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Reactive vaccination in the presence
of disease hotspots

Andrew S. Azman and Justin Lessler

Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 615 North
Wolfe St., Baltimore, MD 21205, USA

Reactive vaccination has recently been adopted as an outbreak response tool

for cholera and other infectious diseases. Owing to the global shortage of

oral cholera vaccine, health officials must quickly decide who and where to

distribute limited vaccine. Targeted vaccination in transmission hotspots

(i.e. areas with high transmission efficiency) may be a potential approach to

efficiently allocate vaccine, however its effectiveness will likely be context-

dependent. We compared strategies for allocating vaccine across multiple

areas with heterogeneous transmission efficiency. We constructed metapopu-

lation models of a cholera-like disease and compared simulated epidemics

where: vaccine is targeted at areas of high or low transmission efficiency,

where vaccine is distributed across the population, and where no vaccine is

used. We find that connectivity between populations, transmission efficiency,

vaccination timing and the amount of vaccine available all shape the perform-

ance of different allocation strategies. In highly connected settings (e.g. cities)

when vaccinating early in the epidemic, targeting limited vaccine at trans-

mission hotspots is often optimal. Once vaccination is delayed, targeting the

hotspot is rarely optimal, and strategies that either spread vaccine between

areas or those targeted at non-hotspots will avert more cases. Although hot-

spots may be an intuitive outbreak control target, we show that, in many

situations, the hotspot-epidemic proceeds so fast that hotspot-targeted reactive

vaccination will prevent relatively few cases, and vaccination shared across

areas where transmission can be sustained is often best.
1. Introduction
Reactive vaccination has become an important tool in the fight against diseases

such as measles [1], meningitis [2], foot-and-mouth disease [3] and cholera [4].

Reactive vaccination campaigns are in a race with the natural epidemic timeline,

and will avert few cases if started late or inappropriately focused [1,5]. In con-

trast to regularly planned vaccination campaigns, reactive campaigns are often

subjected to limited vaccine, and logistical delays forcing vaccinators to make

difficult allocation decisions.

The two internationally licensed oral cholera vaccines (OCVs) have an efficacy

against clinical disease of over 65% lasting at least 3–5 years [6,7]. In 2012, 245

393 choleracases were reported to the World Health Organization (WHO) including

3034 deaths [8]. Owing to non-reporting and under-reporting in many high burden

countries, this number is known to be a serious underestimate [9]. To ensure that a

minimal supply of OCV is available for rapid deployment, a stockpile large enough

to vaccinate one million individuals was established by the WHO. However, with

an estimated 1.4 billion people at risk for cholera [9], the current supply is insuffi-

cient to reach even a small fraction of these people in a given year. The WHO has

developed criteria for vaccine request prioritization [10]; however, many questions

remain on how to make vaccine allocation decisions at the local and global scale.

The targeting of ‘hotspots’ has been suggested as one potential mechanism

for efficiently using limited vaccine. ‘Hotspots’ are areas of increased trans-

mission potential or incidence and have been described for cholera and other

diseases at spatial scales ranging from countries within a region [11], to districts
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Figure 1. Metapopulation configuration for simulations with 1 (a) and 2 (b) non-hotspots and a single hotspot. Each patch is represented by a circle with population
proportional to area (equal population sizes shown). The local basic reproductive number for each area is represented by Ri, and the edges represent the parameters
of the connectivity matrix C. Panel (c) illustrates the main transmission model within each patch. Boxes represent states, and edges show the rates of transition from
one state to another. (Online version in colour.)
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within a country [12], to neighbourhoods within a city [5,13].

Here, we ask if, and when, the targeting of transmission

hotspots represents the best use of limited vaccine.

The performance of different vaccine allocation strategies is

driven by a number of complex factors, including hetero-

geneity in transmission potential across the area, the immune

landscape [14,15] and the epidemiologic connectivity (i.e.

spatial coupling) between infected areas. For many diseases,

epidemiologic connectivity is driven by human movement;

though transmission through vectors or the environment

may also play an important role. Connectivity between areas

may be measured empirically (through analysis of cell phone

data, etc. [16]), but is usually approximated using models of

human movement [17–19]. In general, all approaches demon-

strate high connectivity between areas close to one another

(e.g. neighbourhoods within cities), and low connectivity

between spatially disparate areas, particularly if both have

small populations.

