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Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest epithelial
malignancies and remains difficult to treat. Pancreatic intraepithelial neoplasias (PanINs)
represent the majority of the pre-cancer lesions in the pancreas. The PDAC
microenvironment consists of activated pancreatic stellate cells (PSCs) and immune
cells, which are thought to contribute to neoplastic transformation. However, the
signaling events involved in driving the transition from the neoplastic precursor to
the more advanced and aggressive forms in the pancreas are not well understood.
Recepteur d’Origine Nantais (RON) is a c-MET family receptor tyrosine kinase that
is implicated in playing a role in cell proliferation, migration and other aspects of
tumorigenesis. Macrophage stimulating protein (MSP) is the ligand for RON and
becomes activated upon proteolytic cleavage by matriptase (also known as ST14), a
type II transmembrane serine protease. In the current study, by immunohistochemistry
(IHC) analysis of human pancreatic tissues, we found that the expression levels MSP
and matriptase are drastically increased during the transition from the preneoplastic
PanIN stages to the more advanced and aggressive PDAC. Moreover, RON is highly
expressed in both PDAC and in cancer-associated stellate cells. In contrast, MSP,
RON, and matriptase are expressed at low levels, if any, in normal pancreas. Our study
underscores an emerging role of MSP-RON autocrine and paracrine signaling events in
driving malignant progression in the pancreas.

Keywords: MSP/MST1, RON/MST1R, matriptase, pancreas, stellate cell, pancreatic ductal adenocarcinoma,
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INTRODUCTION

Pancreatic cancer has extremely poor prognosis and is the fourth
leading cause of cancer-related death (Hidalgo, 2010; Jemal et al.,
2011; Siegel et al., 2013). Pancreatic ductal adenocarcinoma
(PDAC) comprises more than 85% of all pancreatic cancer and
has an overall 5-year survival rate of less than 5% (Hidalgo,
2010). A major challenge in the clinics is the lack of effective
methods for early detection and treatment. Three types of
“preneoplastic” lesions have been characterized as potential
precursors of PDAC, including pancreatic intraepithelial
neoplasias (PanINs), intraductal papillary mucinous neoplasms
(IPMNs), and mucinous cystic neoplasms (MCN) (Hruban
et al., 2000; Maitra et al., 2005). In particular, PanINs represent
the majority of early neoplastic lesions and are characterized
by three morphologically defined stages, namely PanIN1, 2,
and 3 (Hruban et al., 2000; Maitra et al., 2005). However, the
signaling events involved in promoting the transition from the
preneoplastic lesion to the more advanced and aggressive forms
are still not fully understood.

Recepteur d’origine nantais (RON), also known as
macrophage stimulating 1-receptor or MST1R) is a c-MET
family receptor tyrosine kinase (Park et al., 1987; Ronsin et al.,
1993). Ligand-dependent or independent activation of RON
leads to cell proliferation, migration, and matrix invasion (Lu
et al., 2007; Wagh et al., 2008). Aberrant activation of RON has
been linked to various forms of human cancers. For example,
overexpression of RON is found in the majority of primary
human colorectal adenocarcinoma and colon cancer cell lines
(Chen et al., 2000; Zhou et al., 2003). In addition, elevation
of RON expression has also been found in bladder, head and
neck squamous cell carcinomas, breast and ovarian cancers
(Maggiora et al., 2003; Lin et al., 2004; Cheng et al., 2005; Lee
et al., 2005; Welm et al., 2007). The ligand for RON, known as the
macrophage-stimulating protein (MSP) or the hepatocyte growth
factor-like protein (HGFL), is a member of the plasminogen-
prothrombin family proteins (Wang et al., 1994; Camp et al.,
2005; Yao et al., 2013). MSP is expressed as an inactive precursor
and becomes activated upon proteolytic cleavage by type II
membrane serine proteases, such as matriptase (also known as
ST-14) (Bhatt et al., 2007).

