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Abstract

Parkinson's disease (PD) is characterized by complex clinical symptoms, including clas-

sic motor and nonmotor disturbances. Patients with PD vary in clinical manifestations

and prognosis, which point to the existence of subtypes. This study aimed to find the

fiber connectivity correlations with several crucial clinical symptoms and identify PD

subtypes using unsupervised clustering analysis. One hundred and thirty-four PD

patients and 77 normal controls were enrolled. Canonical correlation analysis (CCA)

was performed to define the clinically relevant connectivity features, which were then

used in the hierarchical clustering analysis to identify the distinct subtypes of PD

patients. Multimodal neuroimaging analyses were further used to explore the neuro-

physiological basis of these subtypes. The methodology was validated in an indepen-

dent data set. CCA revealed two significant clinically relevant patterns (motor-related

pattern and depression-related pattern; r = .94, p < .001 and r = .926, p = .001, respec-

tively) among PD patients, and hierarchical clustering analysis identified three neuro-

physiological subtypes (“mild” subtype, “severe depression-dominant” subtype and

“severe motor-dominant” subtype). Multimodal neuroimaging analyses suggested that

the patients in the “severe depression-dominant” subtype exhibited widespread dis-

ruptions both in function and structure, while the other two subtypes exhibited rela-

tively mild abnormalities in brain function. In the independent validation, three similar

subtypes were identified. In conclusion, we revealed heterogeneous subtypes of PD

patients according to their distinct clinically relevant connectivity features. Impor-

tantly, depression symptoms have a considerable impact on brain damage in patients

with PD.
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1 | INTRODUCTION

Parkinson's disease (PD) has been recognized as a heterogeneous

syndrome rather than just a dopaminergic motor disease (Titova,

Padmakumar, Lewis, & Chaudhuri, 2017). The pathological and neuro-

transmitter basis of PD is not all dopaminergic, other transmitter sys-

tems such as cholinergic, noradrenergic, and serotonergic system are

involved; nondopaminergic neurons, including the locus coeruleus and

raphe area, are selectively vulnerable during the spreading of patho-

logical alpha-synuclein (Braak et al., 2003). These involvements lead

to the heterogeneous clinical manifestations, not only including classic

motor symptoms but involving differed extents of nonmotor symp-

toms (NMS). Over the past decades, a major emphasis has been

placed on motor symptomatology; however, it is NMS burden that

determines quality of life in PD patients (Barone et al., 2009). The

whole NMS has a greater impact on health-related quality of life than

motor symptoms and NMS progression contributed importantly to

quality of life decline in PD patients (Martinez-Martin, Rodriguez-

Blazquez, Kurtis, Chaudhuri, & Group, 2011). Therefore, except for

the motor symptoms, we need to pay attention to NMS when evalu-

ating the disease severity of PD patients.

With such a highly heterogeneous syndrome, identifying the

subtypes of PD is relevant as they may reflect different neurobiological

basis and predict outcomes or responses to treatment. Many efforts to

define subtypes have been made, including categorizing PD patients

into age-at-onset categories, major motor subtypes, patterns of cogni-

tive impairment, and specific nonmotor symptom-dominant clinical

subtypes (Marras & Chaudhuri, 2016; Sauerbier, Jenner, Todorova, &

Chaudhuri, 2016; Schapira, Chaudhuri, & Jenner, 2017; Titova

et al., 2017; Titova & Chaudhuri, 2018; Xuan et al., 2017). Other

pioneering studies also divided PD patients into different subtypes

using data-driven analyses (Erro et al., 2016; Fereshtehnejad, Zeighami,

Dagher, & Postuma, 2017; van Rooden et al., 2011). However, it is

important to note that current subtyping approaches were mainly

based on empirically clinical observation except some neurotransmitter

dysfunction-based nonmotor classifications that were supported by

imaging and other biomarker studies (Titova et al., 2017; Titova &

Chaudhuri, 2018). A natural attempt to describe subtypes using objec-

tive disease-related features incorporating motor and nonmotor symp-

toms should be undertaken.

Magnetic resonance imaging (MRI) provides measures of various

objective brain features. Fiber connectivity, derived from diffusion ten-

sor imaging (DTI), is a relatively stable feature to reflect the brain attri-

bution during a period of time, quantifying connectivity between a pair

of brain regions in terms of fiber number (FN) and fractional anisotropy

(FA). PD is associated with disrupted connectivity in the white matter

network (Galantucci et al., 2017; Li et al., 2017; Wen, Heng et al.,

2017; Wen, Xu et al., 2017), which suggests that fiber connectivity

may serve as a disease-related feature in multiple disease stages.

Canonical correlation analysis (CCA), a data-driven approach, enables

investigation of the underlying relationships between two sets of vari-

ables (e.g., fiber connectivity and clinical symptoms) (Smith

et al., 2015). Using CCA, we could identify the disease-related brain

features that simultaneously weighted several clinical symptoms.

Unsupervised clustering analysis is a hypothesis-free method that

makes no use of labels to divide observations into homogenous sub-

sets (Kimes, Liu, Neil Hayes, & Marron, 2017). Combined with objec-

tive disease-related brain features, clustering analysis would help us

better identify PD subtypes with stronger neurobiological correlations.

In the present study, we aimed to find the fiber connectivity cor-

relations with several clinical symptoms using CCA and identify differ-

ent PD subtypes using unsupervised clustering analysis that was

based on objective fiber connectivity features. Multimodal neuroimag-

ing analyses (including functional connectivity calculated from resting-

state functional MRI and microstructural alterations reflected by DTI)

were used to deepen the neurophysiological basis behind these sub-

types. We hypothesized that a specific fiber connectivity pattern was

associated with definite clinical symptoms and that different subtypes

defined by the clustering analysis would exhibit distinct neurophysio-

logical foundations.

