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Radiation-induced oral mucositis is the most common complication for
patients who receive head/neck radiotherapy. Nicotinamide adenine dinu-
cleotide (NAD+) is vital for DNA damage repair under ionizing radiation,
through functioning as either the substrate for protein poly(ADP-ribosyl)ation
at DNA break sites or the cofactor for multiple DNA repair-related enzymes,
which therefore can result in a significant consumption of cellular NAD+

during DNA repair. Mammalian cells produce NAD+ mainly by recycling
nicotinamide via the salvage pathway, in which the rate-limiting step is gov-
erned by nicotinamide phosphoribosyltransferase (NAMPT). However,
whether NAMPT is co-opted under ionizing radiation to timely fine-tune
NAD+ homeostasis remains elusive. Here we show that ionizing radiation
evokes NAMPT activation within 30 min without apparent changes in its
protein expression. AMPK rapidly phosphorylates NAMPT at S314 under
ionizing radiation, which reinforces the enzymatic activity of NAMPT by
increasing NAMPT binding with its substrate phosphoribosyl pyrophosphate
(PRPP). AMPK-mediated NAMPT S314 phosphorylation substantially
restores NAD+ level in the irradiated cells and facilitates DNA repair and
cell viability. Our findings demonstrate a new post-translational modifi-
cation-based signalling route, by which cells can rapidly orchestrate NAD+

metabolism to support DNA repair, thereby highlighting NAMPT as a
potential target for the prevention of ionizing radiation-induced injuries.
1. Introduction
Nicotinamide adenine dinucleotide (NAD+) is widely established as an essen-
tial cofactor for electron transfer functioning in diverse metabolic pathways
[1]. Particularly, NAD+ plays critical roles in glycolysis in cytosol and the tricar-
boxylic acid cycle in mitochondria where it generates reducing force in the form
of NADH, which then transfers electrons from various sources to the mitochon-
drial complex I and downstream components of the electron transport chain,
ultimately leading to the production of ATP [2].

NAD+ can be synthesized through the de novo pathway from tryptophan, the
Preiss-handler pathway from nicotinic acid, or the salvage pathway by recycling
of nicotinamide, and the latter is the major route for NAD+ biosynthesis for
mammalians [3]. The rate-limiting step of salvage pathway, by which nicotina-
mide and PRPP were condensated to generate nicotinamide mononucleotide
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Figure 1. Ionizing radiation evokes cellular NAMPT activity. (a,c) HOK and HUVEC cells were treated with 10 Gy ionizing radiation, and cellular enzymatic activity of
NAMPT was measured at indicated time after irradiation (a). The expression of NAMPT was examined by immunoblot (c). IR, ionizing radiation. **p < 0.01. (b,d)
HOK and HUVEC cells were treated with ionizing radiation at indicated doses, and cellular enzymatic activity of NAMPT was measured 30 min after irradiation (b).
The expression of NAMPT was examined by immunoblot (d ). **p < 0.01; ***p < 0.001. (e) HOK cells were treated with ionizing radiation at 10 Gy (left panel) or
indicated doses (right panel). The expression of NAMPT was examined by RT-PCR. ( f ) HOK and HUVEC cells with expression of Flag-NAMPT were treated with 10 Gy
ionizing radiation, and Flag-NAMPT protein was precipitated. NAMPT activity in the precipitates was measured. ***p < 0.001.
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(NMN), is catalysed by nicotinamide phosphoribosyltransfer-
ase (NAMPT) [4]. NAD+ is eventualy produced from NMN
in mammalian cells by three nicotinamide mononucleotide
adenylyltransferases (NMNATs), with NMNAT1 located in
the nucleus, NMNAT2 located in the Golgi apparatus, and
NMNAT3 located in mitochondria [5].

In addition to being an electron carrier, NAD+ also
function as the substrate for protein poly(ADP-ribosyl)ation,
bywhich polymers of ADP-ribose are covalently linked to pro-
teins through poly (ADP-ribose) polymerases (PARPs) [6].
Poly(ADP-ribosyl)ation has significant impacts on the cellular
responses to DNA strand breaks under ionizing radiation [7].
As early DNA damage sensors, PARPs are rapidly activated
by binding with the ionizing radiation-elicited DNA breaks,
and catalyse poly(ADP-ribosyl)ation on itself as well as
adjacent histones and other proteins, thereby marking the
DNA lesion sites along the chromatin. The poly(ADP-ribose)
chain of the modified proteins can then recruit other effector
proteins to the lesion site and locally assemble the DNA
damage-responsive complexes, thereby promoting chromatin
relaxation and initiating DNA repair process [8].

