The remainder 
of this review will focus on the role of the BBB in sepsis-asso-
ciated cognitive dysfunction, as preclinical and clinical investi-
gations have uncovered 3 primary BBB-linked mechanisms 
that contribute to the cause of SAE and the associated short-
term and long-term cognitive dysfunction: (1) activation of 
neuroinflammation, (2) microcirculatory dysfunction, and (3) 
increased neuronal excitotoxicity.39,89

Mechanisms of BBB Dysfunction in Sepsis
BBB overview

This section will provide a brief overview of the cell biology 
and physiology of the BBB, as the focus of this review is the 
BBB in sepsis. BBB and other associated cell types within the 
neurovascular unit that are affected by sepsis are shown in 
Table 2.39,107 The BBB is a highly selective, dynamic, and semi-
permeable biological interface between the brain parenchyma 
and cerebral circulation. Preservation of BBB integrity protects 
normal brain function and is dependent on maintaining a pre-
cise cerebral homeostasis driven, in large part, by ion and gas 
concentrations and nutrient availability. The BBB’s unique 
structure is composed of endothelial cells, astrocytes, pericytes, 
and a basal lamina. The endothelial cells are joined by tight 

Table 1. MRI imaging studies in patients with sepsis.

PUBLICATION SUBJECT ACUTE MRI FINDINGS

Hollinger et al65 Adult human T2-weighted hypersensitivity with altered DWI showing ring enhancement

Sharshar et al66 Adult human Multiple ischemic strokes with predominant white matter lesions

Jackson et al67 Adult human Bilateral diffuse hyperintense areas in the white matter of the cortex and 
cerebellum

Kondo et al68 Pediatric 
human

Restricted diffusion in the basal ganglia and subcortical white matter of the 
frontal and occipital lobes; brain edema was also present

Morandi et al69 Adult human White matter hyperintensities (WMHs)

Bozza et al70 Rodent Accumulation of the vasogenic edema fluid at the base of the brain

Suchyta et al71 Adult human Atrophy, WMH, edema, and localized bilateral hemorrhage in the cortex and 
subcortical structures

Polito et al57 Adult human Leukoencephalopathy and ischemic stroke

Luitse et al72 Adult human Acute abnormal hypointensity of the white matter and edema; subacute WMH

Towner et al58 Rodent Increased MRI intensities in the cortex, Perirhinal cortex, and hippocampus; 
increased gadolinium infiltration into various brain regions

DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging.

Table 2. BBB cell types affected by sepsis and consequential outcomes.

CELL TyPES CELLULAR PATHOLOGy CONSEqUENCES REFS

Astrocytes Astrogliosis Increased BBB permeability
Neuroinflammation

90–94

Endothelial 
cells

Endothelial activation Increased BBB permeability
Microthrombus formation
Ischemia

95–97

Microglia Microgliosis Increased iNOS expression
Neuroinflammation
Cytokine production

98–100

Pericytes Unknown Increased BBB permeability 101,102

Neurons Excitotoxicity and neuronal dysfunction Cognitive dysfunction 87,103–106

BBB, blood-brain barrier.
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junctions (TJs), and surrounding pericytes and astrocytes, 
which associate with the basal lamina to protect the brain 
parenchyma. Endothelial cells are sealed or joined together by 
TJs which are composed of occludin, claudin, and cadherin 
proteins. Because paracellular movement of compounds around 
and between endothelial cells is highly restricted, active trans-
port is required to move polar solutes and nutrients across the 
BBB into the brain parenchyma.108 However, water, small 
gases, and small- to moderate-sized lipid-soluble compounds 
can enter the brain passively.109,110 Primary efflux transporters 
include permeability glycoprotein (P-gp) and breast cancer 
resistance protein (BCRP), which actively pump compounds 
out of the brain and back into circulation.108 Often, these 
transporters further restrict the permeability of compounds 
and drugs which may otherwise have the molecular character-
istics to passively cross the BBB.111 Readers are referred to 
many excellent reviews on the BBB for a more in-depth discus-
sion of these and other topics pertaining to the BBB.37,88,109,112,113

