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CF-Seq, an accessible web 
application for rapid re-analysis 
of cystic fibrosis pathogen RNA 
sequencing studies
Samuel L. Neff1, Thomas H. Hampton   1, Charles Puerner1, Liviu Cengher   1, 
Georgia Doing1, Alexandra J. Lee   2, Katja Koeppen1, Ambrose L. Cheung1, 
Deborah A. Hogan1, Robert A. Cramer1 & Bruce A. Stanton1 ✉

Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets 
which are available in the gene expression omnibus (GEO). Although these studies are publicly 
available, substantial computational expertise and manual effort are required to compare similar 
studies, visualize gene expression patterns within studies, and use published data to generate new 
experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-relevant 
attributes such as strain, treatment, or media, or for a researcher to assess how a specific gene responds 
to various experimental conditions across studies. To reduce these barriers to data re-analysis, we have 
developed an R Shiny application called CF-Seq, which works with a compendium of 128 studies and 
1,322 individual samples from 13 clinically relevant CF pathogens. The application allows users to filter 
studies by experimental factors and to view complex differential gene expression analyses at the click of 
a button. Here we present a series of use cases that demonstrate the application is a useful and efficient 
tool for new hypothesis generation. (CF-Seq: http://scangeo.dartmouth.edu/CFSeq/)

Introduction
Cystic fibrosis (CF) is a monogenic, homozygous recessive genetic disease that affects over 30,000 people in the 
US and more than 70,000 worldwide1. The disease is caused by mutations of the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene, which is expressed in a wide variety of cells throughout the body but has 
been predominantly studied in the context of the lungs and the digestive system2–5. In the lungs, the absence 
of CFTR protein contributes to mucus obstruction, chronic microbial infections, systemic inflammation, and 
progressive lung disease, which is the leading cause of mortality6–9. Furthermore, people with CF (pwCF) are 
commonly diagnosed with exocrine pancreatic insufficiency, and tend to exhibit microbial dysbiosis in the GI 
tract, which both contribute to nutritional deficits, poor growth, and a myriad of other GI symptoms5,10,11.

Based on population data from the Cystic Fibrosis Foundation Patient Registry, pwCF born between 2015 
and 2019 have a median life expectancy of 46 years12. Further improvements in life expectancy are imminent, 
given the advent of highly effective CF modulator therapies (HEMT) over the past decade13. CF modulators 
were first made accessible with the approval of Ivacaftor in 2012 for a small subset of CF patients and access was 
expanded to most CF patients with the approval of Trikafta in 2019. These drugs have brought improvements in 
lung function and nutritional status, while decreasing the frequency of hospitalization for pulmonary exacerba-
tion14. In recent studies, CF modulator treatment has also been associated with a reduced incidence of infection 
with various common CF lung pathogens14–17. There is hope that young patients with stable lung disease may 
avoid chronic infection with these pathogens altogether, though studies conducted so far on this subject suggest 
that the modulator drugs may not be capable of eradicating established infection in older patients18. Thus, fur-
ther development of maintenance and/or eradication therapy to treat infection is still a necessity.

Given the contribution of invasive pathogens to lung disease progression, lung microbiology has long been 
a key focus of CF research. CF researchers have traditionally studied a suite of “classic CF pathogens” that are 
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known to infect the CF lungs and exacerbate lung disease. These pathogens include the gram-negative bacte-
rium Pseudomonas aeruginosa, the gram-positive bacterium Staphylococcus aureus, gram-negative bacteria of 
the genus Burkholderia, and fungal species such as Aspergillus fumigatus [Supplemental Table S1]. In recent 
years, the set of recognized CF pathogens has expanded as epidemiological studies have identified species that 
are rising in prevalence and impacting clinical outcomes (e.g., non-tuberculous mycobacteria species such as 
M. abscessus)19,20. In addition, more sensitive culture tools have allowed researchers to recognize the clinical 
relevance of less prevalent aerobic and anaerobic species21,22. Recently, researchers have begun to develop model 
systems to interrogate the interactions between CF pathogens in the lungs and to consider how the overall shape 
of the CF community – the diversity and abundance of different bacteria – contributes to clinical outcomes23. 
In fact, studies have found that a patient’s microbial community as a whole may be more effective at predicting 
disease outcomes than colonization with any individual species24.

Decades of prior CF pathogen research has helped advise modern clinical treatments, and this published 
body of research continues to serve as a source of knowledge for drug development as well as inspiration for 
future studies. High-throughput transcriptomics experiments – of which RNA-Seq studies have recently become 
most common – are especially useful as a source of published data to inform future experiments Many such 
datasets are presently available in the NCBI Gene Expression Omnibus (GEO) [Fig. 1a,b]. In an ideal world, CF 
pathogen researchers would be able to view which microbial strains, treatment conditions, and media have pre-
viously been utilized, and perform a quick visual analysis of gene expression under these conditions. This infor-
mation would offer researchers a roadmap to identify future directions for follow-up experiments. However, we 
do not (yet) live in this ideal world. Although many datasets are publicly available, substantial computational 
expertise and manual effort are required to compare similar studies, visualize gene expression patterns within 
studies, and use published data to generate new experimental hypotheses. Thus, there is a need develop an appli-
cation that will reduce these barriers to data re-analysis.