Radiation-induced oral mucositis (RIOM) is the most
common complication for patients who receive head and
neck radiotherapy, which may cause multiple temporary or
irreversible damages in oral mucosa [9]. RIOM-mediated
inflammation, which may lead to ulceration, is highly toxic
to epithelial and endothelial cells in oral mucosa [10]. During
the repair of ionizing radiation-induced DNA breaks, the
length of poly(ADP-ribose) chains may attain a size of 200–
300 residues, and their synthesis increases up to 500-fold
owing to the activation of PARPs, which can result in rapid
and significant consumption of cellular NAD+ [11,12]. Given
the essential role of poly(ADP-ribosyl)ation in DNA repair,
NAD+ availability becomes a critical factor that may modulate
DNA repair capacity [13]. Addition of NAD+ largely promoted
DNA repair capacity of soluble cell extracts on ionizing radi-
ation or radiomimetic agents-treated DNA [14]. However,
whether NAMPT, as the rate-limiting enzyme in the salvage
pathway for NAD+ biosynthesis, is co-opted under ionizing
radiation to timely fine-tune NAD+ homeostasis remains
elusive. In this study, we demonstrate that AMPK rapidly
phosphorylates NAMPT at Serine (S)314 in oral keratinocyte
and endothelial cells under ionizing radiation,which reinforces
the enzymatic activity of NAMPT by increasing its binding
with PRPP. AMPK-mediated NAMPT S314 phosphorylation
substantially restores NAD+ level in the irradiated cells and
facilitates cell viability.
2. Results
2.1. Ionizing radiation evokes cellular NAMPT activity
To determine the impact of ionizing radiation on NAD
synthesis, human oral keratinocytes (HOKs) and human umbi-
lical vein endothelial cells (HUVECs) were used as in vitro
models, since these cell types exist in oral mucosa and are
reported to be sensitive to ionizing radiation [15,16]. Upon
exposure to 10 Gy ionizing radiation, a 2.5–3.5-fold increase
in the NAMPT enzymatic activity was observed in the lysates
of HOK andHUVEC cells (figure 1a). The induction of cellular
NAMPT activity was likely a rapid response to ionizing radi-
ation, since it could be apparently detected as early as 15 min
after irradiation. Further, similar effects could be observed in
both HOK and HUVEC cells under radiation treatment at
multiple doses (figure 1b).