2 | MATERIALS AND METHODS

2.1 | Participants

All patients with PD and normal controls signed informed consent

forms in accordance with the approval of the Medical Ethics Commit-

tee of the Second Affiliated Hospital of Zhejiang University School of

Medicine.

A total of 134 PD patients (data set-1) and 77 normal controls who

underwent both structural T1 scanning and DTI scanning were recruited

from August 2014 to November 2018. The diagnosis of PD was made

by an experienced neurologist (B. Z.) according to UK Parkinson's Dis-

ease Society Brain Bank criteria (Hughes, Daniel, Kilford, & Lees, 1992).

Normal controls and PD patients with a history of other neurologic

or psychiatric disorders, brain trauma, or general exclusion criteria for

MRI scanning were excluded from this study. For PD patients who

were under antiparkinsonian treatment, clinical assessments and MRI

scanning were performed in the morning after withdrawing all anti-

parkinsonian drugs overnight (at least 12 hr) (on “drug-off status”) to

minimize the potential pharmacological influences. Basic demographic

information, such as age, sex and education, and neurologic and psychi-

atric scale assessments, including the unified Parkinson's disease rating

scale (UPDRS), Hoehn-Yahr stage, mini-mental state examination

(MMSE), Hamilton depression scale (HAMD), Hamilton anxiety scale

(HAMA), Epworth Sleepiness Scale (ESS) and Parkinson's disease ques-

tionnaire (39 questions) (PDQ-39), were obtained from all patients. For

normal controls, basic demographic information, UPDRS motor score,

HAMD score, HAMA score, and MMSE score were recorded. The mood

status was evaluated for the past week to minimize the influences of

fluctuation-related acute mood symptoms. Given that patients with PD

commonly and concurrently suffer from motor and nonmotor symptoms

relating to overall disease progression and a decline in quality of life, an

integrated score, that is, the global composite outcome (GCO), was cal-

culated to evaluate overall disease severity (Fereshtehnejad et al., 2015;
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Fereshtehnejad et al., 2017). The GCO equally merged standardized

z-scores from different clinical domains, including motor (UPDRS III

score), depression (HAMD score), anxiety (HAMA score), global cogni-

tion (MMSE score) and daytime sleepiness (ESS score) domains, which

can account for different variations in the range or direction of different

clinical scores and avoids overweighting a single clinical domain. A

higher GCO score indicated worse function. The formula for the GCO

was as follows:

1 GCO=
Pn

k = 1zk

2 zk = crudescore−meanð Þ=standard deviation

where n is the number of clinical domains and zk is the standardized

z-score of a clinical domain.

2.2 | MRI data acquisition

All participants were scanned on a 3.0-Tesla MRI scanner (GE Discovery

750) equipped with an 8-channel head coil. During MRI scanning, the

head was stabilized using restraining foam pads, and earplugs were pro-

vided to reduce the noise. Structural T1 images were acquired using

a fast spoiled gradient recalled sequence: repetition time = 7.336 ms;

echo time = 3.036 ms; inversion time = 450 ms; flip angle = 11�; field of

view = 260 × 260 mm2; matrix = 256 × 256; slice thickness = 1.2 mm;

196 continuous sagittal slices. DTI images were scanned using a

spin echo-echo planar imaging sequence with 30 gradient directions

(b value = 1,000 s/m2): repetition time = 8,000 ms; echo time = 80 ms;

flip angle = 90�; field of view = 256 × 256; matrix = 128 × 128; slice

thickness = 2 mm; slice gap = 0 mm; 67 interleaved axial slices. Resting-

state fMRI (rs-fMRI) images were acquired using a gradient recalled

echo-echo planar imaging sequence: repetition time = 2,000 ms; echo

time = 30 ms; flip angle = 77�; field of view = 240 × 240 mm2; matrix =

64 × 64; slice thickness = 4 mm; slice gap = 0 mm; 38 interleaved axial

slices.

2.3 | DTI data analysis

2.3.1 | Preprocessing and fiber connectivity
calculations

DTI images were preprocessed, and the structural network was con-

structed by the Pipeline for Analyzing braiN Diffusion imAges (PANDA)

toolbox (http://www.nitrc.org/projects/panda/) (Cui, Zhong, Xu, He, &

Gong, 2013), which incorporates the FMRIB Diffusion toolbox (http://

www.fmrib.ox.ac.uk/fsl/) and Diffusion Toolkit software (http://trackvis.

org/dtk/). The preprocessing procedures included the following steps:

(1) brain extraction; (2) correction for eddy-current-induced distortion

and simple head-motion artifacts; and (3) diffusion parameter calculation

(i.e., fractional anisotropy [FA], mean diffusivity [MD]).

The DTI-based structural network was constructed as in a previous

study (Figure 1a) (Guan et al., 2019), where nodes represented brain

regions and edges represented interregional white matter tracks. The

Harvard-Oxford cortical and subcortical atlas (HOA) with 110 regions

of interest (ROIs) was used to define network nodes. Deterministic

tractography was performed to obtain interregional white matter tracts.

Specifically, the fiber assignment continuous tracking (FACT) algorithm

was applied to reconstruct interregional tracts. Tractography was termi-

nated if it turned at an angle >45� or reached a voxel with an FA < 0.2.