One useful approach to derive biological insights from an RNA-Seq dataset in GEO – and the one that we 
automate in the CF-Seq application – is to see which genes are differentially expressed under varying experi-
mental conditions. To accomplish this analysis, a researcher would first need to locate the sample runs associated 
with the individual dataset. These are often stored as FASTQ files that require extensive computational skills 

Fig. 1  Landscape of RNA-Sequencing studies available in the Gene Expression Omnibus (GEO). (a) Since 2011, 
the number of RNA-Seq studies hosted in GEO has risen dramatically, from several hundred to over 10,000, 
well eclipsing the number of microarray expression studies currently produced per year. (b) While small relative 
to the total set of RNA-Seq studies in GEO, there is a substantial number of RNA-Seq studies available for the 
CF pathogen species featured in the CF-Seq application. (c) To derive meaningful biological insights from 
the RNA-seq studies in GEO, the analysis pipeline outlined here must be followed. Alignment of sample RNA 
sequences to a reference genome is accomplished with a command line tool like SALMON, and downstream 
analysis with a tool such as the popular R package edgeR. CF-Seq automates the second segment of this pipeline, 
saving users from the need to clean up count tables, produce experimental design matrices, gather metadata, 
and write sophisticated analysis code in R.
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to process. Someone with these skills could trim the sequence reads contained in the FASTQ files to remove 
low quality reads and adapter sequences. Next, they would align trimmed reads to a reference genome with a 
command-line tool like SALMON25, which yields a count table with raw gene expression counts for each sample. 
Then, finally, that researcher could conduct differential gene expression analysis. This final step requires knowl-
edge of a programming language like R26,27, and specific R packages like edgeR28,29 or DESeq30 that allow for the 
generation of biologically meaningful analysis tables and figures. Even among bioinformatics researchers, many 
do not have expertise in all aspects of this pipeline – and for those who do, running through the pipeline for just 
a single dataset is typically a multi-day effort. CF-Seq has been designed so that users do not have to deal with 
this pipeline at all. Taking advantage of count tables that dataset contributors have left in GEO as supplemental 
files, CF-Seq takes care of differential expression analysis [Fig. 1c].

Our efforts to make public data more accessible are certainly not the first of their kind. In recent years, as 
big -omics datasets have become increasingly commonplace and researchers have encountered the challenges 
described above, the necessity of adopting FAIR data principles by making datasets more Findable, Accessible, 
Interoperable, and Reproducible has increasingly been recognized31. In this spirit, various research tools have 
already been developed to make publicly available data more amenable to re-use. For example, the application 
MetaRNA-Seq enables users to view consolidated study metadata that had been scattered across the four NCBI 
databases: SRA, Biosample, Bioprojects, and GEO32. Another application, the geoCancerPrognosticDatasets 
Retriever, allows users to utilize additional search parameters (e.g., cancer type) to retrieve GEO accessions for 
all studies of interests33.

Some existing applications designed by other research teams are quite similar in nature to CF-Seq and have 
served as strong inspiration for our own efforts. However, none are specifically geared towards CF pathogen 
research, and there is room to expand on their functionality [Supplemental Table S2]. Our own lab has previ-
ously published tools to make publicly available data more accessible to CF researchers34,35, but these tools focus 
on the most studied CF pathogens – namely Pseudomonas aeruginosa and Staphylococcus aureus – and don’t 
include datasets on many of the other clinically relevant species listed in Supplemental Table S1.

Building on our prior work, we present the R Shiny web application CF-Seq. CF-Seq is a web application 
based on a compendium of RNA-Seq experiments. This compendium contains 13 clinically relevant CF path-
ogens; a mix of aerobes and anaerobes residing in the lung and the digestive tract. The application currently 
holds carefully formatted count tables and metadata for 128 studies, and 1,322 RNA-seq samples in total, with 
ongoing efforts to capture more studies and additional relevant species, as outlined in the Discussion section. All 
datasets currently included in the application are arranged by GEO accession number in Supplemental Table S3 
for reference.

The CF-Seq application allows differential gene expression analysis of each individual study at the click 
of a button, producing downloadable tables and figures depicting fold changes and p values of differentially 
expressed genes in a matter of seconds. For each study, the application allows users to produce tables and fig-
ures comparing individual sample groups (e.g., samples treated with antibiotic X vs. control samples, samples 
treated with antibiotic Y vs. samples treated with antibiotic X, etc.). For many species and strains (where KEGG 
pathway annotations are available) the user can also visualize how the genes in specific biological pathways are 
differentially expressed. Furthermore, the user can filter all studies on the same species – breaking them down by 
strain, media, treatment, or gene(s) perturbed – to identify all past experimental conditions (and combinations 
of conditions) and thus determine which have yet to be assessed [Fig. 2]. This application has been developed 
with the close guidance of CF pathogen researchers at the Geisel School of Medicine at Dartmouth College. In 
this publication, we present three case studies that showcase the application’s usefulness for researchers studying 
three different CF pathogens (Aspergillus fumigatus, Pseudomonas aeruginosa, and Staphylococcus aureus).