Next, we moved to explore the underlying mechanism
responsible for ionizing radiation-elicited cellular NAMPT
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Figure 2. AMPK phosphorylates NAMPT S314 under ionizing radiation. (b–d, f–k) Immunoblotting analyses were performed using indicated antibodies. (a) HOK
cells were pre-treated with 10 µM KU55933, 1 µM NU7441, 2 µM AZD6738, 20 µM PD98059, 20 µM SP600125 or 5 µM Compound C for 2 h, and cells were treated
with 10 Gy ionizing radiation. Cellular NAMPT activity was measured 30 min after irradiation. **p < 0.01; ns, not significant. (b,c) HOK and HUVEC cells were treated
with 10 Gy ionizing radiation, and cells were harvested 15 min after irradiation. Immunoblots (b) and immunoprecipitations (c) were performed using indicated
antibodies. IR, ionizing radiation; WCL, whole cell lysate. (d ) Bacterially purified His/Flag-NAMPT protein was incubated with purified active AMPK proteins (His-
AMPKα1, untagged AMPKβ1 and untagged AMPKγ1) in the presence or absence of Compound C and [γ-32P]-ATP for an in vitro kinase assay. Immunoprecipitation
was performed using anti-Flag antibody, and radioactivity in the precipitates was measured by autoradiography. (e) Alignment analyses of NAMPT S314 or T304 was
performed among indicated species. S314 and T304 were shown in red, and the residues matches AMPK phosphorylation consensus was shown in blue. ( f ) Bac-
terially purified WT His/Flag-NAMPT protein or indicated mutants were incubated with purified active AMPK proteins in the presence [γ-32P]-ATP for an in vitro
kinase assay. Immunoprecipitation was performed using anti-Flag antibody, and radioactivity in the precipitates was measured by autoradiography. (g) HOK cells
were treated with 10 Gy ionizing radiation. Immunoblots were performed using indicated antibodies in the presence or absence or NAMPT pS314 blocking peptide.
(h) HOK and HUVEC cells with expression of WT Flag-NAMPT or Flag-NAMPT S314A were treated with 10 Gy ionizing radiation, and immunoprecipitation was
performed 30 min after irradiation. (i) HOK cells with expression of Flag-NAMPT were pre-treated with 5 µM Compound C for 2 h, and treated with 10 Gy ionizing
radiation. Immunoprecipitation was performed 30 min after irradiation. ( j ) HOK cells were treated with 0.5 mM A769662 for 30 min. (k) HOK cells were incubated
with glucose-free medium for 12 h. Glc, glucose.
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activity, by measuring NAMPT expression at both protein and
mRNA levels. Nevertheless, no obvious change was observed
under multiple radiation treatments (figure 1c–e). Notably,
a markedly higher enzymatic activity was detected in the
Flag-NAMPT proteins precipitated from irradiated HOK
or HUVEC cells, compared to that in equal amount of
Flag-NAMPT protein derived from untreated counterpart
cells (figure 1f ). These results suggest that ionizing radiation
evokes cellular NAMPT activity, which is independent of
changes in NAMPT expression.
2.2. AMPK phosphorylates NAMPT S314 under ionizing
radiation

To determine the key factor that modulate NAMPT activity
under ionizing radiation, HOK cells were pre-treated with
small-molecular inhibitors to counteract a couple of radi-
ation-responsive proteins. Treatment with Compound C, an
AMPK inhibitor, substantially abolished ionizing radiation-
induced NAMPT activity (figure 2a). By contrast, inhibition
of ATM by KU55933, DNA-PK by NU7441, ATR by
AZD6738, MEK/ERK pathway by PD98059 or JNK by
SP600125 only showed minor effects (figure 2a). In addition
to being an energy sensor, AMPK was found to be rapidly
activated in response to ionizing radiation [17,18]. Indeed,
apparent AMPK activation was observed in both HOK and
HUVEC cells 15 min after exposure to ionizing radiation,
reflected by the enhanced phosphorylation of AMPKα T172
and its substrate ACC S79 (figure 2b). Further, co-immunopre-
cipitation revealed much more NAMPT protein in the AMPKα
precipitates derived from irradiated cells than that from
untreated cells, suggesting that ionizing radiation cemented
NAMPT binding with AMPK kinase (figure 2c).
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AMPK functions as a stress sensor and signal transducer by
phosphorylating diverse proteins [19], which prompted us to
test whether NAMPT is a direct substrate for AMPK. We per-
formed in vitro kinase assay by mixing the bacterially purified
NAMPT protein with the purified active AMPK proteins
(including subunit α1, β1 and γ1) in the presence of [γ-32P]-
ATP. Notably, incubation with AMPK proteins resulted in an
obvious band corresponding to NAMPT protein under auto-
radiography, indicating that the radioactive γ-phosphate from
ATP was covalently linked to NAMPT protein by AMPK-
mediated phosphorylation (figure 2d). This phosphorylation
could be mostly abolished in the presence of Compound C,
which rule out the possibility thatNAMPTwas phosphorylated
by other unknown kinases contaminated during protein
purification. The autoradiographic signal detected in NAMPT
protein was not likely due to the previously reported ATP
hydrolysis-mediated NAMPT autophosphorylation [20], since
recombinate NAMPT protein was boiled before subjected to
the reaction, and no detectable signal was found in NAMPT
protein when AMPK proteins were not included in the
reaction (figure 2d).