Here, we show that elements of the MSP-RON signaling
pathway are upregulated in pancreatic cancer cells as well
as in cancer-associated pancreatic stellate cells (PSCs). Our
results support the notion that activation of MSP-RON signaling
represents a hallmark event in progression of PDAC.

RESULTS

MSP Is Upregulated in Human PDAC
We examined the expression patterns of MSP in normal human
pancreatic tissues and in PDAC by immunohistochemistry
(IHC). Our results show that, while MSP expression is minimal
in normal pancreas, it is significantly upregulated in the cancer
cells of all 12 PDAC specimens that we analyzed (Figures 1A,B).
In addition, high levels of MSP can be detected in the pancreatic

cancer cells disseminated to the liver in all four samples that we
were able to obtain (Figure 1C). We also performed IHC staining
on a tissue microarray (TMA) that includes 38 PDAC samples
and found that high levels of MSP can be detected in 79% (30 of
38) of the specimens (Table 1).

We noted that the epithelial cells with morphology of normal
or non-transformed ductal cells consistently express little MSP
(Figure 2). To determine whether MSP is selectively upregulated
during the transition from PanIN to PDAC, we analyzed a TMA
that includes fourteen PanIN samples. Interestingly, we found
that only 14% (2 of 14) of the PanIN samples were stained MSP
positive. These include 0 of 11 specimens that were characterized

FIGURE 1 | MSP expression is upregulated in Pancreatic ductal
adenocarcinoma (PDAC) primary tumors and liver metastasis.
Immunohistochemistry (IHC) analysis of human tissues using anti-MSP
antibody. (A) Normal pancreas; (B) PDAC; (C) Pancreatic cancer metastasis
to the liver. Magnification: 20×; Scale bar: 100 µm.

TABLE 1 | Macrophage-stimulating protein (MSP) levels in tissue micro array
(TMA) of Pancreatic intraepithelial neoplasias (PanIN), and Pancreatic ductal
adenocarcinoma (PDAC).

Tissue type MSP high MSP low P-value

PanIN 2 12

PDAC 30 8 0.0002

The number of each tissue type with high or low levels of MSP is shown.
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FIGURE 2 | MSP expression in human pancreatic cancer tissues and tissue
micro array (TMA). IHC staining of human pancreatic tissues using anti-MSP
antibody. (A) PDAC. Note that MSP can be detected in cancer cells
(arrowheads) but not in normal or un transformed ductal epithelial cells
(arrows). (B) Representative images of TMA with PanIN1/2 or 3. Magnification:
20×; Scale bar: 100 µm.

as PanIN 1/2, and 2 of 3 as PanIN 3 (Figure 2 and Table 1).
Although we were not able to obtain sufficient number of tissues
with characteristics of PanIN 3, it appears that upregulation of
MSP occurs at either the transition to PanIN3 or PDAC, but
not in PanIN 1/2.

RON Levels Are Increased in Pancreatic
Cancer Cells and in PDAC-Associated
Stellate Cells
Our IHC staining show that RON expression levels are
significantly higher in PDAC, when compared to normal
pancreas (Figure 3). Of note, we found that some stromal cells in
PDAC were stained positive for RON (Figure 3). These cells show
morphology of stellate cells (Figure 3B; indicated by the arrows).
These results indicate that RON is present in both cancer cells
and in the PDAC-associated stellate cells.

Upregulation of Matriptase in PDAC
Because matriptase has been shown to be involved in the
processing and maturation of the active form of MSP (Bhatt
et al., 2007), we evaluated its expression levels in 12 specimens
of normal pancreas and PDAC tissues, respectively. Similar to
the expression patterns of MSP, matriptase levels are very low
or barely detectable in all normal pancreatic tissues, but can
be detected at high levels, notably on the plasma membrane,
in the epithelial cells of all PDAC samples that we tested
(Figure 4A). Moreover, high levels of matriptase can be detected
in the pancreatic cancer cells of all four samples of PDAC liver
metastasis that we examined, but not in the hepatic parenchymal
cells (Figure 4B). Using a limited number of specimens that
show PanIN characteristics, we found that matriptase can be
detected in the preneoplastic lesions (Figure 4A; 6 of 7 PanIN1/2;

FIGURE 3 | Recepteur d’Origine Nantais (RON) expression is increased in
PDAC. IHC analysis of human pancreatic specimens using anti-RON antibody.
(A) Normal pancreas; (B) PDAC. The arrows indicate RON-positive stellate
cells. Magnification: 20×; Scale bar: 100 µm.