Results
The CF-Seq application makes it simple for CF researchers to take full advantage of the 128 CF RNA-Seq path-
ogen datasets in the associated compendium. Upon opening the application, the user is greeted with a user 
manual that instructs them on how best to use CF-Seq [Fig. 2, Panel 1]. After reading, the user is then directed 
to the central, study-filtering panel of the application [Fig. 2, Panel 2]. Here, the user can filter studies by species, 
and then by strain, media, treatment, or gene perturbation [Fig. 2, Panel 3]. Filtered studies are presented in a 
table and can be selected to reveal additional metadata – including the study name, description, and link to its 
record in GEO [Fig. 2, Panel 4]. Once a study is selected, the user can click a button to reveal detailed differential 
expression analysis in a separate analysis tab [Fig. 2, Panel 5]. This analysis includes a table with the fold change 
(FC), p value, and counts per million (CPM) of all genes assessed in the study. For species or strains in which 
KEGG pathway information is available, the user is also able to visualize how the genes on different KEGG 
pathways are up or downregulated [Fig. 2, Panel 6]. Certain studies also allow users to visualize genes associ-
ated with various Gene Ontology (GO) terms, Clusters of Orthologous Genes (COG) categories, or functional 
descriptions of gene activity.

A series of user stories have been developed by three of the publication co-authors to demonstrate the value 
of the application in a research setting. These co-authors conduct research in laboratories that frequently publish 
papers related to CF microbiology. The following section of the manuscript demonstrates the analysis features 
of the application and outlines how these researchers used the application to come up with new questions and 
testable hypotheses relevant to their own research. Given the current focus in the field of CF research on the 
CF microbiome as a polymicrobial community23,24, all three user stories focus on polymicrobial interactions 
between several CF pathogens. All volcano plots used as figures for the user stories were taken directly from the 
application.

https://doi.org/10.1038/s41597-022-01431-1
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Case study #1: Examining aspergillus fumigatus in bacterial co-culture.  Dr. Charles Puerner, 
Cramer Laboratory, Geisel School of Medicine.

The infectious mold Aspergillus fumigatus is ubiquitous in the environment36. The spores from this fungus 
are taken into the lung by breathing and normally cleared by a healthy immune system. However, individuals 
with compromised immune systems and pulmonary diseases such as cystic fibrosis are particularly vulnerable 

Fig. 2  Application workflow for CF-Seq users. Panel 1 shows the starting window of the application, where 
users are presented with a manual that explains the functionality and purpose of the application. Users are then 
directed to the study view screen, shown in panel 2, where they can select a species of interest and view available 
RNA-Seq studies. Panel 3 shows how filters can be applied to delineate studies with certain experimental 
characteristics (strain, media, treatment, gene perturbed). Panel 4 offers a look at the metadata that can be 
examined for each individual study. Panels 5 and 6 show the study analysis window, where analysis tables and 
figures can be generated for all experimental comparisons, individual genes may be highlighted, P value and 
fold change cutoffs can be selected, and differentially expressed genes on selected KEGG pathways can be 
highlighted when KEGG pathway information is available (Panel 6). For certain studies, users can also highlight 
other biological features, such as GO terms, COG categories, and functional descriptions of genes (e.g., “serine/
threonine protein kinase”) Zoomed-in versions of the figure panels showing more detail are available as 
Supplementary Figures S1–S6.

https://doi.org/10.1038/s41597-022-01431-1
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to infection by this fungus. In these cases, A. fumigatus spores are capable of germinating in the lung environ-
ment and forming fungal lesions. The Cramer lab studies the biology of this organism, specifically as it relates 
to its disease-causing capabilities. A recent publication, for example, investigated the genetic characteristics of 
persistent isolates taken from the lungs of a CF patient over several years37.

Using the analysis capabilities of this application, we were particularly interested in a dataset which generated 
gene expression profiles of A. fumigatus co-cultured with the ubiquitous bacterium Pseudomonas aeruginosa 
(GEO: GSE122391). This dataset is interesting because both organisms are commonly found in the CF lung 
environment, a situation associated with worsened disease state38. The study was identified using the CF-Seq 
filtering feature to focus on those experiments that involved cross-species interactions.