To identify the phosphorylation site, we analysed NAMPT
protein sequence and found S314 sitewhose flanking sequence
appropriately matched the AMPK substrate consensus
L/IxRxx(pS/T)xxxL/I (figure 2e) [21]. In addition, analysis
with SCANSITE 4.0 (https://scansite4.mit.edu/#home,
Stringency: Low) revealed threonine (T)304 site as another
putative AMPK phosphorylation site (figure 2e). Alignment
comparison manifested that both two sites were evolutionally
conserved among multiple species (figure 2e). Substitution
of these sites into non-phosphorylatable alanine (A) showed
that only S314 mutation annihilated AMPK-mediated phos-
phorylation (figure 2f ). We thus generated an antibody
recognizing NAMPT protein with phosphorylated S314,
and, with this antibody, we found a sharply accumulated
NAMPT S314 phosphorylation in the irradiated HOK cells.
Detection of this phosphorylation could be mostly blocked if
a NAMPT pS314 blocking peptide was used during immuno-
blotting (figure 2g), suggesting a good specificity of this
antibody. Further, ionizing radiation-induced NAMPT S314
phosphorylation could be abrogated by either NAMPT
S314 mutation, or Compound C treatment (figure 2h–i). As
expected, accumulated NAMPT S314 phosphorylation was
also found in non-irradiated cells that were treated with
A769662 (figure 2j), a AMPK activator [22] or incubated
with glucose-free medium (figure 2k). These results suggest
that AMPK phosphorylates NAMPT S314 in the context of
ionizing radiation.
2.3. AMPK-dependent S314 phosphorylation activates
NAMPT by facilitating NAMPT binding with PRPP

To determine the impact of AMPK-mediated S314 phosphoryl-
ation on NAMPT activity, we purified NAMPT protein from
AMPK-dependent in vitro kinase assay, and found that
S314 phosphorylation increased NAMPT enzymatic activiy
by about five folds (figure 3a). By contrast, NAMPT S314A
mutant protein showed a comparable activity as WT counter-
part, regardless of whether it had been subjected to the
in vitro kinase assay or not (figure 3a). In line with this,
exposure to ionizing radiation, which resulted in robust
NAMPT S314 phosphorylation, consolidated NAMPT activity
in both HOK and HUVEC cells; this effect could be
substantially abolished by S314A mutation (figure 3b).

Analysis of human NAMPT structure unveiled that S314
site is located within the catalytic domain (figure 3c). NAMPT
condenses nicotinamide and PRPP to produce NMN [4].
Cocrystallization of NAMPT with PRPP (PDB code: 2E5C) or
nicotinamide (PDB code: 2E5D) showed that S314 site is
adjacent to PRPP, but far away from nicotinamide (figure 3c).
It is documented that a phosphomimic of NAMPT histidine
(H)247 was much more active than naive NAMPT protein,
since it harboured a lower Km value for PRPP (0.63 µM for
NAMPT pH247; 7.2 µM for naive NAMPT) [23]. Strikingly,
S314 is also close to H247, and these two sites and PRPP are
situated in a triangular positioning in the catalytic domain.
Therefore, we wandered whether phosphorylation of S314
likewise modulated the binding affinity between NAMPT
and PRPP. To this end, NAMPT protein was precipitated after
in vitro kinase assay, and incubated with [32P]-PRPP. As
expected, NAMPT protein with S314 phosphorylation exhib-
ited apparently stronger radioactive signal, compared to
unphosphorylated control proteins, while similar effects were
not observed in NAMPT S314A mutant protein (figure 3e).
Consistently, S314A mutation or Compound C treatment
also reduced enzymatic activity of NAMPT protein derived
from irradiated cells (figure 3f,g). These results suggest that
AMPK-dependent S314 phosphorylation activates NAMPT
by facilitating NAMPT/PRPP association.
2.4. NAMPT S314 phosphorylation restores nuclear
NAD, and facilitates DNA repair and cell survival
under ionizing radiation

To explore the impact of AMPK-mediated NAMPT S314
phosphorylation on cell response to ionizing radiation, we
knockdown the expression of endogenous NAMPT, and
exogenously expressed Flag-tagged shRNA-resistant (r) WT
NAMPT or NAMPT S314A mutant (figure 4a). Ionizing radi-
ation-elicited DNA repair consumes NAD through protein
poly(ADP-ribosyl)ation at DNA break sites [11]. Indeed, ioniz-
ing radiation caused 40–50% reduction in nuclear NAD levels
in HOKandHUVEC cells (figure 4a). Reconstituted expression
of NAMPT S314A mutant further shrank nuclear NAD pool,
suggesting that NAMPT S314 phosphorylation contributed to
maintaining NAD homeostasis (figure 4a). Additionally,
NAMPT S314A mutation did not affect basal nuclear NAD
level in the unirradiated cells.