Neuroinflammation and BBB permeability

A probable starting point of sepsis-induced acute brain dys-
function is the initiation of neuroinflammation, but the mech-
anism by which this occurs is not well understood.51 
Neuroinflammation is a response to CNS disruption or dys-
function and is typically found in all neurological disorders.114 
Current literature suggests that neuroinflammation in sepsis 
begins when immune cells recognize foreign pathogen-associ-
ated molecular patterns (PAMPs) such as LPS, flagellin, fim-
briae, peptidoglycan, heat shock proteins, and DNA fragments, 
which are encoded as “danger signals” to the host. Recognition 
of PAMPs causes the release of proinflammatory cytokines in 
the periphery.115 Inflammatory mediators may enter the brain 
by numerous mechanisms that include transcellular diffusion, 
solute carrier proteins, receptor-mediated transcytosis, and 
adsorptive transcytosis.37 Many cytokines enter the brain 
through receptor-mediated endocytosis on brain endothelial 
cells. For example, during inflammation, TNF-α is upregulated 
and its transportation from blood to brain parenchyma is 
increased, primarily through receptor-mediated endocytosis of 
its receptors, tumor necrosis factor receptor 1 (TNFR1) and 
tumor necrosis factor receptor 2 (TNFR2).116,117 Molecules 
originating in peripheral or CNS tissues may activate vascular 
endothelium and various leukocytes to produce hormones that 
facilitate their entry into the brain. For example, Nishijima 
et al118 observed that prostaglandin E2 enhanced transport of 
serum-insulin-like growth factor 1 across the BBB.

Cytokine production contributes to neuronal dysfunction in 
sepsis in addition to many other neurological disorders. 
Cytokine infiltration enhances the activation of endothelial 
cells and microglia, which ultimately leads to loss of neuronal 
function. Activation of the endothelium leads to enhanced 
activity of the coagulation cascade, microthrombus formation, 

and ischemia, which, in turn, promotes increased BBB perme-
ability and leukocyte infiltration. This process triggers neuronal 
damage, apoptosis, and brain edema.119,120 Cytokine-mediated 
microglial activation occurs simultaneously with endothelial 
cell activation. Although the normal microglial response is to 
phagocytose-injured neuronal cells and clear debris, sustained 
and dysregulated microglial activation is highly detrimental to 
specific regions of the CNS. Thus, persistent microglial activa-
tion enhances the production of inflammatory cytokines and 
reactive oxygen species (ROS), which perpetuates a vicious 
cycle of increased BBB permeability coupled with neuronal 
damage and apoptosis.116,119 Collectively, neuronal apoptosis 
and microglial activation are 2 primary mechanisms that 
increase the activity of inducible nitric oxide synthase (iNOS) 
activity and generation of nitric oxide (NO). Neuronal apopto-
sis is further exacerbated due to neuronal sensitivity from 
increased levels of NO produced by activated microglia.121,122 
Intriguingly, iNOS levels are elevated in sepsis and are highest 
in deceased septic patients.70,100 This increased iNOS activity 
could also be responsible for the cardiovascular collapse seen in 
sepsis.53,100,117 It is likely that this cardiovascular collapse also 
affects the cerebral microcirculation and leads to subsequent 
sepsis-associated brain dysfunction.

Sepsis, particularly Gram-negative sepsis, has been shown 
to upregulate caveolin-1 at the endothelial membrane.123 
Increased caveolin-1 has recently been shown to increase 
the amount of peripheral immune infiltration into the brain.124 
The mechanisms by which this occurs are not completely 
understood, but new preclinical studies have shed light on 
some prevailing theories. Wu et  al125 found that caveolin-1 
facilitates T-cell trafficking into the CNS via intercellular 
adhesion molecule 1 (ICAM-1)-mediated signaling. Caveolin-1 
causes acid sphingomyelinase to interact with ICAM-1 
increasing the binding affinity for peripheral immune cells.126 
Once activated, ICAM-1 facilitates peripheral immune cell 
diapedesis into the brain. This process occurs via Src phospho-
rylation within endothelial cells and a subsequent conforma-
tional change to ICAM-1, which directly induces the 
transcellular migration.127 The leaky BBB enhances the entire 
process during sepsis. After entering the brain, T cells are 
recruited toward damaged glia via cytokine release. Recent evi-
dence suggests that IL-17A aids this migration process.128 In 
addition, T cells are helped by astrocytes to re-cross the leaky 
BBB and carry information about the status of the brain to the 
rest of the body.129 It is postulated that the peripheral immune 
cells also release cytokines that maintain the leakiness of the 
BBB as they exit the brain. When and how long this cross-talk 
between microglia and peripheral immune cells persists remains 
to be elucidated. The feedback loop has, however, been imple-
mented in non-autonomous neuronal death.130 The brain 
regions most susceptible are the nigra-striatal pathway and 
hippocampus.131 Future studies are warranted to further char-
acterize the brain/immune communication network and, in 
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particular, where the peripheral immune cells ultimately reside 
after exiting the brain. Collectively, these mechanisms repre-
sent the complicated and multifactorial mechanisms that must 
be involved in sepsis at the BBB. An integrated overview of the 
brain and peripheral mechanisms found in acute sepsis is 
shown in Figure 2.