In the analysis window of the application, the “Choose a P Value Cutoff ” field was used to highlight genes 
whose p-value was 0.05 or less. Genes were highlighted at several timepoints comparing the co-culture of P. 
aeruginosa with A. fumigatus to culture of the fungus alone [Fig. 3]. The volcano and MA plots demonstrat-
ing the magnitude of differential expression, as well as a spreadsheet of statistically significant differentially 

Fig. 3  Expression of A. fumigatus genes following exposure to P. aeruginosa presented in volcano plot format. 
In the CF-Seq application, the species A. fumigatus strain A1160 was selected and the dataset “Transcriptomics 
analysis of Aspergillus fumigatus co-cultivated with Pseudomonas aeruginosa” (GSE122391) was used for 
the subsequent analysis. Comparisons were selected comparing fungus co-cultured with bacteria to fungus 
alone at (a) 45, (b) 90, and (c) 180 min. Genes highlighted in orange are those whose p-value was less than 
0.05. At 45 minutes, 531 of 8526 total genes were differentially expressed to a statistically significant degree. At 
90 minutes and 180 minutes, the number of statistically significant differentially expressed genes was 257 and 
514 respectively.

https://doi.org/10.1038/s41597-022-01431-1
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expressed genes, were quickly downloaded for further analysis and additional figure generation. The down-
loaded table of differentially expressed genes was easily filtered outside of the application to contain only genes 
with a |log2FC| value of 1.5 or greater (Fold change > 2.83 = log2FC > 1.5, Fold change < 0.35 = log2FC < −1.5) 
[Supplemental Table S4].

Using this method, the application makes it easy to identify a list of biologically significant genes which could 
be investigated further regarding their role in the co-culture environment. Genes differentially expressed with 
an especially high fold change and p value may be manipulated in the laboratory to see how the knockout of 
individual genes effects survival fitness of A. fumigatus in co-culture.

Case study #2: P. aeruginosa virulence factor production in polymicrobial contexts.  Dr. Georgia Doing, Hogan 
Laboratory, Geisel School of Medicine.

Pseudomonas aeruginosa is one of the most common pathogens associated with cystic fibrosis (CF) lung 
infections, remains difficult to treat with antibiotics, and is associated with lung function decline in colonized 
pwCF39. Along with its ability to form recalcitrant biofilms and resist antibiotic treatment, its behaviors during 
interactions with other bacteria are now recognized as important factors that influence P. aeruginosa infec-
tion outcomes40–44. Microbial interactions are often studied in the laboratory using co-cultures of P. aeruginosa 
with other CF pathogens such as Candida albicans and Staphylococcus aureus. These co-culture experiments 
have proven to be useful for modeling polymicrobial interactions. However, it is increasingly apparent that the 
combinatorial effects of environmental factors as well as pairwise and community-wide microbial interactions 
make for complex systems with many changing variables and a large search space44–46. In addition to conduct-
ing new experiments in the laboratory, the re-analysis of individual datasets related to bacterial co-culture and 
meta-analysis of multiple datasets will likely spur new experimental hypotheses and help provide evidence for 
existing theories of polymicrobial interactions.

Using CF-Seq it was easy to compare two datasets from experiments where P. aeruginosa was co-cultured 
with C. albicans (GEO: GSE148597)45 and (GEO: GSE122048) S. aureus47. We noticed that while P. aeruginosa 
mainly upregulates and highly expresses genes in the KEGG pathway for phenazine biosynthesis in co-cultures 
with C. albicans compared to monoculture [Fig. 4a], it does not do so in co-culture with S. aureus compared to 
monoculture [Fig. 4b]. Since P. aeruginosa phenazine production is induced with C. albicans fermentation48, we 
searched for specific genes whose expression could indicate differences in C. albicans and S. aureus metabolisms 
that may shed light on their different effects on P. aeruginosa phenazine production.

Digging deeper into the data on an individual gene level, the upregulation of lactate permeases and lactate 
dehydrogenases by P. aeruginosa in co-culture with either C. albicans or S. aureus suggest both C. albicans and 
S. aureus were producing lactate in these experiments [Fig. 5a]. However, while P. aeruginosa upregulated alco-
hol dehydrogenases in co-culture with C. albicans, it did not do so in co-culture with S. aureus, suggesting C. 
albicans was likely producing ethanol while S. aureus was not [Fig. 5b]. Amongst the many differences between 
these two co-cultures, differences in microbially-produced fermentation products could lead to differences in P. 
aeruginosa phenazine production.