NAD-dependent reactions are essential for DNA repair
[13]. We then damaged a luciferase-based construct in vitro
by irradiation, and transfected into HOK and HUVEC cells
as a reporter gene to evaluate DNA repair capacity. In
untreated cells, the DNA repair capacity was comparable
regardless whether WT NAMPT and NAMPT S314A were
expressed, and was more intense than irradiated cells
(figure 4b). Upon ionizing radiation, a lowered luciferase
signal was found in NAMPT S314A-expressed cells, hinting a
further impaired DNA repair capacity in these mutant cells
(figure 4b). Consistently, S314A mutation also palpably
reduced cell viability and cell proliferation, shown by BrdU
incorporation assay (figure 4c) and colony formation assay
(figure 4d), respectively. These results suggest that AMPK-
mediated NAMPT S314 phosphorylation restores nuclear
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NAD, and facilitates DNA repair and cell survival under
ionizing radiation.
3. Discussion
RIOM is a common type of oral mucosal injury caused by
radiotherapy that may lead to a significant adverse impact
on the quality of life of patients and the continuity of
cancer treatment. Epithelial and endothelial cells are radio-
sensitive [24,25]. The initial phase of radiotherapy causes
direct and fatal DNA damage in epithelial and endothelial
cells, which results in the release of reactive oxygen species,
leading to the activation of multiple stress pathways and
even cell death [10]. Therefore, oral epithelial HOK cells
and endothelial HUVEC cells are widely used as in vitro
models to study the radiation-induced oral damages and
their underlying mechanisms [24,26,27]. Consistent with pre-
vious reports, we used HOK and HUVEC cells in this study
to determine the impact of radiation on the NADmetabolism.
Serine/threonine kinase AMPK, a heterotrimer complex
composed of catalytic α subunit and regulatory β and γ subunits,
is a key modulator of signal transduction under multiple stress-
ful conditions, including energy stress, DNA damage and
hypoxia [28]. It is reported that DNAdamages caused by etopo-
side, a potent double-strand break inducer [29], activates AMPK
though modulating Ca2+/CaMKK2 signalling, which is inde-
pendent of LKB1, the principal upstrean regulator of AMPK
[30]. AMPK in turn regulates G2/Mcheckpoint and cell apopto-
sis bymodulating p53 tumour suppressor and cyclin-dependent
kinase inhibitor P21waf/cip [31,32]. In addition, AMPK incurs
p53-binding protein 1(53BP1) activity by directly phosphorylat-
ing 53BP1 at S1317, which recruits 53BP1 to the DNA damage
site for effective DNA repair in a classical non-homologous
end joining (C-NHEJ)-dependent manner [33]. Moreover,
AMPK activity is found to modulate the radiosensitivity of
cells through inhibition of the Akt-mTOR signalling pathway
[18,31,34]. In this study, we illustrate that NAMPT S314,
whichmatches the canonical AMPKphosphorylation consensus
and is highly conserved during evolution, is a new substrate
of AMPK. By in vitro kinase assay and autoradiography, we
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demonstrate that recombinate AMPK proteins introduced auto-
radiographic signal on the purified NAMPT protein, which was
markedly blocked in the presence of Compound C. Since
NAMPT couples ATP hydrolysis to NMN synthesis, formation
of a high-energy phosphorylated intermediate NAMPT pH247
was previously observed [20]. Hence, in these in vitro kinase
assays (figure 2), we used a boiled NAMPT protein, which did
not show detectable autoradiographic signal after mixed with
[γ-32P]-ATP, ruling out the potential interference caused by
NAMPT autophosphorylation. Therefore, the current study
expands the knowledge of AMPK-mediated signal transduction
in the context of ionizing radiation. Considering that AMPK
kinase consists of multiple subunits, further work is needed to
distinguish the specific role of each subunit in the regulation
of NAMPT.