While previous publications have estimated the optimal

proactive allocation of vaccine in specific settings [15,20,21], it

may be unrealistic to presume that such optimality analyses

would be performed as part of a real-world public health

response, as they require complex analyses based on highly

detailed information about transmission dynamics. Here, we

build upon the results of previous work, which mostly focuses

on influenza vaccination strategies [15,20–22], to show how

three intuitive and simple reactive vaccination strategies may

perform over different epidemiologic landscapes when vaccine

supply is limited. We translate our results in a manner that can
help build intuition for when different strategies may work

best; particularly when the availability of data and resources

constrain the level of analyses that can be performed.

Here, we use simple metapopulation models of a cholera-

like disease (figure 1) to explore how to allocate vaccine both

proactively and reactively when supply is limited in the pres-

ence of a transmission hotspot and one or more non-hotspots.

We estimate the reduction in epidemic size achieved by

three simple strategies over a range of epidemiologic settings:

(i) targeting vaccine at the transmission hotspot, (ii) targeting

vaccine at non-hotspot(s) and (iii) allocation proportional to

population size (pro-rata).
2. Methods
(a) Transmission model
We use deterministic SIR metapopulation models to estimate the

trajectory and final epidemic size with and without vaccination.

The basic model can be described by a system of ordinary differ-

ential equations as follows

dSi

dt
¼ �(li þ ri(t))Si, (2:1)

dIi

dt
¼ liSi � gIi, (2:2)

dRi

dt
¼ gIi þ ri(t)Si (2:3)

and
dVi

dt
¼ ri(t)(Ni � Vi), (2:4)



rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20141341

3
where the states, susceptible, infectious and removed are rep-

resented by S, I and R, respectively with the subscript, i,
indicating the patch that the individuals reside within. For example,

Si represents the number of susceptible individuals in patch i. We

also use a redundant-state variable, V, to track the number of indi-

viduals vaccinated within this model, regardless of their immune

status when vaccinated. The force of infection, li, driven by the

transmission parameters (bi) for each patch, is formulated to main-

tain frequency-dependent transmission (i.e. contact rates are

independent of population size) as

li ¼
X

j
cijbj

P
kckjIkP

kckjNk
: (2:5)

Mixing between patches is described by the connectivity matrix C,

where each term (cij) represents the average proportion of time an

individual from patch i spends in patch j. Ni represents the

number of individuals (Si þ Ii þ Ri) in location i. The recovery

rate is represented by g and is assumed to be 1/3 days21 [23].

The patch-specific vaccination rate, ri(t), is defined such

that vaccination takes place over a fixed number of days and

vaccinated individuals are not at risk for revaccination

ri(t) ¼
n=(Tend � Tstart)

Ni � Vi
if Tstart � t , Tend

0 otherwise

,

8<
: (2:6)

where Tstart and Tend are the start and end day, respectively, of

the vaccination campaign, and n is the total number of vaccine

courses available. We assume that the full vaccine course instan-

taneously confers complete protection to all vaccinated (VEsp ¼ 1

[24]), and that vaccination campaigns are completed in a single

day. More complex vaccine and vaccination campaign character-

istics can easily be captured by this model, but we restrict

ourselves to this simple case to help elucidate the main results.

Imperfect vaccines are explored in the electronic supplementary

material, figures S13 and S14.

In this model, the basic reproductive number, Ri, for an

unconnected patch is bi/g, and the basic reproductive number

for the total connected system can be found using the dominant

eigenvalues of the next-generation matrix (see the electronic

supplementary material) [25].

We first consider settings with two 500 000 person populations

(patches) with varying levels of symmetric connectivity and

internal transmission potential (i.e. Ri). We explore settings

where patches range in their connectivity, from unconnected

(cij ¼ 0.0 for all i = j and cii ¼ 1.0), where there is no movement

between patches, to highly connected (cij ¼ 0.2 for all i = j and

cii ¼ 0.8) where 20% of the population in one patch are, on average,

in other patches at any one time (electronic supplementary

material, table S3 and figure 1). We consider metapopulations

where the reproductive numbers for an individual patch range

from 0.75 to 2.5—encompassing the majority of estimates of the

reproductive number for cholera in different settings [5,12,26,27]

and explore higher reproductive numbers in sensitivity analyses.