P. aeruginosa regulates phenazine production in response to quorum sensing and many metabolic and 
stress-related cues. Since both co-culture with C. albicans and co-culture with S. aureus elicited lactate metab-
olism, but only co-culture with C. albicans elicited ethanol metabolism, CF-Seq analysis suggests that ethanol 
specifically promotes phenazine production while lactate does not [Fig. 5c]. Thus, lactate may have a neutral or 

Fig. 4  (a) P. aeruginosa genes involved in phenazine biosynthesis tend to be upregulated in co-culture with 
C. albicans (b) but not in co-culture with S. aureus compared to P. aeruginosa in monoculture. Green data 
points were highlighted by selecting the KEGG pathway for phenazine biosynthesis using the ‘find a pathway’ 
feature in the CF-Seq application. Genes that are differentially expressed between co-culture and monoculture 
conditions to a statistically significant degree (p < 0.05) were colored orange for emphasis.

https://doi.org/10.1038/s41597-022-01431-1
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repressive effect on phenazine production. In common laboratory mono-culture conditions, P. aeruginosa can 
produce an abundance of phenazines during exponential and stationary phase growth and thus conditions in 
which P. aeruginosa does not produce phenazines could contain repressive stimuli. Interestingly, given that lac-
tate is oxidized by P. aeruginosa, catalyzed by lactate dehydrogenases including lldA and lldD49,50, and phenazines 

Fig. 5  (a) P. aeruginosa upregulates the expression of lactate permease lldP (red point) and other lactate 
metabolism genes including lactate dehydrogenases (present in the cluster of dark blue points near lldP) in 
co-culture with C. albicans. (b) Similarly, lactate dehydrogenase lldA (red point) and other lactate metabolism 
genes (included in dark blue points near lldA) are upregulated in co-culture with S. aureus as well. (c) P. 
aeruginosa upregulated alcohol dehydrogenase adh in co-culture with C. albicans (d) but not in co-culture 
with S. aureus. (e) In complex co-culture P. aeruginosa will have to integrate multiple signals such as the 
positive influence of ethanol and a possible negative influence of lactate that converge to influence phenazine 
production. After CF-Seq exploratory analysis, our hypothesis is that the presence of ethanol will supersede that 
of lactate to promote phenazine production.

https://doi.org/10.1038/s41597-022-01431-1
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are highly redox active, tight control over phenazine production in the presence of lactate may be important for 
metabolic efficiency. This hypothesis could easily be tested in the lab by the addition of sub-lethal concentrations 
of ethanol to P. aeruginosa and S. aureus co-culture and measuring phenazine biosynthesis to test the hypothesis 
that phenazine production would increase.

Importantly, CF-Seq facilitated the re-analysis of public data that led to the development of a hypothesis in 
approximately 30 minutes. By contrast, the process of identifying these experiments, downloading the data, 
performing comparisons, and generating figures by hand would have taken approximately 16 hours, based on 
similar exploratory analyses that we have performed previously.

Case study #3: Examining superoxide dismutase response in Staphylococcus aureus under 
a variety of clinically relevant conditions.  Dr. Liviu Cengher, Cheung Laboratory, Geisel School of 
Medicine.

Staphylococcus aureus is a human commensal and opportunistic pathogen that contributes to a wide range 
of diseases – from skin and soft-tissue disorders to respiratory diseases like cystic fibrosis51. Disease is mediated 
by several S. aureus virulence factors that are produced in response to environmental cues, and which play a 
wide range of roles52. Two-component systems (TCS) are important regulatory factors that have paired sensing 
and regulatory peptides that respond to environmental and host cues53,54. The SaeR/S TCS senses reactive oxy-
gen species (ROS) and regulates responses that counteract and inhibit ROS production by the human immune 
system. For example, activation of the TCS may lead to enhanced expression of virulence factors superoxide 
dismutase sodA and sodM55.

In this case study we investigated sodA and sodM expression across experiments with different bacterial 
strains and treatments to explore similarities and differences in ROS response. Specifically, we compared sodA 
and sodM expression in conditions likely to be present in the CF lung to identify conditions that upregulate 
one and/or both of the two genes. To start, we evaluated the effect of S. aureus co-culture with P. aeruginosa (vs. 
S. aureus in monoculture, GEO: GSE122048)47. Co-occurrence of P. aeruginosa and S. aureus is frequent in a 
hospital setting, and tends to induce a fermentative state in S. aureus56,57. Both sodA and sodM were upregulated 
in these conditions [Fig. 6a,b]. CF-Seq analysis of the transcriptome of ‘persister cells’ primed to survive (pre-
dominantly ROS mediated) killing after residing inside of immune system macrophages (GEO: GSE139659)55,58 
revealed that sodM was upregulated in the ‘persister cells’ that resisted killing by the immune system, though 
sodA was not [Fig. 6c,d]. Since sodM was upregulated in common between these two studies, it would be worth 
re-examining both conditions in tandem: subjecting S. aureus to bacterial co-culture with P. aeruginosa to see 
if this induces a persister-like phenotype in S. aureus. Given that both conditions – persistence within host cells 
and co-infection with Pseudomonas – may be present at once in an individual with CF, such experiments would 
paint a fuller picture of the S. aureus transcriptional state during an infection.