The involvement of NAMPT and NAD metabolism in
AMPK-mediated downstream transcriptional events has
been widely documented. Under the conditions of fasting or
caloric restriction, AMP-activated protein kinase (AMPK) is
activated by lowered intracellular ATP availability, which in
turn elevates NAMPT expression by boosting its gene
transcription [35,36]. Upregulation of NAMPT results in an
accelerated NAD production through salvage pathway
and an increased activity of Sirtuin 1 (SIRT1), since lysine
deacetylation by SIRT1 is coupled to the cleavage of NAD
into nicotinamide and acetyl-ADP-ribose, and so the activities
of SIRT1 are thus dependent on cellular NAD pool size. As a
nuclear protein, SIRT1 deacetylates peroxisome proliferator-
activated receptor gamma coactivator-1α (PGC-1α) to
prompt mitochondrial biogenesis and ATP production,
which can offset the harmful effects of energy stress [37].
Modulation of gene transcription takes a couple of hours to
accumulate appreciable changes at protein level to affect cell
phenotype. By contrast, repair of ionizing radiation-induced
DNA double-strand breaks usually accomplished within 2 h,
since a double-strand break is one of the most lethal types
of DNA lesions, and delayed repair probably leads to cell
death [38]. In the present data, AMPK activation was detected
15 min after exposure to ionizing radiation, evidenced by its
active statusmarker T172 phosphorylation as well as the phos-
phorylation of its bona fide substrate ACC, which is consistent
with previous reports [17,18]. Accordingly, phosphorylation
of NAMPT S314 and increased cellular NAMPT activity
could be detected within 30 min post-irradiation. Therefore,
such post-translational modification-based mechanism
reported in this study constitutes a novel route, by which
cells can rapidly orchestrate NAD+ metabolism to support
DNA repair in the context of ionizing radiation, presenting
an important supplement to the established gene transcrip-
tion-based regulatory pathway.

NAD+-dependent biochemistry reactions are vital for DNA
damage repair and genomemaintenance [39]. In this study, our
findings illustrate a new stress-responsive mechanism under
ionizing radiation. Ionizing radiation-elicited DNA damage
signals to govern cellular NAD+ synthesis, through AMPK-
mediated phosphorylation and activation of NAMPT
(figure 5). Timely operation of this AMPK-guided metabolic
cascade tunes NAD+ homeostasis and DNA repair, illuminat-
ing its potential value in the early prevention of radiation-
induced oral mucositis.
4. Material and methods
4.1. Materials
Rabbit polyclonal antibody recognizingphosphorylatedNAMPT
pS314 was customized from Boer Biotechnology (Chengdu,
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China). To prepare antibody recognizing NAMPT pS314, rabbits
were treated with peptide containing NAMPT pS314. Non-
modified peptide immobilized on an affinity column was used
to remove the antibodies recognizing non-phosphorylated
NAMPT, and NAMPT pS314 peptide immobilized on an affinity
columnwas used to associatewith and isolate the antibodies. The
eluted antibodies were then concentrated.

Antibodies recognizing NAMPT (#86634), ACC (#3676),
ACC pS79 (#11818), AMPKα pT172 (#50081), and AMPKα
(#5831) were obtained from Cell Signaling Technology. Anti-
bodies recognizing Tubulin (ab7291), Flag (ab205606) and
A769662 (ab120335) were purchased from Abcam. Anti-Flag
agarose beads were obtained from Sigma. [γ-32P]-ATP was
obtained from PerkinElmer (BLU002Z001MC). [14C]-nicotina-
mide was obtained from American Radiolabeled Chemicals
(ARC 0794). Active AMPK proteins (14–840) were obtained
from Sigma-Aldrich. KU55933 (S1092), NU7441 (S2638),
AZD6738 (S7693), PD98059 (S1177), SP600125 (S1460) and
Compound C (S7306) were obtained from Selleckchem.