In each scenario, we allow one patch to have a higher Ri than

the others and call this the ‘hotspot’ and the others ‘non-

hotspot(s)’, and simulations are seeded with a single case in each

patch. In the primary simulations, the populations are considered

to be fully susceptible to the disease but we explore the impact of

more realistic immune landscapes through simulating 40 years of

epidemics recurring every 4 years where individuals who gain

immunity through infection or vaccination lose their immunity

after an average of 4.5 years; an approximation consistent with

the estimated duration of protection from oral cholera vaccine

(5 years, [6]) and an average lifespan of 50 years.
(b) Proactive vaccination
We use a simple probabilistic representation of the final size of a

generic epidemic in a metapopulation (following Longini et al.
[28]) to derive analytical results for the impact of different proactive

vaccination strategies (see the electronic supplementary material).

The final size predicted by these models has been shown to be

robust to many assumptions of simple SIR models [29].

(c) Reactive vaccination
We explore the final size of epidemics as the amount of vaccine

available increases from 0 to 500 000 courses (enough for one

entire patch) with different simple allocation strategies; (i) target-

ing the hotspot, (ii.a) targeting a single non-hotspot, (ii.b)

targeting all non-hotspots and (iii) pro-rata vaccination. For

each scenario (electronic supplementary material table S3), we

compare the strategies by calculating the percentage difference

between the strategies that averts the fewest and most cases, Q

Q ¼ FSworst � FSbest

FSworst
, (2:7)

where FSbest and FSworst are the epidemic final sizes using the

strategies that averted the most (best) and fewest (worst) cases.

This statistic is useful for comparing strategies, but gives no

information on the number of cases averted in any of the simu-

lations. All simulations were performed in PYTHON, and

visualizations were created with R [30,31]. Source code will be

made available by the authors upon request.
3. Results
(a) Proactive vaccination
When vaccinating proactively in highly connected settings,

such as neighbourhoods within a city, targeting the hotspot

is preferable, regardless of how much vaccine is available

(figure 2a and the electronic supplementary material, S3).

Vaccination in unconnected settings should be targeted at

the non-hotspot when doses are limited (i.e. until there are

at least enough doses to bring the reproductive number

below one in the non-hotspot, but not enough to do so in

the hotspot), but the best strategy then switches to pro-rata

followed by hotspot-targeted vaccination as more vaccine

becomes available (figure 2c). At the highest vaccination

levels considered, the best strategy transitions back to pro-

rata. The best strategies in weakly connected settings look

similar to those of unconnected settings although the relative

difference between strategies is smaller (figure 2b).

(b) Reactive vaccination
(i) Timing
We find that, when vaccine is limited, the best strategies for

proactive vaccination differ significantly from those for reactive

vaccination (i.e. vaccination after the start of the epidemic;

figure 3 and the electronic supplementary material, S7 and

S11). A general pattern emerges from our simulations where,

over the course of the epidemic, hotspot-targeted vaccination is

first preferred, then pro-rata vaccination, and finally targeting

the non-hotspot (figure 3 and the electronic supplementary

material, S7). However, depending on the connectivity and trans-

mission potential, the continuum of optimal strategies may begin

where pro-rata or non-hotspot targeting is preferred (e.g. figure

3o), or never transition from a point where hotspot targeting is

preferred (e.g. figure 3f). In our simulations, the point at which

hotspot targeting was replaced by pro-rata vaccination was
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before the global epidemic peak (e.g. figure 4) except for cases

where the non-hotspot had an Ri close to that of the hotspot.

Thus, if the global peak has occurred, more cases will be averted

if some vaccine is distributed to the non-hotspots, provided they

can independently sustain transmission (i.e. Ri . 1).

As more non-hotspot patches are considered, hotspot-

targeted vaccination is preferable until a smaller proportion

of the uncontrolled epidemic has elapsed. However, because

the addition of multiple non-hotspots makes the global epi-

demic slower (electronic supplementary material, table S1),

the time window for hotspot vaccination is actually longer

on a natural timescale (e.g. days, electronic supplementary

material, figure S10).

In all situations, we find that the later the vaccination

begins, the smaller the relative difference between strategies.

In highly connected settings, the relative performance of the

best strategies quickly dissipates as vaccination starts later,

despite the fact that many cases may be averted (figure 3

and the electronic supplementary material, S8 and S11).
(ii) Connectivity
The degree towhich patches are connected also plays a large role

in shaping the impact of reactive vaccination strategies. Increas-

ing connectivity serves two functions, (i) it reduces the indirect

benefits from others vaccinated in a person’s patch because of

the increased risk of infection from outside the patch, and

(ii) it helps to synchronize the timescales of the epidemic in

different areas. The relative benefit of the best vaccination strat-

egies shrinks as populations become more connected (figure 3

and the electronic supplementary material, figure S7). While tar-

geting may be most operationally relevant in highly connected

populations (e.g. within a city), the importance of connectivity

on dynamics should still be understood.