2 of 2 PanIN3), which indicates that upregulation of matriptase
probably occurs earlier than that of MSP.

MSP Levels Are Elevated in KRASG12D

Mutant-Mediated Pancreatic
Intraepithelial Neoplastic Lesion and a
Mouse Model of PDAC
We also examined MSP expression patterns in a transgenic
mouse model of pancreatic neoplasm. The KRAS gene is mutated
in more than 90% of pancreatic cancer patients (Almoguera et al.,
1988; Ryan et al., 2014). Mutations of KRAS, such as G12D,
can lead to abnormal activation of KRAS and are thought to
be a driver of early neoplastic lesions (Scheffzek et al., 1997).
In the Pdx1-Cre/LSL-KRASG12D/+ (KC) transgenic mice, the
KRASG12D mutant is expressed in pancreatic epithelial cells
by virtue of the Pdx1 promoter-mediated expression of Cre
recombinase and promotes development of PanIN (Hingorani
et al., 2003). In addition, co-expression of the p53R172H and
KRASG12D mutants in the pancreas, as in the KPC mice,
leads to PDAC (Hingorani et al., 2005). Our IHC studies
indicate that, in the control Pdx1-Cre mice, cells in the exocrine
pancreas express little, if any, MSP (Figure 5). In contrast,
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FIGURE 4 | Matriptase expression is upregulated in PanIN, primary PDAC and liver metastasis. IHC analysis of normal human pancreatic tissues using
anti-matriptase antibody. Representative staining images are shown. (A) Normal pancreas, PanIN1/2, PanIN 3, and PDAC; (B) Specimen of pancreatic cancer liver
metastasis. The areas of the tumor and the adjacent tumor are indicated. Magnification: 4× (left panel) or 20×; Scale bar: 500 (left panel) or 100 µm.

FIGURE 5 | MSP expression in mouse pancreatic tissues. IHC analysis of mouse pancreatic tissues using anti-MSP antibody. (A) control (Pdx1-Cre); (B) KC mice
(LSL-KRASG12D/+; Pdx1-Cre); or (C) KPC mice (LSL-KRASG12D/+; LSL-p53R172H/+; Pdx1-Cre). Magnification: 20×; Scale bar: 100 µm.

High levels of MSP can be detected in some of cells exhibiting
PanIN morphology in the pancreas of the KC mice, and
in all PDAC cells in the KPC mice (Figure 5). However,
because our antibodies react poorly with mouse matriptase
or RON, we were not able to examine these proteins in
the KC or KPC mice.

DISCUSSION

In this study, we show that MSP and the protease responsible
for its activation, namely matriptase, are upregulated in PDAC
primary tumors and liver metastases. Our finding of high levels
of RON in PDAC is consistent with previous reports that link
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FIGURE 6 | Schematic representation of the mechanism by which the
matriptase-MSP-RON signaling axis modulates pancreatic cancer
progression. Matriptase mediates maturation and activation of MSP, which in
turn stimulates RON-modulated signaling events. It is conceivable that
Matriptase and MSP may also contribute to remodeling of the tumor
microenvironment, through regulating the functions of the stellate cell, the
macrophage, or other immune cells.

aberrant RON expression to pancreatic cancer progression and
metastasis (Camp et al., 2007; Thomas et al., 2007; Chakedis
et al., 2016). Our analysis of a limited number of samples
suggests that upregulation of matriptase occurs prior to that
of MSP. Similar to what we found with MSP and matriptase,
an increase of RON expression has been noted in the PanIN
stage (Thomas et al., 2007). It would be of interest to expand
these studies and characterize further the sequence of events that
promote the activation of this signaling pathway and neoplastic
transformation. Conceivably, matriptase and MSP, especially its
active form, may be explored as a potential biomarker for early
detection of PDAC.

