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There is increasing interest in the interactions among the gut microbiota, gut, and brain,

which is often referred to as the “microbiota-gut-brain” axis. Biogenic amines including

dopamine, norepinephrine, serotonin, and histamines are all generated by commensal

gut microorganisms and are suggested to play roles as signaling molecules mediating

the function of the “microbiota-gut-brain” axis. In addition, such amines generated in the

gut have attracted attention in terms of possible clues into the etiologies of depression,

anxiety, and even psychosis. This review covers the latest research related to the potential

role of microbe-derived amines such as catecholamine, serotonin, histamine, as well

as other trace amines, in modulating not only gut physiology but also brain function

of the host. Further attention in this field can offer not only insight into expanding the

fundamental roles and impacts of the human microbiome, but also further offer new

therapeutic strategies for psychological disorders based on regulating the balance of

resident bacteria.
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INTRODUCTION

Humans co-exist with a vast number of microorganisms (1), and there has been increased research
interest in uncovering the role of gut bacteria in maintaining health of the host. Accumulating
evidence points to a major role of the gut microbiota in not only normal gut function but
also in brain development and function (2–4). The recognition of such interactions between
gut microorganisms and the brain has led to a new research field commonly referred to as the
“microbiota-gut-brain” axis (5–9).

Biogenic amines are biogenic substances containing one or more amine groups (10, 11). Five of
these amines were found to function as neurotransmitters including dopamine, norepinephrine,
epinephrine, histamine, and serotonin. In general, these amines are utilized in the central and
peripheral nervous systems, and participate in various types of physiological functions such
as regulating cognitive abilities, mood, and gut motility (12–14). In addition to these well-
established roles as neurotransmitters, accumulating evidence suggests that these amines might
act as important signal molecules between commensal microbiota and the host in the gut (15–17).
Here, the latest research progress on the relationship between gut microbiota and biogenic amines
is reviewed, with a particular focus on interactions occurring in the gut lumen, in which gut bacteria
are presumed to closely associate with biogenic amines.
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CATECHOLAMINES: NOREPINEPHRINE
AND DOPAMINE

Catecholamines as Inter-Kingdom Signals
in the Gut Lumen
Bacteria can communicate with each other through hormone-
like signals in a process known as quorum sensing (18).
Recent evidence has revealed that quorum sensing is not only
restricted to bacterial cell–cell communication but also facilitates
communication between microorganisms and their hosts. This
type of bidirectional communication is often referred to as
“microbial endocrinology” (15, 16) or “inter-kingdom signaling”
(17, 19, 20), which thus mediates the symbiotic and pathogenic
relationships between bacteria and their mammalian hosts.

Interestingly, catecholamines have emerged as potential
inter-kingdom signaling molecules in the gut, in addition to
their well-established roles as neurotransmitters in the central
and peripheral nervous systems. In their pioneering studies
conducted in the 1990s, Lyte et al. (21, 22) demonstrated
that some pathogenic species could recognize exogenous
catecholamines in vitro, which enhanced the bacterial
proliferative capacity. Subsequently, Sperandio et al. (19)
showed that enterohemorrhagic Escherichia coli virulence is
increased upon exposure to epinephrine and norepinephrine,
and that epinephrine binds and signals through the QseC
receptor, providing a molecular basis for catecholamines acting
as an inter-kingdom signal.

Catecholamines Are Enriched in the
Lumen of the Gut
Since a large number of bacteria inhabit areas in close
proximity to the gastrointestinal tract of mammals, inter-
kingdom signaling through catecholamines is presumed to
continually and preferentially occur in the gut lumen. However,
confirmation of this localized activity is a technical challenge
because luminal samples generate substantial artifact peaks
and contaminants, which hinder the precise evaluation of
luminal catecholamine levels. In contrast, a clear and unique
peak of 5-hydroxytryptamine (5-HT), or serotonin, was clearly
identified without interference by contaminants (23). Therefore,
to more reliably measure fecal catecholamine levels, we used a
three-column high-performance liquid chromatography system
with diphenylethylenediamine as a pre-column fluorescence
derivatization reagent (24, 25), which was originally developed to
evaluate plasma and urine free catecholamine levels. As a result,
this analysis revealed considerable amounts of biologically active,
free norepinephrine, and dopamine present in the gut lumen of
specific pathogen free (SPF) mice, which harbor commensal gut
microbiota that lacks specific pathogens (26).