When patches can sustain transmission, decreasing

connectivity shifts the optimal vaccination strategies from

hotspot-targeted and pro-rata (e.g. figure 3g, l and k) to non-

hotspot-targeted and pro-rata (figure 3g–r and electronic

supplementary material, figure S7g– j). Decreasing connectivity

leads to larger impacts from allocating vaccine to the
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non-hotspot. In unconnected settings, when not enough vaccine

is available to meet the critical vaccine threshold in the non-

hotspots [32], non-hotspot-targeted vaccination is preferred,

regardless of timing (figure 3 and electronic supplementary

material, figure S8). A similar pattern occurs in weakly connected

settings, though the transition from preferring non-hotspot-tar-

geted to pro-rata vaccination happens at fewer doses. Pro-rata

vaccination is preferred early on in the epidemic for unconnected

and weakly connected setting, with hotspot targeting only pre-

ferred in a few cases where vaccination is essentially proactive

or when non-hotspots cannot sustain transmission (figures

3–4 and the electronic supplementary material, figure S8). If

vaccine must be targeted to a single patch for operational

reasons, similar connectivity and timing trade-offs occur

(electronic supplementary material, figure S7).

(iii) Transmission potential heterogeneity
The local basic reproductive numbers play important roles in

shaping the outcomes of different vaccination strategies.

When transmission cannot be supported in non-hotspots, vacci-

nation should usually be targeted at the hotspot (figure 3a– f).
When the reproductive number of the non-hotspots is close to

the threshold value of 1 (e.g. figure 3 and electronic supple-

mentary material, S8g– l ), which may often be the case with

cholera [5], early vaccination aimed at the hotspot or pro-rata

is usually preferable. As the non-hotspot reproductive number

approaches that of the hotspot, the preferred strategy shifts

away from hotspot targeting towards pro-rata and non-hotspot

targeting (figure 3 and electronic supplementary material,

figure S8). In settings where the non-hotspot reproductive

number is well above 1, hotspot-targeted vaccination is almost

never preferable, and when it is, the relative difference bet-

ween hotspot targeting and any of the other strategies is very

small (e.g. 11%, 7%, 5% for 3, 4 and 5 patch models in the

electronic supplementary material, figure S9 where Ri ¼ 1:5

in the non-hotspot).
4. Discussion
Vaccination plays an increasing role as an outbreak response

tool throughout the world [2–4]. Its success hinges on our

ability to minimize surveillance and logistic delays while
targeting appropriate subpopulations [1,5]. Through simple

computational models, we have shown that while targeting

transmission hotspots may be preferable in many proactive

vaccination campaigns, reactive hotspot targeting may avert

fewer cases than other simple allocation strategies. Epidemio-

logical context matters, and in particular, the connectivity

between populations, their transmission efficiency and the

amount of vaccine available all shape the outcomes of

reactive vaccination strategies.

In highly connected areas, akin to neighbourhoods in a

city, early allocation of at least some vaccine to the transmission

hotspot will help avert relatively more cases than other strat-

egies (figure 4a). As vaccination is delayed, allocation focus

should shift towards non-hotspot areas, where the population

is more likely to still be susceptible to the disease. In less con-

nected settings, targeted vaccination at the transmission

hotspot is unlikely to avert the most cases. Instead, priority

should be given to strategies that share vaccine between

areas (e.g. pro-rata) if vaccination starts early, with the

preference then shifting towards targeting one or more

non-hotspot populations (figure 4b,c).