This procedure simultaneously generated the FN and FA connectivity

matrixes.

To reduce the influence of pseudoconnections, a threshold of

fiber numbers, n = 3, was set to ensure the major connections among

cortical regions (Shu et al., 2009). Considering that fiber connectivity

between a pair of nodes is affected by the number of fiber bundles as

well as the fiber integrity, independent measures of FN or FA could

not reflect the actual connectivity. Therefore, we multiplied FN by the

mean FA along the fiber bundles connecting pairs of nodes to repre-

sent the fiber connectivity. This strategy more comprehensively rev-

ealed the white matter structure (Lo et al., 2010).

2.3.2 | CCA and clustering analysis

Each participant's 110 × 110 fiber connectivity matrix contained 5,995

(110 × 109/2) unique connectivity features, necessitating a procedure

for selecting a subset of relevant and nonredundant connectivity fea-

tures. To select these clinically relevant connectivity features, we first

used Spearman's rank correlations to identify connectivity features that

were significantly correlated (p < .005) with clinical symptom severity,

including motor symptoms (UPDRS III score) and several NMS (global

cognition, MMSE score; depression, HAMD score; anxiety, HAMA

score; daytime sleepiness, ESS score). Then, we carried out a multivari-

ate analysis named CCA to define a low-dimensional representation

of those connectivity features (Figure 1b). Each significant CCA mode

identified a linear combination of a set of original variables (X, for

example, clinical symptoms) and a linear combination of another set of

original variables (Y, for example, connectivity features), where the cor-

relation between these two combinations was maximal. These two

combinations represented the canonical variables for each set and were

termed the clinical component (U) and connectivity pattern (V), respec-

tively. Canonical loading describes the association between an original

variable and its corresponding canonical variable. Cross loading depicts

the correlation between an original variable and the canonical variable

of another set. Squared loading indicates the amount of variance of a

variable explained by the canonical variate (Sherry & Henson, 2005;

Smith et al., 2015) (the detailed procedure is shown in Figure S1). This

data-driven approach enabled us to find two modes that related sets of

fiber connectivity features to sets of clinical symptom measures.

Clustering analysis was performed in R with the cluster package.

We used hierarchical clustering to assign subjects to nested sub-

groups with similar patterns of abnormal connectivity along these two

CCA modes of connectivity features (Figure 1c). The Euclidean dis-

tance between every pair of participants in this two-dimensional con-

nectivity feature space was calculated, and then, Ward's minimum
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variance method was used to iteratively link pairs of participants in

closest proximity, forming progressively larger clusters in a hierarchi-

cal tree. Next, we used the NbClust package to determine the best

number of clusters in our analysis.

2.3.3 | Tract-based spatial statistics analysis

To explore the white matter microstructural alterations underlying

different subtypes, FA and MD maps were used to reflect the micro-

structure of brain-wide white matter in PD subtypes. The tract-

based spatial statistics (TBSS) method was used to extract the main

fibers across the whole brain according to the following steps:

(1) individual FA images were aligned to the standard space template

using nonlinear registration; (2) the mean FA image was calculated

and compressed to form a mean skeleton representing topological

features of all tracts derived from the whole group, and an FA

threshold of 0.2 was set to remove trivial tracts; and (3) each sub-

ject's aligned FA images were projected onto the fiber skeleton tem-

plate for statistical analysis. MD maps were also normalized to the

skeleton using TBSS.

2.4 | Rs-fMRI data analysis: Preprocessing and
functional connectivity analysis

The rs-fMRI data preprocessing was performed using the Statistical

Parametric Mapping version 12 (SPM, https://www.fil.ion.ucl.ac.uk/

spm/) and Data Processing & Analysis for (Resting-State) Brain Imag-

ing suite (http://rfmri.org/dpabi) according to a standard pipeline

(Yan, Wang, Zuo, & Zang, 2016). Of note, 13 patients and 1 normal

control were excluded because of the poor image quality. Finally,

121 PD patients and 76 normal controls were included in the func-

tional connectivity analysis.

CCA revealed two distinct connectivity patterns, each pattern

comprised a set of nodes. To uncover the neurophysiological sub-

strates of the subtypes defined by the unsupervised clustering analy-

sis, we firstly calculated a functional connectivity matrix to reflect the

local function of each pattern (Figure 1d-I). Then, to explore the global

function of each pattern, we calculated the functional connectivity

outside of each pattern (Figure 1d-II). Fisher's r-to-z transformation

was applied to improve data distributions for parametric statistical

analyses. A detailed description of rs-fMRI data analysis was shown in

the Supplementary Materials.

F IGURE 1 Data analysis schematic and workflow. (a) Individual network construction. (1) Deterministic tractography based on FA images
in native space and (2) HOA parcellation in native space were used to construct the (3) structural network. (4) The FA-weighted matrix and
(5) FN-weighted matrix were simultaneously generated. (6) The final matrix representing fiber connectivity was calculated by multiplying FN and
FA along the fiber bundles connecting a pair of nodes. (b) Identification of clinically relevant connectivity features. (1) Brain-wide fiber
connectivity was correlated with (2) clinical scores to get (3) significant connectivity features; CCA was conducted based on (2) clinical scores and
(3) significant connectivity features to identify a low-dimensional representation of those connectivity features. (c) Clustering analysis in whole
PD group. Clustering analysis based on two clinically relevant connectivity patterns identified three subtypes in PD (colored by dark, green, and
purple cartoons). (d) Neuroimaging analyses for PD subtypes and normal controls (colored by blue cartoons). CCA, canonical correlation analysis;
FA, fractional anisotropy; FN, fiber number; HOA, Harvard-Oxford cortical and subcortical atlas
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2.5 | Statistical analysis

Statistical analyses of demographic and clinical data were performed

using SPSS 19.0 statistical software. The one-sample Kolmogorov–

Smirnov test was used to check the data normality. Differences in the

age, education, sex distribution, and clinical symptom scores between

groups were compared with the unpaired t-tests, the Mann–Whitney

U tests, and the Pearson chi-squared test as appropriate. Paired

t-tests were used to compare the normalized UPDRS III scores and

HAMD scores to determine the predominant clinical symptom in a

specific subtype. Statistical significance was set at p < .05.