Mitochondrial dysfunction

Mitochondrial dysfunction is a common consequence of sep-
sis. It has been described in a number of studies with substan-
tial evidence pointing toward oxidative stress as a 
contributing factor. This literature is summarized in several 
excellent reviews.133–136 The abnormality in the function of the 
mitochondria plays a role in the development of post-sepsis 
behavioral, psychological, and cognitive dysfunctions such as 
SAE.137–139 At the cellular level, reactive nitrogen species 
(RNS), like NO, and ROS, such as peroxynitrite (ONOO−), 
inhibit complexes I and IV of the electron transport chain (ETC). 
This inhibition produces a subsequent decrease in oxygen 

consumption and permits the buildup of O2
− species and the 

eventual leakage of this species across the ETC along with 
other ROS/RNS.140–142 The leaked species activate uncoupling 
proteins that cause an increased H+ (proton) permeability 
from the inner mitochondria into the mitochondrial matrix to 
form oxide ions. Ultimately, these ions are converted to water 
without any adenosine triphosphate (ATP) generation.143 This 
process may seem to decrease the number of reactive species 
from the reaction described above, but the downside of con-
tinual proton leakage is an induction of cytopathic hypoxia, a 
condition whereby mitochondria are unable to use oxygen irre-
spective of the presence or absence of oxygen.144 In addition to 
cytopathic hypoxia, ONOO− causes single-strand DNA breaks 
at the genomic level; this further exacerbates mitochondrial 
dysfunction because of the high reliance of oxygen in the repar-
ative process of the damaged DNA.145 Also, some ROS/RNS 
enhance both endoplasmic reticulum and mitochondrial mem-
brane permeability, which permits the leakage of calcium and 
proapoptotic proteins into the cytoplasm.146–148

Figure 2. Complex neuroinflammatory processes promote BBB dysfunction in early sepsis which enhance neuronal dysfunction and trigger cognitive 

impairment. Highly complex and multifactorial mechanisms transduce systemic inflammatory signals to the brain in early sepsis, resulting in neuronal 

dysfunction and subsequent acute and chronic cognitive impairment. The BBB serves as both a nexus and an interface for these signals. Sepsis begins 

with systemic infection that evokes an exaggerated host immune response from the recognition of pathogen-associated molecular patterns (PAMPs).132 In 

this example, sepsis is triggered by a local lung infection (eg, pneumonia). Systemic proliferation of the infection initiates a hyperinflammatory response 

that stimulates the production of immune cells, cytokines, and other inflammatory mediators. These inflammatory mediators initiate a cascade of events 

that either directly or indirectly impact the peripheral microcirculation via cardiovascular autonomic alterations, or activation of the coagulation cascade, 

and converge on cerebral microvessels and their component BBB endothelial cells. Cerebral hypotension and microthrombus formation also initiate 

ischemia. The convergence of these events lead to BBB dysfunction, including immune cell infiltration, upregulation of adhesion molecules, increased 

BBB permeability, activation of cerebral cytokines, cerebral edema, and enhanced neuroinflammation.2,37,88,121 Positive feedback of the disrupted BBB on 

neuroinflammation and potential amplification of this feedback is indicated by the solid bidirectional arrow (direct feedback) and the dotted arrow (indirect 