Furthermore, we also identified a study where treatment with apicidin, an antibiotic known to inhibit bacte-
rial quorum sensing, led to downregulation of sodA and relatively low levels of sodM expression [Fig. 6e,f]59. We 
might compare sodA downregulation in this study with the co-culture study (GEO: GSE122048). There would be 
interesting therapeutic implications for future experiments that determine the outcome of combining co-culture 
conditions (upregulating sod genes) with antibiotic-induced quorum sensing inhibition (downregulation/low 
expression of sod genes) to see which effect dominates. In addition, one might examine conditions which could 
favor sodM expression over sodA expression, like the availability of iron and manganese in co-culture and in pol-
ymicrobial infections60,61. Normally the analysis performed in this case study would necessitate a close reading of 
multiple published articles and require deciphering often unhelpful supplemental data tables. Finding relevant 
experiments and performing subsequent analysis would involve many hours of work. Using CF-Seq, useful 
results were found within approximately 10 minutes.

Discussion
As the user stories demonstrate, the CF-Seq application provides value to CF pathogen researchers in several 
ways. First, CF-Seq allows rapid analysis of numerous datasets, reducing the time of analysis from days in some 
cases to minutes. Second, multiple CF pathogens can be analyzed including bacteria such as Pseudomonas aerug-
inosa and Staphylococcus aureus, and fungi such as Aspergillus fumigatus and Candida albicans. Third, the R 
scripts underlying the application (publicly available in our Git Repository: https://github.com/samlo777/cf-seq.
git) not only allow for rapid analysis of the CF pathogens currently included in the application, but may be 
repurposed to study other microbes relevant to other diseases. Furthermore, the annotation files provided in 
the Git repository (linking various gene identifiers and functional annotations like KEGG and GO terms) can 
be downloaded and utilized by CF researchers outside of the application, allowing them to perform functional 
analyses of their own datasets much more efficiently. Fourth, CF-Seq affords researchers a better understanding 
of prior CF pathogen experiments by revealing experimental parameters – details on strain, media, treatment, 
and gene perturbation – that have been tested in the past. With the ability to filter studies based on these param-
eters, users may identify the set of experiments that relate to their own specific interests and capabilities, filling 
knowledge gaps that they notice in the field of research. Not only does the application make prior studies more 
visible and accessible, but also makes their individual samples and the expression levels of individual genes 
possible to investigate more closely. While any given publication tends to emphasize the differential expression 
of just a few relevant genes to tell a concise and cohesive biological story, the CF-Seq application allows users to 
explore the expression of genes that may not have been of interest to the initial study authors but are of interest 
to the users themselves.

The ability to discern the whole field of prior experiments in minutes without slowly trawling through online 
databases like GEO is a tantalizing prospect. As it stands, the application serves as a valuable tool for validating 
existing hypotheses and generating new ones to test. That said, efforts are still ongoing to expand the application 
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– adding older microarray studies to the compendium of data and making efforts to gather count table data for 
RNA-Seq studies in which count tables have not yet been provided directly by the authors as supplemental infor-
mation in GEO. Additional RNA-Seq studies may be gathered by taking advantage of pipelines built to convert 
FASTQ sample files in GEO into count tables amenable to analysis by edgeR. For example, we may employ the 
pipeline recently developed by Doing et al. (2022) to create a compendium of P. aeruginosa datasets, modifying 
it such that its use extends to other CF pathogens of interest62. We may also take advantage of crowd-sourced 
metadata curation approaches like that of Wang et al. (2016), in which participants were recruited to help 
identify studies in GEO involving gene or drug perturbations, or comparison of normal and diseased tissue63. 
Crowdsourcing curation efforts would make the process of adding additional study data to the application more 
efficient and speed up the inclusion of new studies.

Though the application is not designed to compare studies head-to-head, the intrepid researcher could 
download the results of multiple studies and perform their own meta-analysis. That said, researchers need to 
be cautious of batch effects when comparing independent studies – as conditions ranging from the unique 
instruments of a given laboratory to the environmental conditions on the day of the experiment may impact 
the results. Meta-analysis should be conducted carefully with the application of appropriate statistical meth-
ods for batch effect correction64,65. Readers should also keep in mind that there is significant variation in the 
RNA-sequencing platforms (e.g., Illumina, PacBio, Oxford Nanopore) and the approach to pre-processing of 
data utilized by study authors across datasets. These factors further complicate comparison across studies. As 
an example of pre-processing differences, the study authors may choose to exclude non-coding RNA transcripts 
from the raw count data (though in studies where they are not excluded, the CF-Seq application allows users 
to assess their differential expression). Furthermore, the choice of reference strain (and genome) by the dataset 

Fig. 6  Expression of virulence factors sodA and sodM in S. aureus tends to diverge under different 
experimental conditions. Volcano plots of all genes are shown to demonstrate the expression values of sodA and 
sodM relative to other genes detected. (a,b) In co-culture with P. aeruginosa, both sodA and SodM expression 
are upregulated, sodA to a much greater extent. (c,d). In ‘persister cells’, the expression pattern was quite 
different: sodM expression was more markedly upregulated while sodA expression was downregulated (e,f). 
Finally, exposure to apicidin was found to induce downregulation of sodA, but no significant change in sodM. 
In all cases, aside from sodM expression in (f) sodA and sodM were differentially expressed to a statistically 
significant degree (p < 0.05).

https://doi.org/10.1038/s41597-022-01431-1


1 0Scientific Data |           (2022) 9:343  | https://doi.org/10.1038/s41597-022-01431-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

authors to map sequence reads to transcript IDs and produce raw count data introduces further differences 
between studies of the same species.