Statistical analyses of functional connectivity were conducted

using unpaired t tests with age, sex, and education as covariates.

Multiple comparison corrections were performed using the false dis-

covery rate (FDR) correction with q < .05. The intergroup comparisons

of the white matter microstructure (FA and MD skeletons) were per-

formed using the Randomized script in the FMRIB Software Library

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), with age, sex, and education

as covariates. Permutation tests with 5,000 iterations and threshold-

free cluster enhancement with a threshold of corrected p < .05,

corrected for multiple comparisons, were performed in the intergroup

comparisons.

2.6 | Independent validation of the subtypes

To validate the subtypes we defined in data set-1, we performed the

same data-driven procedures in an independent data set (data set-2)

that included 98 PD patients who were recruited from December

2018 to October 2019. Specifically, CCA and hierarchical clustering

analysis were conducted again to identify the PD subtypes.

3 | RESULTS

3.1 | Clinically relevant fiber connectivity patterns
in Parkinson's disease

CCA revealed two significant modes that related sets of fiber connec-

tivity features (connectivity pattern) to sets of clinical symptom mea-

sures (clinical component) (Figure 2a,b). For each connectivity pattern,

squared canonical loadings for each connectivity feature were summa-

rized by depicting the neuroanatomical distribution of the top 10 ROIs

with the largest R2 values, summed across all connectivity features

associated with a given node. The first mode defined a connectivity pat-

tern predominantly related to brain nodes close to the midline, including

the bilateral precuneus cortex, cuneal cortex, supplementary motor cor-

tex (SMC), and superior parietal lobule (SPL), that particularly account

motor symptoms (squared canonical loadings = 0.81; Figure 2a). We ter-

med this CCA mode a motor-related pattern. The second mode defined

a set of connectivity features predominantly related to the lateral limbic

nodes, including the insula, frontal orbital cortex, frontal and central

operculum cortex, that mostly explained depression (squared canonical

loadings = 0.72; Figure 2b). We called this CCA mode a depression-

related pattern. Moreover, both the motor-related connectivity pattern

and depression-related connectivity pattern were associated with over-

all disease severity (GCO; Figure 2c). In summary, CCA identified two

disease-related connectivity patterns that were especially related to

motor function and depression.

3.2 | Clinically relevant fiber connectivity patterns
define three subtypes of Parkinson's disease

We tested whether these fiber connectivity patterns tended to cluster

patients into subgroups. We used hierarchical clustering to discover

clusters of patients by assigning them to nested subgroups with simi-

lar fiber connectivity patterns. This unsupervised approach objectively

determined 15 clusters and 3 clusters as the optimal solutions. Here,

we prioritized three clusters defined by distinct fiber connectivity fea-

tures, which resulted in a better-balanced data distribution and

ensured the statistical power to detect biologically meaningful differ-

ences (Figure 2d).

3.3 | Clinical profiles of subtypes defined by the
connectivity patterns

Demographic information and clinical scores are shown in Table 1. No

significant differences in age, sex, or education were found among the

three PD clusters. In comparison to the normal controls, Cluster 2 had

a different sex distribution, and both Cluster 1 and Cluster 2 exhibited

lower education.

Of the three clusters, we found one cluster that was character-

ized by slightly lower overall disease impairment (Cluster 3: lower

GCO); one cluster that was characterized by severe overall disease

impairment with depressive symptoms as dominant (Cluster 1: higher

GCO, higher normalized depression score, p = .001; Table S1); and the

remaining cluster that was characterized by severe overall disease

impairment with predominant motor disturbances (Cluster 2: higher

GCO, higher normalized motor score, p < .001; Table S1). Therefore,

we termed Cluster 1 as the “severe depression-dominant” subtype

(S-depression), Cluster 2 as the “severe motor-dominant” subtype

(S-motor), and Cluster 3 as the “mild” subtype.

3.4 | Functional connectivity within the clinically
relevant fiber connectivity pattern

To reveal the local function of the connectivity pattern derived from

CCA, we calculated functional connectivity among the top 10 ROIs

within each connectivity pattern in each group. The mean functional

connectivity matrix for each group is shown in Figure 3 (column 2).

Comparisons of local function between groups are presented in

Figure 3 (column 3, corrected by false discovery rate (FDR) with

q < 0.05): the gray curve between each pair of ROIs represents the
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reduced functional connectivity in PD patients compared to the nor-

mal controls. Compared with the normal controls, in the motor-related

pattern, the mild and S-motor subtypes showed slightly decreased

functional connectivity, while the S-depression subtype exhibited

widespread disrupted functional connectivity (Figure 3a, column(3)),

indicating that the S-depression subtype was associated with poor

function within the motor-related pattern. In the depression-related

pattern, the S-depression subtype showed widespread disruption

in functional connectivity among ROIs, and the S-motor subtype

showed moderately decreased functional connectivity among ROIs in

F IGURE 2 Legend on next page.
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comparison to normal controls (Figure 3b, column(3)). There was no

difference between mild subtype and normal controls in terms of func-

tional connectivity among the ROIs in the depression-related pattern.