feedback).
BBB, blood-brain barrier; CP, choroid plexus; CVOs, circumventricular organs; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; NO, nitric 
oxide.
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The course of infection, type and amount of ROS/RNS, 
and the brain regions where oxidative stress occurs are impor-
tant when investigating the timing of oxidative damage leading 
to mitochondrial dysfunction. Recent studies in rats using 
thiobarbituric acid and protein carbonyls as markers of lipid 
and protein oxidation, respectively, have suggested that lipid 
peroxidation is consistent and widely distributed in the hip-
pocampus, cerebellum, and cortex 6 hours post CLP, whereas 
oxidative damage due to protein oxidation was largely restricted 
to the hippocampus. Investigators also identified a concomi-
tant imbalance in the antioxidant enzymes superoxide dis-
mutase (SOD) and catalase (CAT). They found that the SOD 
activity increased in the first 6 hours post sepsis, whereas both 
SOD and CAT activity levels were decreased compared with 
sham-injured mice at 12 to 96 hours.138 Taken together, these 
findings suggest that oxidative damage in the CNS occurs 
much earlier than expected in sepsis. Expanding on these find-
ings, Barichello et al used N-acetylcysteine (NAC) and defer-
oxamine (DFX) antioxidants as a therapeutic intervention in 
male rats at 6 hours post CLP. They found that the combined 
administration of NAC and DFX reduced oxidative hip-
pocampal damage, but not when administered separately.149 
These results further emphasize the importance of all CNS 
antioxidant systems and signify that multiple targets are 
required for adequate therapeutic efficacy in sepsis.

Overall, the systemic immune response in sepsis accelerates 
the increased generation of ROS/RNS, which, in turn, pro-
motes lipid peroxidation in the cerebrovasculature and brain 
parenchyma. The continued assault from the periphery per-
petuates a vicious cycle of ROS/RNS generation between the 
brain and the periphery. As the overproduction of ROS/RNS 
overwhelms the capacity of the antioxidant system, the end 
results manifest as neuroinflammation, ischemia, and increased 
BBB permeability. Most importantly, the vicious cycle pro-
motes an impaired oxidative metabolism which persists 
throughout the duration of sepsis and likely continues after 
recovery.150 Thus, sustained production of ROS/RNS after 
recovery is hypothesized to be another mechanism that con-
tributes to long-term neurological impairment post sepsis.

Putative role of tissue non-specif ic alkaline 
phosphatase at the BBB

The identification of unexplored membrane proteins may be 
key to better understanding the specific barrier functions of the 
BBB in disease states such as sepsis. In turn, this knowledge 
may provide novel therapeutic targets for intervention. One 
potential therapeutic target localized primarily to the surface of 
brain endothelial cells is the non-specific isoform of alkaline 
phosphatase (AP). The enzyme AP has been shown to play an 
integral role in the regulation of inflammation and can be found 
either as a soluble form in the peripheral circulation or as a 
membrane-bound form on brain endothelium, as well as 
numerous other cell types in the periphery. There are 4  

isoforms of AP in humans encoded by 4 separate genes (gene 
names are in italics): intestinal alkaline phosphatase (IAP; 
ALPI), placental alkaline phosphatase (PLAP; ALPP), germinal 
alkaline phosphatase (GCAP; ALPPL2), and tissue non-spe-
cific alkaline phosphatase (TNAP; ALP).151,152 TNAP, also 
known as bone/liver/kidney AP, is the most abundant AP iso-
form in humans and rodents. TNAP is the only isoenzyme of 
AP detected in the human brain and has long been used as a 
marker of brain endothelium, although its presence has also 
been detected in neurons.153,154

The cellular and molecular mechanisms underlying TNAP’s 
functional role in brain endothelium and BBB are unclear; 
however, results from numerous studies across several species 
strongly suggest that TNAP plays a role in the transport of 
specific classes of compounds across the BBB.155 Brain 
endothelial cell TNAP protein may also help facilitate cross-
talk between the BBB and other cell types; in addition, a num-
ber of molecules, including cyclic adenosine monophosphate 
(cAMP) and IL-6, have been shown to modulate TNAP 
expression. Deracinois et  al153 found that TNAP expression 
was increased in brain endothelial cells, and that the inhibition 
of AP activity using levamisole, a non-specific AP inhibitor, 
increased brain endothelial cell permeability. We speculate that 
TNAP’s regulatory phosphatase activity on a number of BBB 
endothelial proteins may play an important role in maintaining 
BBB integrity, thereby alleviating septic encephalopathy or 
long-term brain dysfunction. As shown in Figure 3 of our in 
vivo study, TNAP enzyme activity appears to be upregulated in 
CLP-injured mice compared with their sham-injured counter-
parts. However, the mechanistic function of TNAP in the BBB 
remains to be elucidated in sepsis and is currently being inves-
tigated in our lab.