Most datasets currently featured in the application were generated by short-read cDNA sequencing on 
Illumina platforms. Over time, we will update the application with additional CF pathogen studies as they 
become available, including long-read sequencing datasets (typically generated by PacBio or Oxford Nanopore 
platforms) and even direct RNA-seq datasets. These more recent, improved RNA-Seq approaches eliminate 
some of the errors and biases in the data gathered by traditional short-read RNA-seq methods66,67. As the field of 
CF pathogen research evolves, and the methods it employs changes, the CF-Seq application will evolve as well.

In sum, the application sheds light on the value of automated bioinformatic analysis for researchers of all 
backgrounds. Performing differential expression analysis is by no means a feasible task for those lacking a com-
putational background, and even for those who have such a background, analysis is still quite time-consuming 
(as the authors of the user stories note). Not only does the CF-Seq application save time and provide detailed 
statistical analysis, but it also serves a didactic purpose for those who have less experience working with tran-
scriptomic data – demonstrating what differential expression analysis looks like and how it may be interpreted. 
Tools such as CF-Seq, and the other data re-analysis applications cited throughout this publication, demonstrate 
the immense value of bioinformatic tools for scientific research.

Providing CF pathogen researchers a more detailed view of the prior experiments conducted in their own 
domain will make research more coordinated, systematic, and efficient. The CF-Seq application allows users to 
see exactly what combinations of experimental factors have been assessed thus far, and take logical, incremental 
steps – investigate a new treatment, a new mutation, a new growth medium, or some combination thereof – to 
test novel experimental hypotheses and improve understanding of pathogen behavior. For the field of bioin-
formatics specifically, such an application helps demonstrate the value and enhance appreciation for both data 
re-analysis and the tools that enable it. More generally, applications like CF-Seq help democratize the research 
process, allowing all scientists, regardless of specialization, to set their minds at work determining where 
research should go next.

Methods
Data extraction.  The CF-Seq application currently includes 128 RNA-Seq studies of 13 CF pathogens. All 
studies can be found in NCBI’s Gene Expression Omnibus (GEO). Before incorporating studies into the applica-
tion, the landscape of CF pathogen studies in GEO was surveyed. Clinically relevant pathogens of interest were 
chosen based on the cystic fibrosis literature (their relevance, supported by clinical and laboratory studies, is 
documented in Supplemental Table S1). The set of all RNA-sequencing studies for each of these pathogens was 
identified in GEO by querying the database of GEO datasets by pathogen name (e.g., Pseudomonas aeruginosa, 
Staphylococcus aureus, etc.), filtering studies to include only those that constituted “expression profiling by high 
throughput sequencing” (in GEO, this corresponds to ‘RNA sequencing’), and selecting the pathogen of inter-
est specifically in the ‘organism’ field. This final step excludes datasets that constitute transcriptomic profiles of 
human cells, or cells of some other organism, exposed to the pathogen of interest.

For practical reasons, only studies with certain attributes are included in this release of the compendium. 
The application is limited to studies where: A) a count table was provided in the supplemental files associated 
with the study in GEO, B) that count table was in a tabular format (.csv, .xlsx, .txt) so that it could be loaded into 
R with the read.table() or read.csv() functions, C) sample groups were clearly distinguishable such that it was 
possible to perform differential expression analysis, and D) the count table included raw counts and not normal-
ized counts (edgeR and other differential expression analysis packages require raw counts to perform analysis). 
Efforts to circumvent some of these limitations and add more studies into the application are discussed in the 
Discussion section of this manuscript.

Data cleaning and storage.  For studies that met the criteria for inclusion in the application, each count 
table was subjected to the following formatting protocol. Count tables downloaded directly from GEO were 
re-structured, if necessary, so that the first column of the table included gene names, and all subsequent columns 
contained raw read data for each experimental sample. In addition to count tables, two other data files were con-
structed for each study. The first file is a design matrix which delineates experimental samples by condition (e.g., 
control, treatment group X, treatment group Y) and lists the number of replicates for each condition. This design 
matrix is a requirement for differential expression analysis with edgeR. The second file, labeled ‘additional meta-
data’, includes manually gathered metadata on the strain(s), media, treatment conditions, and genes perturbed 
in each study, whenever applicable. Collecting this data enables filtering of studies by experimental conditions 
within the application.