The intestinal tract contains substantial amounts of β-
glucuronidase (GUS) in both the gut epithelium (tissue type)
and gut bacteria (bacterial type). The optimum pH of bacterial
GUS is 6.8, whereas that of tissue-type GUS is 4.5 (27, 28).
Since the average pH in the intestinal lumen is 6.5–8.0, GUS
enzymatic activity is mainly derived from gut bacteria. GUS
can play an important role in gut–liver interactions such as
the so-called enterohepatic circulation (29–31). For example,

TABLE 1 | Free and glucuronide-conjugated catecholamines in gut lumen of SPF

micea.

Free (ng/g) Glucuronide–

conjugated (ng/g)

Ileum norepinephrine 9.0 ± 2.1 3.8 ± 1.9

dopamine 15.7 ± 4.1 44.9 ± 5.1***

Cecum norepinephrine 34.6 ± 4.6 0.5 ± 0.2***

dopamine 115.4 ± 14.4 1.6 ± 1.0***

Colon norepinephrine 60.5 ± 6.0 2.0 ± 0.5***

dopamine 177.0 ± 10.9 2.5 ± 0.7***

aLuminal glucuronide-conjugated norepinephrine and dopamine levels in the gut lumen

of specific pathogen-free (SPF) mice (n = 6) were measured using a three-column high-

performance liquid chromatography system, as described in our report (26). ***P < 0.001

indicates significantly different from the corresponding free catecholamine value.

TABLE 2 | Free and glucuronide-conjugated catecholamines in gut lumen of GF

micea.

Free (ng/g) Glucuronide-

conjugated (ng/g)

Ileum Norepinephrine 7.5 ± 3.7 1.9 ± 0.3*

Dopamine 1.5 ± 0.3 130.1 ± 16.3***

Cecum Norepinephrine 3.8 ± 1.3 2.8 ± 0.6

Dopamine 5.0 ± 0.5 136.9 ± 29.7***

Colon Norepinephrine 3.2 ± 0.6 2.8 ± 0.6

Dopamine 4.8 ± 0.3 138.0 ± 20.1***

aLuminal glucuronide- and sulfate-conjugated norepinephrine and dopamine levels in

the gut lumen of germ-free (GF) mice (n = 6) were measured as described in Table 1.

*P < 0.05 and ***P < 0.001 indicates significantly different from the corresponding free

catecholamine value.

hormones such as thyroid hormone are glucurono-conjugated
in the liver, and the resultant conjugated materials are released
into the bile duct. After reaching the lower gastrointestinal
tract, these hormones are converted into biologically active
hormones by the action of bacterial GUS, and thereafter
reabsorbed into the body (30). Therefore, we examined whether
biologically active free catecholamines can be produced by
the action of bacterial GUS. As summarized (26), almost
all catecholamines detected in SPF mice with a normal gut
microbiota were of the biologically active free type (Table 1). In
contrast, more than 90% of the dopamine and approximately
20 to 40% of the norepinephrine detected in germ-free
(GF) mice were of the glucurono-conjugated type (Table 2).
However, when GF mice were provided either a mixture of
Clostridia species, a single bacterial species of Clostridium
coccoides, or complete SPF microbiota rich in GUS activity,
they exhibited a dramatic increase in free norepinephrine and
dopamine (Table 3).

These results clearly indicate that gut microbes play a
critical role in the production of free catecholamines through
bacterial GUS.

Can Commensal Bacteria Themselves
Produce Catecholamines in vivo?
The next important question to address is whether gut
microbes have the ability to generate catecholamines by
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TABLE 3 | Free catecholamine levels in the cecal lumen of gnotobiotic micea.