Other brain-specific functions of TNAP have been 
described as having a role in proliferation and migration in the 
developing nervous system, control of axonal growth formation 
and maturation of synapse, and dephosphorylation of extracel-
lular phospho-tau in AD.154,157–159 Despite the absence of a 
clearly elucidated mechanism for TNAP in brain endothelium 
and neurons, emerging data suggest that the manipulation of 
the AP activity can influence disease outcomes. For example, 
pretreatment of experimental autoimmune encephalomyelitis 
(EAE) mice with bovine intestinal AP reduced the disease sever-
ity through a mechanism that caused a reduction in neuroin-
flammation and autoreactive T regulatory cell proliferation.160 
Increased levels of AP have also been detected in blood of epi-
leptic patients, suggesting its applicability as a potential bio-
marker for many neurological diseases.161

Pharmaceutical Interventions in Sepsis
Antimicrobial delivery across the BBB

There is a current shift in the literature regarding specific path-
ogens that play a role in the inflammatory response associated 
with sepsis. Knowing the microbe implicated in sepsis best 
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dictates which appropriate antibiotic or other type of treatment 
is required. Whereas older studies implicate Gram-negative 
bacteria necessitating antibiotic intervention in sepsis, newer 
studies have begun to reveal that other pathogens like Gram-
positive bacteria, fungi, and viruses can also stimulate the 
inflammatory response associated with sepsis. According to 
recent epidemiologic studies, Gram-positive bacteria cause 
approximately 50 000 more cases of sepsis every year in the 
United States compared with Gram-negative bacteria.8,14,162 
Because factors such as the type of inciting pathogen and the 
site of infection are good predictors of patient mortality, it is 
essential that the antimicrobial agent be used to effectively 
treat the disease as well as any subsequent side effects such as 
neurological impairment. Currently, this is often difficult and 
impractical in the hospital, as the time from diagnosis to initia-
tion of treatment is critical. In addition, the sepsis field has 
faced many difficulties in developing effective therapeutics to 
treat sepsis. Currently, there are no Food and Drug 
Administration (FDA)-approved drugs used to treat sepsis as 
there have been numerous clinical trial failures over the past 
15 years.163–166 This difficulty stems from our incomplete 
knowledge about the mechanisms that underlie the disease 
pathology associated with sepsis.

Initial suspicion of sepsis necessitates the use of non-spe-
cific broad-spectrum antibiotics against Gram-positive (eg, 
vancomycin) and Gram-negative (eg, imipenem) bacteria 
before blood cultures become available. Following pathogen 
identification, the initial antibiotic regimen is often narrowed 
to a single agent.45,167 Although numerous human and animal 
studies have shown an increase in survival following antibiotic 
administration, limited published data are available on whether 
or how antibiotics are able to penetrate the BBB. More impor-
tantly, the effects of antibiotics and other antimicrobials on 
brain function and sepsis-associated neurological impairment 
are not well studied.168–173 Thus, a complete knowledge of drug 
mechanisms in the CNS is essential for identifying an appro-
priate drug regimen and therapeutic approach to treat the neu-
rological impairment associated with sepsis.174,175

The most common drug classes used to treat sepsis are 
shown in Table 3. Drugs belonging to the fluoroquinolone and 
sulfonamide classes, along with rifampin, metronidazole, and 
chloramphenicol, readily enter the brain regardless of disease 
state. Antimicrobials that do not normally penetrate the brain 
may readily cross into the BBB, or into the cerebrospinal fluid 
(CSF), due to opening of TJs and reduced P-gp activity.186 In 
contrast, more hydrophilic and larger drugs such as vancomycin 

Figure 3. Alkaline phosphatase (AP) activity in the brain and BBB. (A) Histological staining for AP activity shows decreased TNAP enzyme activity in the 

cortex of septic male mice (10-15 months old) subjected to the cecal ligation and puncture (CLP) model of experimental sepsis. C57BL/6J mice were 

subjected to CLP or a sham injury and brains were harvested 24 hours later. (B) Graph shows the quantification of cortical AP enzyme activity in CLP 

(n = 3, 52.49 ± 0.1094) versus sham (n = 3, 53 ± 0.1142) mice (sections = 3 per mouse; data represented as mean ± SEM, *P < .05, t(4) = 3.384, unpaired 

Student’s t-test, scale bar = 115 µm). AP activity was assessed in 35-µm brain sections with the BCIP/NBT AP Substrate Kit (Vector Laboratories, 

Burlingame, CA) following previously published methods.156

BBB, blood-brain barrier; TNAP, tissue non-specific alkaline phosphatase.
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and members of the β-lactam class of antibiotics do not readily 
enter the CSF or brain unless the meninges are inflamed.187