The simplicity of our simulations limits the generalizability

of the results. We present results for metapopulations comprised

of two to five patches; however, in practice, many more popu-

lations will be contenders for vaccination and multiple areas

may serve as hotspots. However, populations with similar trans-

mission potential may be grouped together creating scenarios

similar those in this manuscript. When non-hotspots have

different Ris, those that are able to independently sustain trans-

mission should be targeted. Populations that may be vaccinated

will rarely be the same size with the same immune landscape,

nor will epidemics start at the exact same time. However, this

simplification is useful in understanding the trade-offs involved

with vaccine allocation decisions. In a sensitivity analysis, we

explored the impact of vaccination on partially immune land-

scapes and our qualitative findings remain intact (electronic

supplementary material, figure S6). In this model, we consider

only the impact of vaccination on a single epidemic. In reality,

many vaccines, including OCV [6], may last long enough to

confer immunity to diseases that periodically reoccur. If

vaccinating within an area with periodic outbreaks, some

weight should be given to the potential effect of vaccine-derived

protection on future epidemics.
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For the sake of clarity, we use a simple model of vaccination

that includes a perfect vaccine that instantly provides protec-

tion. Oral cholera vaccines are given as a two-dose regimen,

and maximum protection is thought to occur days after the

second dose [33]. Our results are presented in a manner that

can allow for approximation of the best strategy in the presence

of an imperfect vaccine by interpreting the y-axis (of figure 3)

as the proportion protected rather than the proportion vacci-

nated (i.e. looking at coverage � vaccine efficacy); however,

this approximation deviates slightly from the exact results

(electronic supplementary material, figures S13 and S14). Simi-

larly, the effect of delays in the onset of protection can be seen

by considering the timing of vaccine-derived protection rather

than timing of the vaccination campaign (e.g. the x-axis in

figure 3).

To allow for comparisons between epidemics on different

timescales, we present the timing of vaccination campaigns

in terms of the percentage of the uncontrolled epidemic

elapsed. While this time metric is useful across different set-

tings, it is more difficult to interpret in the context of a

specific epidemic. With the basic epidemics simulated, one

can roughly map key percentiles to different features of the

local epidemic curves. In highly connected settings, usually

the first 25% of uncontrolled epidemic will occur before the

peak in both the hotspot and non-hotspot (see electronic sup-

plementary material, figure S2). The point at which half of

the uncontrolled cases have been infected tends to occur just

after peak, with this point coming relatively earlier in the

non-hotspot(s) than the hotspot. As epidemics become less

connected, this mapping between natural time and percentage

of uncontrolled epidemic elapsed becomes more complex and

heavily depends on the number of patches considered. In all

settings simulated, the first 10% of cases always occur before

the peak in both the hotspot and the non-hotspot, and usually

occur during the initial period of ‘exponential’ growth. The

decision of when to target the hotspot, in situations where all

areas are able to sustain transmission, will often come down

to identifying whether one has a reasonable amount of vaccine,

and whether vaccination can begin very early in the epidemic

(often less than 10–20% of the uncontrolled epidemic size

elapsed). In these situations, this basic mapping between per-

centiles and the peak of the epidemic should be sufficient to

allow for application of our results.

This work compliments other research in the area of opti-

mal vaccine use, including papers describing similar optimal

allocations for proactive [14,15,20,34] and reactive [21,35] vac-

cination with some under moderate supply constraints. Our

work extends these by focusing on reactive vaccination with

realistic delays when transmission is spatially heterogeneous

and only low vaccine coverage is attainable. Here, our goal is

not to provide an algorithm for optimal allocation of specific

numbers of vaccine doses, but instead to identify some of the

key factors that should be considered when making strategic

vaccine allocation decisions. While the relative connectivity

between potential vaccine locations may be roughly known,

the reproductive number in each population cannot be pre-

cisely known at the time of the epidemic. Use of historical

data and real-time techniques for estimating R0 represent an

exciting area of new research, and recently proposed methods

may provide sufficient precision for identifying hotspots and

deciding between simple allocation strategies [36]. Our results

can also serve as a benchmark for the level of precision required

for new methods to be useful for vaccine allocation decisions.
While we consider spatial-targeting strategies, others have

used similar theory to explore optimal strategies for targeting

by age or demographics who exhibit differences in infectious-

ness and susceptibility to severe disease [14]. In this context,

targeting the groups most responsible for transmission is gener-

ally only preferred when vaccine is allocated very early on in an

epidemic when transmission potential is high. Otherwise, mixed

strategies that focus at least some vaccine towards those at

highest risk for severe outcomes is optimal. Extensions of our

work could incorporate both individual level heterogeneity in

infectiousness (i.e. super spreaders) and susceptibility with

location-specific transmission heterogeneity (e.g. in the case of

cholera, this may be created through differential water and sani-

tation infrastructure) to better understand the trade-offs between

spatial-targeting, demographic-targeting, combined strategies.