Details about the decreased functional connectivity among the ROIs

are presented in Table S2.

3.5 | Functional connectivity outside of the
clinically relevant fiber connectivity pattern

To detect the global function of the connectivity pattern, we used a

seed-based approach to explore the functional connectivity between

the connectivity pattern and the remaining voxels in the brain. For the

motor-related pattern, the S-depression subtype showed widespread

decreased functional connectivity across the whole brain, mainly involv-

ing the frontal-temporal, parietal-occipital, and cingulate regions, while

the S-motor subtype showed dysconnectivity in the inferior frontal

and supramarginal gyri compared with the normal controls. Moreover,

the S-depression subtype exhibited increased functional connectivity

between the motor-related pattern and the cerebellum as well as the

thalamus compared with the normal controls (FDR-corrected, q < 0.05,

cluster size >10 voxels; Figure 4a, Table S3).

Regarding the depression-related pattern, in comparison to

the normal controls, both the S-depression and S-motor subtypes

exhibited widespread decreased functional connectivity in the whole

brain covering the frontal-temporal, parietal-occipital and limbic

regions, while the S-depression subtype also showed increased func-

tional connectivity in the cerebellum, thalamus, and precuneus (FDR-

corrected, q < 0.05, cluster size >10 voxels; Figure 4a, Table S4). No

difference in functional connectivity with either the motor-related

pattern or depression-related pattern was observed between the mild

subtype and normal controls.

3.6 | Microstructural changes in the three
subtypes of Parkinson's disease

Compared with normal controls, only the S-depression subtype

showed increased MD in widespread brain regions, which mainly

included the superior longitudinal fasciculus, corona radiata, corpus

callosum, forceps minor, and uncinate fasciculus (p < .05, corrected by

TFCE; Figure 4b, Table S5). No difference in the MD skeleton was

observed among the other pairs of comparisons, and no significant

differences in the FA skeleton were observed among the groups.

3.7 | Robustness of subtypes in Parkinson's
disease

We used the same data-driven procedures in another independent

data set (data set-2) to validate the robustness of the subtypes we

defined in data set-1. First, CCA stably revealed a depression-related

pattern and motor-related pattern (Figure S3, A and B), and these two

clinically relevant connectivity patterns mostly explained depression

and motor symptoms, respectively (squared cross loading = 0.468 and

0.279, respectively). In addition to the depression- and motor-related

patterns, another component that mainly explained daytime sleepi-

ness was found (Figure S3, C). This inconsistency across the two

CCA procedures might have resulted from the heterogeneous clinical

manifestations of the patients between the two data sets (Table S6;

PD patients in data set-2 had mild motor impairments). Then, taking

the same approaches as before, the motor- and depression-related

connectivity patterns were used in the hierarchical clustering. This

procedure also determined three clusters as the optimal solution

(Figure S3, D).

Demographic information and clinical scores for three clusters in

data set-2 are shown in Table S7. No significant differences in age,

sex, or education were found among the three clusters. Similarly, of

the three clusters, we found one cluster that was characterized by

slightly lower overall disease impairment (Cluster 1: lower GCO); one

cluster that was characterized by severe overall disease impairment

with depressive symptoms as dominant (Cluster 3: normalized motor

score < normalized depression score, p < .001); and the remaining clus-

ter was characterized by severe overall disease impairment with a

trend of a predominant motor disturbance (Cluster 2: normalized

motor score > normalized depression score, p = .066). In summary,

by employing this independent data set, we found three different

subtypes (mild, S-motor, and S-depression) that were similar to what

we previously found, therefore, verifying the robustness of these

subtypes.

F IGURE 2 CCA and hierarchical clustering define three connectivity-based subtypes for PD. CCA was used to define a low-dimensional
representation of clinically relevant connectivity features and identified a “motor-related” pattern (a) and a “depression-related” pattern (b),
represented by linear combinations of connectivity features (connectivity component) that were correlated with linear combinations of symptoms
(clinical component). The circles in (a) and (b) depict the connectivity features (top 10) that were most highly correlated with each clinical
component. The scatterplots in (a) and (b) illustrate the correlation between the connectivity component and clinical component for the motor-

related pattern (r = .941, p < .001) and depression-related pattern (r = .926, p = .001), respectively. To the left of each scatterplot, squared cross
loadings for clinical scores are depicted. N.A. = not significant. For visualization, below each scatterplot, squared canonical loadings for connectivity
features are summarized by depicting the neuroanatomical distribution of the top 10 ROIs with the largest R2 values, summed across all connectivity
features associated with a given node (neuroanatomical distribution of the top 20% ROIs with the largest R2 values is presented in Figure S2).
(c) Correlations between clinically relevant connectivity scores and overall disease severity (GCO). (d) Hierarchical clustering analysis. According to
the connectivity scores, patients with PD were assigned into three subtypes, whose connectivity scores and clinical features are presented as green
diagrams and blue diagrams, respectively. CCA, canonical correlation analysis; GCO, global composite outcome; ROI, region of interest
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4 | DISCUSSION

In the present study, we found significant fiber connectivity patterns

with significant clinical relevance and explored heterogeneous PD

subtypes using unbiased objective data-driven approaches and further

revealed the potential structural and functional underpinnings behind

these subtypes. The main findings were as follows: (a) motor-related

and depression-related fiber connectivity patterns were observed in

PD patients, both of which correlated with overall disease severity

(GCO score); (b) unsupervised clustering analysis using objective con-

nectivity features defined three PD subtypes with very different clini-

cal profiles; (c) the S-depression subtype showed widespread

disruptions both in function and structure, while the other two sub-

types exhibited relatively mild brain abnormalities in functional con-

nectivity; and (d) these three subtypes were robustly identified, as

validated by an independent data set.