Intravenous immunoglobulin administration

Active advancement in understanding the pathophysiology of 
sepsis has led to the use of emerging immunomodulatory adju-
vants to target septic encephalopathy. The acute phase of sepsis 
is embodied by a diminished production of immunoglobulin G 
(IgG) because the immune system takes 1 to 2 weeks to gener-
ate sufficient IgG levels needed to respond to an infection.188 
Therefore, the observed reduction in IgG levels has warranted 
the use of immunomodulatory intravenous immunoglobulins 
(IVIgs) in sepsis patients.188,189 The mechanisms by which 
IVIg operates are complex and remain unclear.190,191 However, 
it has been proposed that the IVIg polyclonal IgG domains 
exert an immunomodulatory function by binding Fc receptors 
(FcγRs) found on many immune cell types (ie, microglia, 
endothelial, leukocyte). IVIg binding is thought to neutralize 
endotoxins/cytokines, inhibit complement activation, and 
block leukocyte adhesion molecule binding.90,192,193

Several studies have demonstrated the efficacy of IVIg 
treatment in sepsis. Esen et al193 showed that the administra-
tion of IVIg enriched with IgA and IgM improved BBB per-
meability, reduced sickness behavior, and improved mortality in 
CLP-induced rats. Further investigations by the same group 
revealed that the improvement in BBB integrity, neuronal 
destruction, and amelioration of septic encephalopathy is 
mediated by the inhibition of complement 5a (C5a).90 A small 
number of clinical meta-analytical studies have reported a 
decrease in mortality of sepsis patients administered IVIg; this 
finding complements the results observed by Esen et al. 193,194–196 
In contrast, a larger double-blinded randomized control trial 
conducted in the International Neonatal Immunotherapy 
Study (INIS) showed no significant differences in mortality 

following IVIg administration.192,197 Note that the studies 
included in the meta-analysis showing a decrease in mortality 
after IVIg administration consisted of relatively small patient 
populations, which suggests that these studies may not have 
been sufficiently powered to detect meaningful differences in 
mortality.191,192,198,199

Taken together, the apparent effects of IVIg in sepsis treat-
ment appear to be promising yet inconclusive. The high cost of 
treatment combined with unknown mechanism(s) of action 
and limited efficacy in a number of publications have made it 
difficult for organizations like the FDA and the Surviving 
Sepsis Campaign Guidelines (SSCG) to recommend IVIg as 
an adjuvant in sepsis treatment.188,190,192

Conclusions
The heterogeneous presentation and causes of sepsis are pro-
foundly linked to its variable clinical outcomes. Chronic neuro-
logical impairment is an increasingly common yet poorly 
understood clinical outcome. Understanding the mechanistic 
determinants of BBB integrity during sepsis is critically impor-
tant for sepsis diagnosis and implementation of treatment 
options to ensure a positive prognosis. Importantly, long-term 
prognosis in sepsis survivors is linked to both transient and 
permanent alterations in BBB permeability and function. Thus, 
targeting the BBB should be incorporated as part of a short- 
and long-term therapeutic strategy in all sepsis patients. The 
development of therapies that inhibit BBB dysfunction and 
stimulate normal BBB function will limit mortality, suppress 
neuroinflammation, and improve neurological outcomes in 
sepsis survivors. Equally important for effective sepsis treat-
ment is a better understanding of how antimicrobials and other 
drugs (eg, IVIgs or vasopressors) used in treating sepsis readily 
cross the BBB, and whether there are any additional unknown 
impacts on brain function. Taken together, the identification of 
cellular and molecular mechanisms that preserve BBB function 

Table 3. Antimicrobials used in sepsis treatment and their corresponding CNS penetration.

DRUG CLASS ExAMPLE(S) LIPOPHILICITy CNS PENETRATION REFS

β-lactam Penicillin, piperacillin ++ ++ 176,177

Fluoroquinolones Ciprofloxacin, moxifloxacin +++ +++ 178

Tetracyclines Doxycycline −− 0 179

 Glycylcycline tigecycline −− ++ 180

Glycopeptides Vancomycin −− + 181

Anti-tuberculosis Pyrazinamide, isoniazid − +++ 182

Anti-fungal Amphotericin B −− ++ 183

Anti-parasitic Pyrimethamine, albendazole ++ + 184,185

CNS, central nervous system.
+indicates higher, − indicates lower, and 0 indicates neutral or no change.
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in the face of sepsis will provide valuable therapeutic targets to 
treat numerous inflammatory disorders that target both the 
brain and the periphery—ranging from AD and stroke to dia-
betes and cardiovascular disease.
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