Additional research is needed to translate the results pre-

sented here into guidance that can be used in the midst of an

outbreak. Our results do however suggest a general rule of

thumb: in highly connected settings, reactive vaccination

distributed across areas that can independently maintain trans-

mission is generally preferred to targeting any particular

transmission hotspot, and hotspots should be targeted only

when they are thought to be necessary drivers of transmis-

sion. Although decision-makers are unlikely to be certain

about whether areas can independently sustain transmission,

combining real-time incidence and historical data with an

understanding of the pathogen biology may allow for a

reasonable estimate.

Like many health policy decisions, vaccination allocation

strategies are rarely made based on epidemiologic predictions

alone, but are also driven by social and political factors.

Dedicating all available vaccine to a particular location and

depriving other at-risk populations may be politically unpop-

ular or raise equity issues, thus, these findings should be used

as a general guide to be weighted along with other factors.

Although we focused on situations with limited vaccine,

our findings can also help guide vaccination strategies

guided by cost-effectiveness thresholds.

Our results illustrate that the preferred vaccine allocation

strategy, in the presence of limited vaccine supply and a

transmission heterogeneity, varies depending on epidemiolo-

gic context and logistical constraints. Strategies that may be

optimal before the start of an epidemic will usually not be

optimal in reactive vaccination campaigns. In most cases, start-

ing vaccination early is much more important than choosing

between allocation strategies, particularly when choosing

between areas that are expected to have the ability to sustain

disease transmission. While targeting disease hotspots may

sound like an intuitive strategy, in many cases, it makes more

sense to focus on areas of lower transmission efficiency.

These findings highlight the benefits and risks of targeting vac-

cination efforts when only a limited number of people can

be vaccinated and should be considered carefully as part of

the planning process.
Acknowledgements. The authors thank the Infectious Disease Dynamics
group at Johns Hopkins Bloomberg School of Public Health, Helen
Matzger (BMGF) and Francisco Luquero (MSF/Epicentre) for the
useful discussions.

Funding statement. A.S.A.’s work was supported by the JHSPH Sommer
Scholars programme. J.L.’s work was supported by a grant from the
Bill and Melinda Gates Foundation for modelling of oral cholera
vaccines (OPP1089243).



7
References
rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20141341
1. Grais RF, Conlan AJK, Ferrari MJ, Djibo A, Le Menach
A, Bjornstad ON, Grenfell BT. 2008 Time is of the
essence: exploring a measles outbreak response
vaccination in Niamey, Niger. J. R. Soc. Interface 5,
67 – 74. (doi:10.1098/rsif.2007.1038)

2. Alberti KP, King LA, Burny ME, Ilunga BK, Grais RF.
2010 Reactive vaccination as an effective tool for
measles outbreak control in measles mortality
reduction settings, Democratic Republic of Congo,
2005 – 2006. Int. Health 2, 65 – 68. (doi:10.1016/j.
inhe.2009.12.009)

3. Tildesley MJ, Savill NJ, Shaw DJ, Deardon R, Brooks
SP, Woolhouse MEJ, Grenfell BT, Keeling MJ. 2006
Optimal reactive vaccination strategies for a foot-
and-mouth outbreak in the UK. Nature 440,
83 – 86. (doi:10.1038/nature04324)

4. Ciglenecki I, Luquero FJ, Sakoba K, Heile M, Itama C.
2013 PLoS medicine: feasibility of mass vaccination
campaign with oral cholera vaccines in response to an
outbreak in Guinea. PLoS Med. 10, e1001512. (doi:10.
1371/journal.pmed.1001512)

5. Azman AS, Luquero FJ, Rodrigues A, Palma PP, Grais
RF, Banga CN, Grenfell BT, Lessler J. 2012 Urban
cholera transmission hotspots and their implications
for reactive vaccination: evidence from Bissau City,
Guinea Bissau. PLoS Negl. Trop. Dis. 6, e1901.
(doi:10.1371/journal.pntd.0001901)

6. Bhattacharya SK et al. 2013 5 year efficacy of a
bivalent killed whole-cell oral cholera vaccine in
Kolkata, India: a cluster-randomised, double-blind,
placebo-controlled trial. Lancet Infect. Dis. 13,
1050 – 1056. (doi:10.1016/S1473-3099(13)70273-1)

7. van Loon FPL et al. 1996 Field trial of inactivated
oral cholera vaccines in Bangladesh: results from 5
years of follow-up. Vaccine 14, 162 – 166. (doi:10.
1016/0264-410X(95)00122-H)

8. World Health Organization. 2013 Cholera, 2012.
Wkly Epidemiol. Rec. 88, 321 – 334.

9. Ali M, Lopez AL, You YA, Kim YE, Sah B, Maskery B,
Clemens J. 2012 The global burden of cholera. Bull.
World Health Organ. 90, 209 – 218. (doi:10.2471/
BLT.11.093427)

10. World Health Organization. 2013 Guidance on how
to access the oral cholera vaccine (OCV) from the
ICG emergency stockpile. Geneva, Switzerland:
World Health Organization.