4.1 | Distinct clinically relevant fiber connectivity
patterns in Parkinson's disease

PD is generally known as a movement disorder, there is an increasing

awareness of the nonmotor manifestations in PD as they often pre-

sent before PD diagnosis and contribute to impaired quality of life,

which indicates that evaluating PD severity only depending on motor

symptoms is one-sided. In this study, we considered motor symptoms

and several nonmotor symptoms together and extracted two clinically

relevant connectivity patterns that were most associated with motor

symptoms and depressive symptoms. Both of these clinically relevant

patterns were associated with overall disease severity. In clinical

practice, motor impairments have been recognized as a prominent

component of PD and are the core criteria for PD diagnosis (Hughes

et al., 1992; Postuma et al., 2015), which emphasizes the centrality of

motor disturbances in the clinical profiles of PD patients. In our study,

we identified a motor-related pattern based on various clinical mani-

festations and further confirmed the centrality of motor symptoms in

PD, which was in line with previous evidence. Moreover, it is now

widely realized that PD evolves into a multisystem disorder that is

accompanied by a wide variety of nonmotor symptoms, some of

which may be present before the onset of motor features (Schapira

et al., 2017; Titova et al., 2017). Depression, a common nonmotor

symptom, could appear in the prodromal phase of PD and has been

shown to nearly double an individual's risk of subsequently developing

PD (Noyce et al., 2012). Furthermore, depression had a strong associ-

ation with health-related quality of life in PD patients (Gallagher,

Lees, & Schrag, 2010), which implied the importance of depressive

symptoms in PD. In our study, a depression-related pattern was auto-

matically extracted among several nonmotor symptoms, which further

demonstrated that depression was a considerable manifestation in

PD. In brief, our study suggested that the core features of PD include

motor impairment and depression.

In the motor-related connectivity pattern, the regions were

predominantly located in the medial brain involving the bilateralT
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F IGURE 3 Subtype differences in functional connectivity within the motor-related pattern (a) and the depression-related pattern (b). The
group mean functional connectivity matrix is presented in column (2). Comparison results are shown in column (3) (corrected by false discovery
rate (FDR) with q < 0.05): the gray curve between each pair of ROIs represented the reduced functional connectivity in patients with PD
compared with the normal controls. The S-depression subtype showed widespread disrupted functional connectivity both within the motor-
related pattern and depression-related pattern. The S-motor subtype exhibited slightly decreased functional connectivity in the motor-related
pattern and moderately decreased functional connectivity in the depression-related pattern. The mild subtype only showed slightly lower
functional connectivity in the motor-related pattern. SPL.L, left superior parietal lobule; SPL.R, right superior parietal lobule; FMC.L, left frontal
medial cortex; SMC.L, left supplementary motor cortex; SMC.R, right supplementary motor cortex; PCN.L, left precuneus; PCN.R, right
precuneus; CN.L, left cuneus; CN.R, right cuneus; FOC.L, left frontal orbital cortex; FOC.R, right frontal orbital cortex; INS.L, left insula; PRG.L,
left precentral gyrus; FO.L, left frontal operculum; CO.R, right central operculum; PP.R, right planum polare; SCLC.L, left supracalcarine cortex
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precuneus cortex, cuneal cortex, SPL, and SMC, as well as the left

medial frontal cortex and orbitofrontal cortex. Although most associated

with motor symptoms, this connectivity pattern was also related to

other nonmotor symptoms, including global cognition, depression, and

excessive daytime sleepiness. Similarly, previous researches have rev-

ealed that disrupted structure or function in medial brain regions, includ-

ing the frontal, parietal and occipital cortices (e.g., SMC, precuneus,

and SPL), not only impacted the parkinsonian motor system (C. Huang

et al., 2013; Jenkins, Jahanshahi, Jueptner, Passingham, & Brooks, 2000;

Timmermann et al., 2003; Wilson, Niccolini, Pellicano, & Politis, 2019;

Wu et al., 2009) but also related to some nonmotor symptoms, such as

cognitive impairment, depression and sleep disturbance (Chondrogiorgi

et al., 2016; C. Huang et al., 2007; Kato et al., 2012; Morgan, Ledbetter,

Ferrier, Zweig, & Disbrow, 2018; Wen et al., 2016). This evidence

F IGURE 4 Functional connectivity
alterations between the clinically relevant
connectivity pattern and the remaining
portions of the brain (a) and
microstructural changes (b) in the three
subtypes of PD. (a) For both the motor-
related and depression-related patterns,
the S-depression subtype showed
widespread decreased functional

connectivity across the whole brain,
mainly involving the frontal-temporal and
parietal-occipital regions and increased
functional connectivity in the cerebellum
and thalamus. The S-motor subtype
showed decreased functional connectivity
between the motor-related pattern and
the inferior frontal as well as the
supramarginal gyri, dysconnectivity
between the depression-related pattern
and widespread brain regions covering
the frontal-temporal, parietal-occipital
and limbic regions. The results were
corrected by false discovery rate (FDR)
with q < 0.05 and cluster size >10 voxels.
(b) Compared with NCs, the S-depression
subtype showed increased MD in
widespread brain regions mainly involving
the superior longitudinal fasciculus,
corona radiata, corpus callosum, forceps
minor, and uncinate fasciculus (p < .05,
corrected by TFCE). No difference was
observed among the other groups
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indicated that nodes in medial brain regions participated in the genera-

tion of various clinical symptoms, including both motor and nonmotor

symptoms, and may act as key nodes in the whole brain. The human

cerebral cortex is organized into a complex network of local circuits and

long-range fiber pathways. This complex network forms the structural

substrate for distributed interactions among specialized brain regions

(Passingham, Stephan, & Kotter, 2002; Sporns, Tononi, & Kotter, 2005).