GF mice Gnotobiotic mice

Clostridia Cc EX-GF

Norepinephrine (ng/g) 2.6 ± 0.3 27 ± 3*** 82 ± 5*** 18 ± 1***

Dopamine (ng/g) 16.3 ± 0.7 114 ± 9*** 132 ± 16*** 120 ± 16***

aCecal luminal contents collected from either germ-free (GF) (n = 6), Clostridia (n = 6),

Clostridium coccoides (Cc, n = 6), or whole SPF microbiota (EX-GF, n = 6)-reconstituted

mice were processed for free catecholamine measurements (26). ***P < 0.001 indicates

significantly higher than the corresponding GF value.

themselves. Russian researchers (32) reported that some species
of microorganisms could produce catecholamines in an in vitro
culture system. Although this report is very interesting, the
possibility that the medium used for bacterial culture contained
catecholamines derived from blood, tissues, or other sources
cannot be ruled out. To have the authentic capacity to synthesize
catecholamines, microorganisms require tyrosine hydroxylase,
a rate-limiting enzyme for catecholamine production. In fact,
some bacteria were reported to possess enzymes that are similar
to mammalian tyrosine hydroxylase (33, 34). In our study, the
total norepinephrine levels in the cecal and colonic contents
of SPF mice were substantially higher than those in GF mice
(26). In addition, gut bacteria enriched from murine feces
harbored substantial amounts of norepinephrine with a relatively
lower amount of dopamine (35). These findings imply that gut
microbes are an important source of luminal norepinephrine.
However, some species of bacteria have a functional transporter
for catecholamines such as the bacterial neurotransmitter sodium
symporter family member, Leu T (36). Therefore, it remains to
be clarified whether the norepinephrine and dopamine found in
gut microbes originate from bacterial production via a tyrosine
hydroxylase-like enzyme or if they are obtained from the gut
lumen via a Leu T-like transporter (35). In this regard, Lyte and
Brown (37) recently showed that Lactobacillus salivarius biofilms,
but not Lactobacillus rhamnosus biofilms, might express both
plasma membrane monoamine transporter- and organic cation
transporter-like uptake systems, using specific fluorescence-
based assays. These results indicate that bacteria residing in
the gut lumen retain uptake systems that would act as a net
sink for biogenic amines and neuroactive substances, and play
an important role in preventing the excessive production of
neurotoxic amines in the host.

Functional Aspects of Catecholamines in
the Gut Lumen
To reveal the specific roles that catecholamines play in the
gut lumen, we further examined the effects of dopamine
on water absorption in a mouse colon loop in vitro model
(38, 39). As we previously reported (26), dopamine injection
into the loop resulted in a 30% increase in water absorption
from the gut lumen compared to that with vehicle (saline)
injection, indicating that luminal dopamine can contribute to
gut physiology under normal conditions. In addition, a recent
report indicated the possible involvement of catecholamines in

TABLE 4 | Luminal 5-HT concentration in the gastrointestinal tract of GF mice

after recolonization with SPF fecal microbiotaa.

5-HT (ng/g)

Basal Day 3 Day 7 Day 21

Ileum 139 ± 106 218 ± 107 330 ± 183* 128 ± 116

Cecum 80 ± 20 535 ± 189*** 547 ± 56*** 381 ± 127***

Colon 230 ± 212 724 ± 198*** 862 ± 230*** 743 ± 241***

aLuminal contents of germ-free (GF) mice were subjected to 5-HT measurements before

(basal) and at 3, 7, or 21 days after exposure to specific pathogen-free (SPF) fecal

microbiota (23). *P < 0.05 and ***P < 0.001 compared to the corresponding basal value.

TABLE 5 | Luminal free and conjugated 5-HT in the colon of GF and EX-GF micea.

Total 5-HT (ng/g) Free 5-HT (ng/g) Conjugated 5-HT (ng/g)

GF 252 ± 89.0 106 ± 33.0 144 ± 75

EX-GF 563 ± 259* 501 ± 255** 62 ± 17**

aFree and conjugated-5-HT levels were measured in the colonic lumens of germ-free

(GF) and whole SPF microbiota-reconstituted (EX-GF) mice (n = 8) (23). Total 5-HT levels

were calculated as the sum of free, glucuronide-conjugated, and sulfate-conjugated 5-HT.