4.2. Cell culture and irradiation
HOK cell was a gift provided by Dr J. S. Gutkind (National
Institute of Dental and Craniofacial Research, MD, USA).
HUVEC cells were obtained from ATCC. HOK cells were cul-
tured in Dulbecco’s modified Eagle’s medium (Gibco;
Thermo Fisher Scientific) supplemented with 10% fetal
bovine serum, and HUVEC cells were cultured with F-12K
medium. Ionizing radiation was performed with a 137Cs
gamma-ray source at indicated doses.

4.3. Immunoprecipitation and immunoblot analysis
Immunoprecipitation and immunoblot analysis were per-
formed following previous reports [40]. Cells were lysed
with a buffer (0.1% SDS, 0.5 mM EDTA, 1% Triton X-100,
100 μM sodium pyrophosphate,150 mM NaCl, 100 μM
PMSF, 100 μM leupeptin, 1 μM aprotinin, 1 mM dithiothreitol,
100 μM sodium orthovanadate, 50 mM Tris–HCl [pH 7.5]
and 1 mM sodium fluoride). Cell lysates were centrifuged
at 11 000 g, and the supernatants were incubated with indi-
cated antibodies overnight at 4°C. Then, the agarose beads
were applied to the mixture for incubation for another 3 h.
The protein-beads complexes were washed 3 times and
then analysed by immunoblot.

4.4. DNA constructs and mutagenesis
Human NAMPT gene was cloned into pcDNA3.1/hygro(+)-
Flag vector. QuikChange site-directed mutagenesis kit (Strata-
gene, La Jolla, CA) was used to prepare the mutants. shRNAs
were prepared using the following sequences: NAMPT
shRNA, TTA TTT CTA TTG GAA GAT G; control shRNA,
GCT TCT AAC ACC GGA GGT CTT. shRNA-resistant (r)
NAMPT was prepared by introducing four mutations (c334t,
t336a, a339t, a342t) in the targeting site for NAMPT shRNA.

4.5. Purification of recombinant proteins
The DNA of WT Flag-NAMPT, Flag-NAMPT S314A and
Flag-NAMPT T304A was cloned into pCold I vector (Takara
Bio). Recombinant His/Flag-NAMPT and the mutant His/
Flag-NAMPT proteins were expressed in BL21(DE3) bacteria as
previously described [22]. Bacteria cells were cultured in Lyso-
geny Broth medium and expression of these proteins was
inducedby IPTGfor 16 hat 30°C, followedby lysisvia sonication.

To purify the His/Flag-NAMPT proteins, the lysed bac-
terial samples were transferred to a Ni-NTA column (GE
Healthcare Life Sciences). The column was flushed with
20 mM imidazole and the protein was eluted with 250 mM
imidazole. To remove contaminated proteins, the eluted
samples were separated through a HiPrep 16/60 Sephacryl
S-200 HR gel filtration column (GE Healthcare Life Sciences).

4.6. Measurement of NAMPT activity
The enzymatic activity of purified NAMPT protein was
measured by using NAMPTActivity Assay Kit (Colorimetric)
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obtained from Abcam (ab221819), following manufacturer’s
instruction. Data were normalized to the level of input
NAMPT protein.

Cellular NAMPT activity was measured following pre-
vious reports [41,42]. Briefly, after indicated treatment, cells
were collected, sonicated in buffer containing 0.5 m NaCl,
20 mM Tris–HCl (pH 7.5), 10% glycerol and centrifuged.
The supernatant was incubated with 0.4 mM PRPP and
[14C]-nicotinamide (10 mCi mM–1) in a standard reaction
mixture (30 µl) containing 50 mM Tris-HCl (pH 7.5),
10 mM MgCl2, 1 mM ATP and 2.5 mM dithiothreitol. After
incubating at 37°C for 1 h, the reaction was terminated by
boiling and the samples were deproteinized. The formed
NMN was separated by thin layer chromatography on silica
gel sheets (Merck) using an isobutyric acid-5% ammonium
hydroxide-water mixture (66 : 10 : 19, v/v/v) as a solvent.
The cellular NAMPT activity was determined according to
the radioactivity of the samples. Data were normalized
to cell number.