11. Rebaudet S, Sudre B, Faucher B, Piarroux R. 2013
Environmental determinants of cholera outbreaks in
inland Africa: a systematic review of main
transmission foci and propagation routes. J. Infect. Dis.
208(Suppl. 1), S46 – S54. (doi:10.1093/infdis/jit195)

12. Mukandavire Z, Smith DL, Morris JG. 2013 Cholera
in Haiti: reproductive numbers and vaccination
coverage estimates. Sci. Rep. 3, 997. (doi:10.1038/
srep00997)

13. Dowdy DW, Golub JE, Chaisson RE, Saraceni V. 2012
Heterogeneity in tuberculosis transmission and
the role of geographic hotspots in propagating
epidemics. Proc. Natl Acad. Sci. USA 109,
9557 – 9562. (doi:10.1073/pnas.1203517109)

14. Keeling MJ, White PJ. 2011 Targeting vaccination
against novel infections: risk, age and spatial
structure for pandemic influenza in Great Britain.
J. R. Soc. Interface 8, 661 – 670. (doi:10.1098/rsif.
2010.0474)

15. Keeling MJ, Shattock A. 2012 Optimal but
unequitable prophylactic distribution of vaccine.
Epidemics 4, 78 – 85. (doi:10.1016/j.epidem.2012.
03.001)

16. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor
AM, Snow RW, Buckee CO. 2012 Quantifying the
impact of human mobility on malaria. Science 338,
267 – 270. (doi:10.1126/science.1223467)

17. Bharti N, Djibo A, Djibo A, Ferrari MJ, Grais RF,
Tatem AJ, McCabe CA, Bjornstad ON, Grenfell BT.
2010 Measles hotspots and epidemiological
connectivity. Epidemiol. Infect. 138, 1308 – 1316.
(doi:10.1017/S0950268809991385)

18. Chao DL, Halloran ME, Longini IM. 2011 Vaccination
strategies for epidemic cholera in Haiti with
implications for the developing world. Proc. Natl
Acad. Sci. USA 108, 7081 – 7085. (doi:10.1073/pnas.
1102149108)

19. Mari L, Bertuzzo E, Righetto L, Casagrandi R, Gatto
M, Rodriguez-Iturbe I, Rinaldo A. 2012 Modelling
cholera epidemics: the role of waterways, human
mobility and sanitation. J. R. Soc. Interface 9, 376 –
388. (doi:10.1098/rsif.2011.0304)

20. Wu JT, Riley S, Fraser C, Leung GM. 2007 Spatial
considerations for the allocation of pre-pandemic
influenza vaccination in the United States.
Proc. R. Soc. B 274, 2811 – 2817. (doi:10.1098/rspb.
2007.0893)

21. Matrajt L, Halloran ME, Longini IM. 2013 Optimal
vaccine allocation for the early mitigation of
pandemic influenza. PLoS Comput. Biol. 9,
e1002964. (doi:10.1371/journal.pcbi.1002964)

22. Araz OM, Galvani A, Meyers LA. 2012 Geographic
prioritization of distributing pandemic influenza
vaccines. Health Care Manage. Sci. 15, 175 – 187.
(doi:10.1007/s10729-012-9199-6)

23. Weil AA, Khan AI, Chowdhury F, LaRocque RC,
Faruque ASG, Ryan ET, Calderwood SB, Qadri F, Harris
JB. 2009 Clinical outcomes in household contacts of
patients with cholera in Bangladesh. Clin. Infect. Dis.
49, 1473 – 1479. (doi:10.1086/644779)
24. Halloran ME, Longini IM, Struchiner CJ. 2009 Design
and analysis of vaccine studies. Berlin, Germany:
Springer.