Notably, Hagmann and colleagues revealed a “structural core” within

the posterior medial and parietal cortical regions as well as the frontal

cortex (e.g., precuneus, cuneus, superior parietal cortex, and medial fron-

tal cortex) (Hagmann et al., 2008). Brain regions in this “structural core”

shared high centrality and showed a close relationship with function,

which suggested a central role of the regions within this “structural

core” in functional integration that was required for the generation of

behavior. Interestingly, the distribution of brain regions in our motor-

related pattern was similar to the pattern of this “structural core.” The

significant associations between motor-related connectivity pattern and

the various clinical symptoms further demonstrated a correspondence

between this core structural connectivity feature and the clinical behav-

ior manifestations. Combined with our results, we suppose that this

motor-related connectivity pattern is a core feature of PD that reflects

the overall clinical manifestations with motor impairment as the cardinal

symptom.

Depression is a syndrome of stress and emotion dysregulation

and can affect up to 10–45% of PD patients. It often predates

motor symptoms by several years and belongs to nonmotor features

that may herald the development of PD (Burn, 2002; Ishihara &

Brayne, 2006). In the present study, we identified a depression-

related pattern mainly located in the frontal-limbic network that

included the insula, orbitofrontal cortex, frontal and central operculum

cortex. The insula has a well-established role in processing affection

and emotion, and the orbitofrontal cortex promotes integrating and

evaluating multimodal information and making decisions (P. Huang

et al., 2016). Damage to these regions disrupts social behaviors and

emotional processing (Bechara, Damasio, & Damasio, 2000). A signifi-

cant biological basis for depression in PD is the outcome of any dam-

age to limbic noradrenergic and dopaminergic mechanisms (Remy,

Doder, Lees, Turjanski, & Brooks, 2005). Previous studies have also

revealed that depression in PD was associated with dysfunction in

frontal-limbic brain networks (Coulter, Ibrahimi, Patel, & Agius, 2017;

Drysdale et al., 2017; Gujral, Aizenstein, Reynolds 3rd, Butters, &

Erickson, 2017), which was in line with our findings. Considering the

strong association between connectivity scores and depressive symp-

toms, we speculate that this depression-related pattern, mainly com-

posed of limbic regions, may act as an objective marker for depression

in PD patients.

4.2 | Fiber connectivity defined three distinct
subtypes of Parkinson's disease

The fiber connectivity-based clustering analysis revealed three PD

subtypes with distinct clinical profiles, named mild, S-motor, and

S-depression, respectively. The mild subtype exhibited mild impair-

ment in overall disease severity as well as in all clinical domains and

was widely observed in several studies (Erro et al., 2013; Mu

et al., 2017; van Rooden et al., 2011). Given that PD patients are very

heterogeneous in terms of progression, patients in this subtype may

show a relatively slow progression (Erro et al., 2013). The S-motor and

S-depression subtype showed severe disease status, but with a diver-

gence in symptomatic expression: S-motor corresponding to the tradi-

tional motor-dominant view of PD, showing severe motor impairment,

which was consistent with previous findings (Erro et al., 2013; Mu

et al., 2017); S-depression representing a specific nonmotor dominant

subtype also described in clinical studies (Sauerbier et al., 2016). Nota-

bly, depression in PD may manifest in two clinical phenotypes:

anxious-depressed and depressed, which could show different clinical

features (Brown et al., 2011; Burn et al., 2012). In our study, we iden-

tified a depression-dominant phenotype that comorbidity of higher

anxious scores, corresponding to the “anxious-depressed” phenotype

proposed by Brown and colleagues. This specific phenotype may be

characterized by a distinct pathophysiological mechanism that needs

to be considered in future treatment. As a result, the identified sub-

types in the present study showed a closely corresponding with previ-

ous studies, which provided the evidence for the existence of these

subtypes. Importantly, the subtypes in this study were defined by

objective brain features and thus, reducing the influence of clinical

scale assessment on subtyping results.

4.3 | Depression has a considerable impact on
brain function and structure in Parkinson's disease
revealed by neuroimaging analyses

To reveal the neural basis underlying these distinct subtypes, we used

multimodal MRI to detect alterations in local and global function of

the clinically relevant connectivity patterns as well as white matter

structural alterations among these three subtypes.