The active form of MSP can bind RON, leading to its
homo dimerization and activation of various downstream
signaling events, such as RAS-MAPK and PI-3 Kinase pathways
(Lu et al., 2007; Wagh et al., 2008). In addition, RON
can modulate signaling events through forming heterodimers
with other receptors such as c-MET (Follenzi et al., 2000;
Benvenuti et al., 2011), EGFR (Peace et al., 2003; Thomas
and Theodorescu, 2006; Liu et al., 2010), the platelet-derived
growth factor receptor (PDGFR) (Kobayashi et al., 2009), and
insulin-like growth factor 1 receptor (IGF1R) (Potratz et al.,
2010; Jaquish et al., 2011). Activation of KRAS signaling
has been linked to progression of pancreatic cancer. Indeed,
KRAS mutations have been found in more than 90% human
PanIN lesions as well as PDACs (Almoguera et al., 1988;
Smit et al., 1988; Kanda et al., 2012; Murphy et al., 2013).
Many KRAS coden 12 mutations, such as KRASG12D, can lead
to structural alterations that reduce the GTPase activity and
prolong the GTP-bound, “active” form for signaling (Scheffzek

et al., 1997). Notably, the signaling events upstream of KRAS,
such as the one initiated from the RTK are required in
transformation mediated by KRAS mutants (Huang et al.,
2014). For example, EGFR is required for KRAS-induced
neoplasm (Ardito et al., 2012; Navas et al., 2012). Thus, our
findings suggest that the matriptase-MSP-RON signaling axis
may represent an autocrine mechanism involved in promoting
the transition from PanIN to PDAC by stimulating RTK and
KRAS signaling (Figure 6).

Similar to what has been found in pancreatic cancer,
activation of RON is also associated with tumorigenicity and
metastasis of various other forms of human malignancy, such
as bladder cancer, head and neck squamous cell carcinomas,
breast cancer, ovarian cancer, and colorectal cancer (Chen
et al., 2000; Zhou et al., 2003; Lin et al., 2004; Cheng et al.,
2005; Lee et al., 2005). In particular, MSP has been shown
to increase the invasive behavior and resistance to apoptosis
in non-small cell lung cancer (Willett et al., 1998), as well
as bone metastasis in breast cancer (Bhatt et al., 2007; Welm
et al., 2007). A recent study indicate that MSP-RON can
promote metastasis through activation of an MBD4-mediated
DNA methylation program (Cunha et al., 2014). Inhibition
of RON can enhance cancer cell sensitivity to chemotherapy
drugs such as gemcitabine (Logan-Collins et al., 2010) or
histone deacetylase inhibitors (Zou et al., 2013). The MSP-
RON signaling network thus represents a potential therapeutic
target for treatment of pancreatic cancer. However, it should be
noted that because of the cross talk between RON and other
RTKs, such as c-MET and erbB family members, a successful
therapeutic approach may require simultaneous inhibition
of multiple RTKs.

The MSP protein produced by pancreatic cancer cells may
also be involved in cancer-stromal cell interaction through
a paracrine mechanism. MSP was initially identified as a
protein that modulates macrophage activities and RON has
been shown to be involved in conversion to the M2-
like macrophage (Skeel et al., 1991; Morrison et al., 2004;
Sharda et al., 2011). Tumor-associated macrophages show
characteristics of the M2-like phenotype and represent a
major species of tumor-promoting immune cells in the
tumor microenvironment (Grivennikov et al., 2010; Noy
and Pollard, 2014). It would be of interest to determine
whether matriptase and the activated forms of MSP proteins
produced by cancer cells can modify macrophage behaviors.
Alternatively, matriptase and MSP may contribute to shaping an
immune suppressive landscape by acting upon other immune
cells (Figure 6).