To build the application, all data files – count tables, design matrices, and additional metadata – were depos-
ited in a local directory of folders, with a single folder for each species, and sub-folders within each species for 
the three types of data files (count table, design matrix, additional metadata). A copy of this directory structure 
can be found in the Git Repository associated with this publication [https://github.com/samlo777/cf-seq.git], 
so that any reader may download the data and/or use it to run the Shiny application on their own computer if 
they so choose.

Code development approach.  The CF-Seq application code was developed in discrete modules to make 
testing as straight-forward as possible. Each of the application’s interactive features (filtering studies, selecting a 
study, choosing experimental comparisons to analyze, etc.) were developed in a hierarchical fashion: the code was 
first tested to ensure that it worked properly for a single study, then adjusted and generalized such that it worked 
for a single species, and ultimately for all species included in the application.
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The application code is broken down into 3 files. The first, named ‘app.R’, contains the functional code for the 
application. This file houses the UI code (which dictates the appearance of the application), and the server code 
(which provides functional code for all the drop-down menus, tables, and output figures) as two separate blocks. 
Both the name of this file, and the two-section structure, are an essential requirement of all Shiny applications. 
In addition, another code file, labeled ‘Data Setup.R’, was generated to load in all the study data and compress 
it into an easily accessible data structure (a list of lists) accessible to the code in the app.R file. In addition to 
loading in the count tables, design matrices, and additional metadata, this code file also contains blocks of code 
that perform differential expression analysis – and deposit the outputs of this analysis (including tables of fold 
changes, p values, and counts per million for each gene) into the list of lists object alongside their respective 
studies. The third code file, labeled ‘Annotation Data.R’, contains code that programmatically accesses data from 
the KEGG68–70, UniProt71, and COG72 databases and structures that data such that the genes of each species are 
linked to their respective KEGG biological pathway identifiers, GO Terms, and COG categories (if available).

The application takes advantage of several publicly available, open-source R packages. Alongside the ‘shiny’ 
package73 (which is essential for all R Shiny applications), the ‘shinydashboard’74 package was used to provide a 
UI template, with several tabs for different application components. ‘shinyjs’75 was used to develop some of the 
more complicated application features (e.g., data tables with interactive buttons) that require JavaScript code to 
run. The ‘DT’76 package was employed to create searchable and filterable tables. The package ‘plotly’77 was used 
to generate interactive volcano plots and MA plots to represent differential expression analysis results, and the 
differential gene expression analysis itself was performed with the ‘edgeR’28,29 package. The KEGGREST78 and 
UniProt.ws79 packages were used to download functional annotations (KEGG pathways, GO terms, COG cate-
gories) to pair with certain amenable studies in the application. Finally, the ‘tidyverse’80 suite of packages, includ-
ing ‘stringr’81 for string manipulation, were used throughout the application code to manipulate data structures.

Validation: beta testing protocol.  To ensure that the study data and metadata loaded into the application 
recapitulated the data present in GEO, and that all application features worked as expected, a beta testing protocol 
was established. Three of the paper co-authors, each possessing either domain knowledge in CF microbiology or 
bioinformatics, were recruited to test different segments of the application: (1) the ability to filter studies based 
on experimental characteristics, (2) the ability to view detailed metadata for each individual study, and (3) the 
ability to perform and visualize differential expression analysis. The beta testing protocol was guided by a series of 
requirements tables that listed out all the features to be validated (beta testers were instructed to indicate Y/N if a 
feature worked as expected and provide notes if it did not). These tables are included for reference in the supple-
mental material [Supplemental Tables S5–S7]

After all components of the application were tested, any features that did not work properly were fixed – and 
additional improvements were made to enhance the usability of the application based on beta tester feedback. 
Furthermore, after the bugs identified in beta testing were fixed, a second round of review was undertaken to 
ensure that study metadata accurately reflected the true study metadata in GEO. One at a time, each study in 
the application was referenced back to GEO to ensure that none of the manually curated metadata was missing 
or incorrect.

Project documentation.  Documentation for the CF-Seq application can be found in several locations. 
Users are presented with a user manual when they first open the application. Further guidance on using the 
application can also be found in the form of the README file in the Git repository associated with this project 
[https://github.com/samlo777/cf-seq.git].

Data availability
All data – including count tables derived from GEO, and manufactured design matrices and metadata tables – are 
available in the Git repository [https://github.com/samlo777/cf-seq.git].

Code availability
All CF-Seq code is open source and has been made available for use on GitHub under the MIT License [https://
github.com/samlo777/cf-seq.git].

The application is also hosted on a server maintained by Dartmouth College and is accessible at the following 
web link [http://scangeo.dartmouth.edu/CFSeq/].

In its current version, CF-Seq utilizes the following R package versions: shiny (1.6.0), shinydashboard (0.7.1), 
shinyjs (2.0.0), DT (0.19.1), plotly (4.9.4.1), ggplot2 (3.3.5), edgeR (3.34.1), KEGGREST (1.32.0), UniProt.ws 
(2.32.0), tidyverse (1.3.1), stringr (1.4.0).
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