*P < 0.05 and **P < 0.01 compared to corresponding GF values.

inflammatory bowel disease (IBD). Inhibiting catecholamine-
QseC signaling attenuated disease activities in multiple
preclinical IBD models (40), suggesting the therapeutic potential
of QseC blockade for intestinal inflammation. Taken together,
gut luminal catecholamines might contribute to a variety of
as-yet-unidentified physiological and pathological functions.

5-HT

5-HT is abundant in the gastrointestinal tract, where it
participates in various physiological functions such as
peristalsis (41). The majority of 5-HT in the gut is stored
in enterochromaffin cells (EC cells) and is secreted from the
these cells into the gut lumen in response to various stimuli
(42, 43). Intestinal bacteria are presumed to play a role in
the secretion of 5-HT into the lumen; however, the precise
underlying mechanism remains incompletely understood.
Therefore, we examined kinetic 5-HT changes in the gut lumen
after GF mice were provided SPF feces (23). As shown in Table 4,
SPF fecal administration substantially elevated the cecal and
colonic lumen 5-HT levels. In addition, approximately 50% of the
5-HT found in GF mice was in the conjugated form, whereas the
majority of 5-HT found in EX-GF mice reconstituted with SPF
feces was in the free form (Table 5). These results indicate that
free 5-HT is not only released from EC stores in response to gut
microbes but is also produced via the bacterial de-conjugation
of conjugated 5-HT. Collectively, it can be concluded that free
5-HT in recolonized mice consists of the following three different
components: (1) the first constitute is equivalent to free-5-HT
in GF mice, which is likely released from EC cells in response
to non-microbial stimuli; (2) the second is comparable to
conjugated-5-HT in GF mice that is de-conjugated by microbial
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TABLE 6 | Biogenic amine receptors detection in intestinal epithelial cells.

Cell type Receptors Species Assay methods References

Enterocyte α1 Ad Guinea pig Flow cytometry,

Fluorescent binding

(53)

Enterocyte (jejunum) α1 Ad Rat Flow cytometry. (54)

Epithelial cell

(ileum)

α2 Ad Human Radioligand binding assay (55)

Epithelial cell α2 Ad Rat Radioligand binding assay (56)

Enterocyte α2 Ad Human Radioligand binding assay (57)

EC cell α1, α2 Ad Rat Immunostaining,

RT-PCR

(58)

Intestinal stem cell α2 Ad Mouse Quantitative real-time PCR (59)

Colon mucosa β1, β2 Ad Human RT-PCR (60)

Colonic epithelial cell D1A Rat Western blot, RT-PCR,

in situ hybridization

(61)

Goblet cell D1, D2, D3, D4, D5 Rat IHC (62)

Tuft cell D3 Mouse Single-cell RNA sequencing (63)

Enterocyte, Paneth cell 5-HT2A Mouse, rat, guinea pig IHC (64)

Colonic crypt cell H1, H2 Dog RT-PCR (65)

Enterocyte H1, H2, H4 Dog IHC

in situ hybridization

(66)

EC cell TAAR1 Human RT-PCR (67)

Intestinal mucosal cell TAAR1, TAAR2 Mouse Quantitative real-time PCR (68)

EC, enterochromaffin; Ad, adrenergic; D, dopamine; H, histamine; TAAR, trace amine-associated receptor; RT-PCR, reverse transcription polymerase chain reaction;

IHC, immunohistochemistry.

enzymes (GUS and sulfatase); (3) the third is mainly released
from EC cells in response to microbial stimuli.

HISTAMINE AND OTHER BIOGENIC
AMINES

Histamine is stored in mast cells and basophils and contributes
to various types of patho-physiological processes. Histamine is
best known as a mediator of the allergic reaction but also acts
as a neurotransmitter for the brain (44). Histamine is not only
synthesized in cells by the enzyme histidine decarboxylase but
is also produced by the microbial decarboxylation of amino
acids (45). This type of production is clinically important
because bacteria-generated histamine often induces scombroid
poisoning, which occurs after the consumption of food
contaminated by amines (46). If an individual has a deficient
capacity to detoxify biogenic amines due to genetic mutations or
is taking antidepressants such as monoamine oxidase inhibitors
(MAOIs) that slow the degradation of amines, they become
more susceptible to histamine poisoning (46). Interestingly,
commensal microorganisms in the gut can produce histamine
and related compounds under physiological conditions (47,
48), suggesting the potential role of luminal histamine in gut
immunoregulation. In fact, a recent elegant study demonstrated
that histamine can exert an anti-inflammatory effects on the host
by suppressing interleukin-18 production in the gut (49).