4.7. In vitro kinase assay
Kinase reactions were performed as described previously
[16]. In brief, 10 ng purified recombinant AMPK proteins
were incubated with 100 ng NAMPT in 25 µl of kinase
buffer (50 mM Tris–HCl, pH 7.5, 100 mM KCl, 5 mM
MgCl2, 1 mM Na3VO4, 50 µM DTT, 5% glycerol and 50 µM
ATP) at 25°C for 1 h. 10 µCi [γ-32P]ATP and boiled NAMPT
protein were used in the reaction system if autoradiography
was used as the detection method. The reaction was termi-
nated by boiling in sample buffer, and NAMPT proteins
were precipitated and analysed by SDS-PAGE. The
phosphorylation was detected by immunoblotting with
indicated antibodies or by autoradiography.

4.8. Measurement of binding between NAMPT and
PRPP

Immunoprecipitated NAMPT proteins from cell lysates or
recombinate NAMPT proteins immobilized on beads were
incubated with binding buffer (50 mM Tris–HCl (pH 7.5),
10 mM MgCl2 and 2.5 mM DTT) containing 0.4 mM PRPP
and 20 µCi [32P]-PRPP at 30°C for 5 min. The protein-beads
complexes were then washed with binding buffer twice, and
the protein-associated radioactivitywas detected by liquid scin-
tillation counting. [32P]-PRPP was enzymatically synthesized
using ribose 5-phosphate and [γ-32P]ATP, and isolated by
ion-exchange chromatography as previously reported [43].

4.9. Measurement of DNA repair capacity
DNA repair capacity was measured following previous
report [44]. Briefly, pGL2-CMV vector carrying a firefly luci-
ferase gene was damaged in vitro by exposure to 20 Gy
ionizing radiation, and used as a reporter gene. The cells
were transfected with damaged or undamaged (positive con-
trol) pGL2-CMV vector, followed by indicated irradiation
treatment 30 min after transfection. The cells were collected
72 h after the transfection, and the luciferase activity in the
lysates was determined with a Promega luciferase assay
system. The luciferase signal was normalized to total protein
levels and represented as the percentage of positive control.
4.10. RT-PCR
Total RNA was isolated with reagent trizol, and then sub-
jected to reverse transcription using first-strand cDNA
synthesis for RT-PCR kit (Takara). The cDNA was analysed
by PCR according to previously reported experimental proto-
cols [24,45]. Primer sequences used for the indicated genes
are as follows: NAMPT-F, 50-GTA GTA ACC AAA GAG
AAA ATC CAG GAA G-30; NAMPT-R, 50- GCT GTT ATG
GTA CTG TGT TCT GCT G-30; Actin-F, 50-CAT GTA CGT
TGC TAT CCA GGC-30; Actin-R, 50-CTC CTT AAT GTC
ACG CAC GAT-30.

4.11. Brdu incorporation assay
BrdU incorporation assay was performed by using BrdU Cell
Proliferation ELISA Kit (colorimetric) obtained from Abcam
(ab126556), following the manufacturer’s instructions.

4.12. Colony formation assay
200 cells were seeded in 6-well plates. After indicated treat-
ment, cells were continuously cultured for 12 days. The
clones were fixed in methanol and stained with crystal
violet solution. Clones with more than 50 cells were counted.

4.13. Measurement of nuclear NAD level
After indicated treatment, nucleus was isolated using a
previously reported protocol, by which isolation of
nucleus from cultured cells could be finished within 2 min
[46]. The level of nuclear NAD was measured by using
NAD/NADH Quantification Colorimetric Kit obtained
from BioVision (K337-100), following the manufacturer’s
instructions.

4.14. Quantification and statistical analysis
Sample size was determined to be adequate based on the
magnitude and consistency of measurable differences
between groups in all experiments in this study. No ran-
domization or blinding was done, and no sample was
excluded from the analyses. Statistical analyses were per-
formed using two-sided Student’s t-test for comparison
between two groups. All data represent the mean ± s.d. of
at least three independent experiments/samples unless other-
wise specified. Differences in means were considered
statistically significant at p < 0.05. The Bonferroni correction
was used for the multiple hypothesis correction (requiring
p < 0.05/N, N indicates the number of comparisons), to
avoid reporting false positive results. For every figure, statisti-
cal tests are justified as appropriate and the data met the
assumptions of the tests. Finally, the variance between
groups that were being statistically compared was similar.
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