PDAC is characterized by a fibrotic and inflammatory
microenvironment that is dominated by activated stellate
cells. Our results show high levels of RON expression in
the PDAC-associated PSCs. PSCs are myofibroblast like
cells that are normally quiescent but become activated in
damaged pancreas or the neoplastic niche, and produce
collagen, fibronectin and fibrosis promoting growth
factors and cytokines (Apte et al., 2009a,b; Erkan et al.,
2012). Both PDGFR and EGFR are expressed in PSC and
involved in its proliferation and functions (Apte et al.,
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1999; Blaine et al., 2009). It is conceivable that MSP can
modulate cancer-stellate cell interaction through activation
of RON and the interplay with other RTK signaling events
in PSC (Figure 6).

In summary, our study demonstrates that the expression levels
of matriptase, MSP and RON are significantly upregulated during
the transition from the preneoplastic PanIN stage to the more
advanced PDAC and metastatic lesions. These findings support
the notion that activation of the matriptase-MSP-RON signaling
network may play a critical role in neoplastic transformation
in the pancreas.

MATERIALS AND METHODS

Antibodies
The antibodies used in this study include: anti-MSP/MST1
(ab124787, Abcam, Cambridge, MA; MABF210, EMD Millipore,
Burlington, MA, United States); anti-RON/MST1R (C-20, sc-
322, Santa Cruz Biotechnology, Santa Cruz, CA, United States;
MAB691, R&D Systems, Minneapolis, MN, United States); anti-
alpha smooth muscle actin (α-SMA) (A2547, Sigma, St. Louis,
MO, United States); anti-matriptase antibodies (#IM1014, EMD
Millipore; D-7, sc-365482, Santa Cruz Biotechnology); HRP-
conjugated secondary antibodies against mouse or rabbit were
from Dako (Carpinteria, CA, United States).

Human Tissues
Formalin-fixed and paraffin-embedded (FFPE) human
specimens were obtained from the Cedars-Sinai Pathology
archive and Biorepository with protocols approved by the
Internal Review Board at the Cedars-Sinai Medical Center (IRB
protocols #4201, #28197, and #34086). The tissue microarrays
were obtained from US Biomax (Rockville, MD, United States).

Transgenic Mice
All animal procedures were approved by the Cedars-Sinai
Institutional Animal Care and Use Committee (IACUC) and
performed in accordance with relevant guidelines and regulations
(protocols #3935 and #8001). The KC and KPC mice derived from
the LSL-KRASG12D/+, LSL-p53R172H/+, and Pdx1-Cre (KPC)
mice were described previously (Hingorani et al., 2003, 2005).
The tissues were collected from 6-month-old mice, fixed in
formalin and embedded in paraffin.

Immunohistochemistry
Specimens of normal pancreas, PDAC, tissues with characteristics
of PanINs, or pancreatic cancer metastasis to the liver, were
analyzed. IHC was performed using a previously established
protocol (Morvaridi et al., 2015). Briefly, the FFPE specimens
were de-paraffinized, rehydrated, and subjected to heat induced
antigen retrieval. After incubating in animal-free blocker
for 30 min (SP-5030, Vector Laboratories, Burlingame, CA,
United States), the samples were treated with primary antibody
diluted at 1:200 to 1:1000 for 2 h or overnight. The
sections were then washed three times in PBS, followed
by incubation with secondary antibody for 1–2 h. The

samples were washed, and specific stains were developed
with the DAB Peroxidase substrate kit (SK4100, Vector
Laboratories). The slides were mounted and scanned using
Aperio Scanscope R©AT Turbo (Leica Microsystems, Buffalo
Grove, IL, United States). The results were evaluated using a
binary scoring system, defined as either undetectable (negative)
versus detectable (positive), or low versus high levels of staining.
The correlation between gene expression and PDAC stages was
examined using chi-squared test (GraphPad Prism, San Diego,
CA, United States).
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