Moreover, researchers in this field have begun to turn their
attention to the role of other biogenic amines such as tryptamine,

phenethylamine, diamines (putrescine and cadaverine), and
polyamines (spermine and spermidine) in mental health and
psychiatric diseases (50, 51). In this regard, Gabastou et al. (52)
offered an interesting case report. They measured time-course
changes in fecal amines in a male patient who was admitted to
a hospital due to severe brain damage incurred after a traffic
accident at the age of 4 years. With a transient increase in these
amines, the patient started to engage in self-injury and aggressive
behaviors toward others. This case report indicates the possible
involvement of bacteria-produced biogenic amines in the mental
state. The authors suggested that antibiotics might be a suitable
therapeutic option for psychomotor excitement that is refractory
to commonly used treatments.

Thus, although the acute effects of histamine on the host, such
as allergy and hypertension, are well established, the influence of
histamine produced by indigenous microbes under physiological
conditions remains unclear. This issue is especially relevant for
not only individuals who are genetically susceptible to histamine
exposure but also those who are regularly taking MAOIs for the
treatment of depression.

BIOGENIC AMINE RECEPTORS ON GUT
EPITHELIAL CELLS

Gut microbe-derived amines are presumed to exert a direct
effect on gut epithelial cells via specific receptors. Here, we
provide a literature review of the expression of receptors of
biogenic amines, especially focusing on intestinal epithelial cells.
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As summarized in Table 6, the expression of α1-adrenergic
receptor on enterocytes was demonstrated by flow cytometry and
binding assays (53, 54). Enterocytes from different species were
also shown to harbor α2 adrenergic receptors, contributing to the
net absorption of electrolytes and fluids (55–57). Interestingly, rat
EC cells possess both α1 and α2 receptors, which was verified
by immunostaining and RT-PCR (58). Recently, intestinal
stem cells were also reported to retain not only muscarinic
acetylcholine but also α2 adrenergic receptors (59). In humans,
RT-PCR analysis showed that β1 and β2 adrenergic receptors
are present in the colon mucosa (60). Regarding dopamine
receptors, their subtypes were confirmed in rat colonic epithelia
(61) and goblet cells (62). Moreover, an excellent report using
an advanced single-cell RNA sequencing technique recently
demonstrated that Tuft cells express dopamine receptor D3
genes (63).

Evidence as to whether the gut epithelia express receptors

for other important monoamine molecules such as 5-HT and

histamine is still scarce. One immunohistochemical analysis
of different species demonstrated the presence of 5-HT2A

receptors on enterocytes and Paneth cells (64). Histamine H1
and H2 receptors were also identified in canine enterocytes
(65, 66); however, whether this expression is limited to dogs
needs to be clarified. Finally, trace amine-associated receptors
(TAARs) such as TAAR1 and TAAR2, for which ligands include
tyramine, phenethylamine, and other biogenic amines (11), are
also shown to exist in human EC cells (67) and the mouse
intestinal mucosa (68). Since there is extensively increasing
interest in trace amines derived from commensal bacteria,
it is critically important to clarify the precise distribution
and function of TAAR-related receptors in the gut. Finally,
detailed information about the cellular localization of biogenic
amine receptors, such as apical or basolateral membrane

distributions, is still limited. This should be clarified by
future studies.

CONCLUSION AND PERSPECTIVES

From the 19th to the early 20th century, a faction of
scientists postulated that psychiatric diseases might result from
“autointoxication,” suggesting that waste products or toxins
generated in the gut can lead to depression, anxiety, and
even psychosis (7, 69, 70). Until recently, the concept of
autointoxication was regarded as an “unscientific” theory and
was largely neglected. However, this theory has reemerged as an
attractive research area and is currently being extensively studied.
As reviewed herein, biogenic amines are interesting candidates
that could be important mediators of autointoxication. Further
developments in this field could provide a strong rationale for
the application of probiotics for the treatment of mental health
and diseases.
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