Regarding the local function of the motor-related pattern, we

observed that the mild subtype with relatively prominent motor

impairments exhibited decreased functional connectivity between the

bilateral SMC and right SPL. The SMC has been suggested to be criti-

cal in planning and initiating movements (Jenkins et al., 2000). In PD

patients, hypoactivation in the SMC during tasks requiring motor

selection and initiation has been extensively reported (Buhmann

et al., 2003; Haslinger et al., 2001; Rascol et al., 1997). In addition,

previous works have discovered disrupted neural activity and metabo-

lism in the SMC and parietal cortex in PD patients (Eckert et al., 2005;

Wu et al., 2009). Therefore, among the functional connectivity

between each pair of nodes in the motor-related pattern, the dys-

connectivity between the SMC and SPL might be a potential imaging

marker that is related to motor impairment in PD patients. In the mild

subtype, the global function of the motor-related pattern, local and

global function of the depression-related pattern, and white matter

microstructure were intact, which indirectly suggested that the brain

impairments in the mild subtype were specifically limited.
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Analyses of brain alterations in the S-motor subtype showed

impaired local function as well as global function in the motor-related

pattern, which manifested as decreased functional connectivity

between the SMC and SPL within the motor-related pattern, and

disrupted functional connectivity between the motor-related pattern

and frontal–parietal regions (e.g., the inferior frontal and sup-

ramarginal gyri). The SMC and parietal cortex were disconnected, as

was observed in the mild subtype. The frontal regions are always cor-

related with pathological alpha-synuclein accumulation (Compta

et al., 2015; Guo et al., 2018), a core pathology of PD (Braak

et al., 2003) and have also been associated with motor disturbances in

PD (Guo et al., 2015), which indicates that the frontal area is a target

of pathological changes in PD. By combining these results with our

findings, we suppose that the disrupted functional connectivity within

the motor-related pattern and frontal–parietal cortex reflect motor-

related pathology. In addition, the S-motor subtype exhibited moder-

ately disrupted local and global functions in the depression-related

pattern. Depression is a general neuropsychiatric symptom in PD

(Nagy & Schrag, 2019). Although the S-motor subtype was character-

ized by motor impairments, they might present with depression-

related symptoms, which was supported by the relatively higher

depression-related scores in the S-motor subtype compared with nor-

mal controls.

Focusing on the S-depression subtype, we found widespread

disrupted functional connectivity both within the motor- and

depression-related connectivity patterns as well as outside of these

two patterns, covering the frontal-temporal and parietal-occipital

regions. Several studies demonstrated that the neural bases of depres-

sion in PD patients was likely to be diffuse, and has been referred to

as disrupted structure or function in frontal, temporal and occipital

regions (Feldmann et al., 2008; Gou et al., 2018; Mayberg et al., 1990;

Nagy & Schrag, 2019), which corresponded with our findings and indi-

cated serious brain damage in the S-depression subtype. Additionally,

enhanced functional connectivity in the cerebellum and thalamus was

also observed in the S-depression subtype. The cerebellum has been

recognized as playing a compensatory role in PD and may help to

maintain relatively normal motor function (Wu & Hallett, 2013), which

may explain the lower motor scores in the S-depression subtype.

Increased functional connectivity in the thalamus observed in the

S-depression subtype corresponded with the increased metabolic

activity in PD-related spatial covariance pattern (Wu et al., 2015)

and indicated increased global connectivity, which may compensate

for the disrupted local function. Notably, the S-depression subtype

showed widespread disruptions in white matter microstructure

manifested as increased MD in the white matter skeleton involving

the superior longitudinal fasciculus, corona radiata, corpus callosum,

forceps minor, and uncinate fasciculus. MD refers to the diffusion of

water molecules in organic tissues and increased MD often suggests

degeneration of the tissue (Sykova, 2004). Increased MD in several

white matter tracts, including the superior longitudinal fasciculus, cor-

pus callosum, and uncinate fasciculus, has been observed in PD

patients (Kim et al., 2013; Surova et al., 2016), which was in agree-

ment with our results and indicated widespread degeneration in the

S-depression subtype. Combining the widespread disrupted gray

matter dysconnectivity and diffuse white matter degeneration in the

S-depression subtype, we speculate that depression aggravated brain

damage and therefore may have a considerable impact on disease

severity. Previous longitudinal studies reported that PD patients

with depression showed a more severe cognitive decline and a faster

progression of motor deterioration than nondepressed PD patients

(Starkstein, Bolduc, Mayberg, Preziosi, & Robinson, 1990; Starkstein,

Mayberg, Leiguarda, Preziosi, & Robinson, 1992). These studies

indicated that depression aggravates the disease severity in PD,

supporting our speculation.

In summary, analyses of brain alterations revealed the heteroge-

neity behind PD subtypes: the mild subtype showed limited dys-

connectivity in the motor-related pattern; the S-motor subtype

exhibited moderately dysfunction in the two clinically relevant pat-

terns; the S-depression subtype was characterized by the extensive

disruption both in gray matter functional connectivity and white mat-

ter microstructure.

4.4 | Limitations

Several limitations of the present study should be acknowledged. A

fundamental issue was that this study did not include some crucial

NMS of PD. Currently the included clinical domains only represented

some basic but important symptoms, it would be preferable to get the

patients assessed by full-scale clinical domains (e.g., motor, depres-

sion, anxiety, sleep disorder, dysautonomia, pain, multidomain cogni-

tive impairment, apathy, and fatigue). Hopefully, future studies will

incorporate comprehensive clinical assessments and perfect the char-

acterization of clinical heterogeneity in PD patients. Besides, whether

depressive symptoms aggravate the disease severity will need to be

further verified by a prospective longitudinal study.

5 | CONCLUSION

Our study revealed heterogeneous PD subtypes according to their

distinct clinically relevant connectivity features. Their functional and

structural bases were shown to provide significant evidence for the

unsupervised clustering procedure. Importantly, predominant depres-

sive symptoms have a considerable impact on brain damage in PD

patients.
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