25. Diekmann O, Heesterbeek JAP, Roberts MG. 2010
The construction of next-generation matrices for
compartmental epidemic models. J. R. Soc. Interface
7, 873 – 885. (doi:10.1098/rsif.2009.0386)

26. Mukandavire Z, Liao S, Wang J, Gaff H, Smith DL,
Morris JG. 2011 Estimating the reproductive
numbers for the 2008 – 2009 cholera outbreaks
in Zimbabwe. Proc. Natl Acad. Sci. USA 108,
8767 – 8772. (doi:10.1073/pnas.1019712108)

27. King AA, Ionides EL, Pascual M, Bouma MJ. 2008
Inapparent infections and cholera dynamics. Nature
454, 877 – 880. (doi:10.1038/nature07084)

28. Longini IM, Ackerman E, Elveback LR. 1978 An
optimization model for influenza A epidemics.
Math. Biosci. 38, 141 – 157. (doi:10.1016/0025-
5564(78)90023-8)

29. Ma J, Earn DJD. 2006 Generality of the final size
formula for an epidemic of a newly invading
infectious disease. Bull. Math Biol. 68, 679 – 702.
(doi:10.1007/s11538-005-9047-7)

30. Team RDC. 2011 R: a language and environment for
statistical computing. Vienna, Austria: Team RDC.

31. Jones E et al. SciPy: open source scientific tools for
PYTHON. See http://www.scipy.org/.

32. Anderson RM, May RM. 1992 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

33. Kanungo S, Paisley A, Lopez AL, Bhattacharya M.
2009 Immune responses following one and two
doses of the reformulated, bivalent, killed, whole-
cell, oral cholera vaccine among adults and children
in Kolkata, India: a randomized, placebo-controlled
trial. Vaccine 27, 6887 – 6893. (doi:10.1016/j.
vaccine.2009.09.008)

34. Klepac P, Laxminarayan R, Grenfell BT. 2011
Synthesizing epidemiological and economic optima
for control of immunizing infections. Proc. Natl
Acad. Sci. USA 108, 14 366 – 14 370. (doi:10.1073/
pnas.1101694108)

35. Wallinga J, van Boven M, Lipsitch M. 2010
Optimizing infectious disease interventions during
an emerging epidemic. Proc. Natl Acad. Sci. USA
107, 923 – 928. (doi:10.1073/pnas.0908491107)

36. Hens N, Van Ranst M, Aerts M, Robesyn E, Van
Damme P, Beutels P. 2011 Estimating the effective
reproduction number for pandemic influenza from
notification data made publicly available in real
time: a multi-country analysis 445 for influenza A/
H1N1v 2009. Vaccine 29, 896 – 904. (doi:10.1016/j.
vaccine.2010.05.010)

http://dx.doi.org/10.1098/rsif.2007.1038
http://dx.doi.org/10.1016/j.inhe.2009.12.009
http://dx.doi.org/10.1016/j.inhe.2009.12.009
http://dx.doi.org/10.1038/nature04324
http://dx.doi.org/10.1371/journal.pmed.1001512
http://dx.doi.org/10.1371/journal.pmed.1001512
http://dx.doi.org/10.1371/journal.pntd.0001901
http://dx.doi.org/10.1016/S1473-3099(13)70273-1
http://dx.doi.org/10.1016/0264-410X(95)00122-H
http://dx.doi.org/10.1016/0264-410X(95)00122-H
http://dx.doi.org/10.2471/BLT.11.093427
http://dx.doi.org/10.2471/BLT.11.093427
http://dx.doi.org/10.1093/infdis/jit195
http://dx.doi.org/10.1038/srep00997
http://dx.doi.org/10.1038/srep00997
http://dx.doi.org/10.1073/pnas.1203517109
http://dx.doi.org/10.1098/rsif.2010.0474
http://dx.doi.org/10.1098/rsif.2010.0474
http://dx.doi.org/10.1016/j.epidem.2012.03.001
http://dx.doi.org/10.1016/j.epidem.2012.03.001
http://dx.doi.org/10.1126/science.1223467
http://dx.doi.org/10.1017/S0950268809991385
http://dx.doi.org/10.1073/pnas.1102149108
http://dx.doi.org/10.1073/pnas.1102149108
http://dx.doi.org/10.1098/rsif.2011.0304
http://dx.doi.org/10.1098/rspb.2007.0893
http://dx.doi.org/10.1098/rspb.2007.0893
http://dx.doi.org/10.1371/journal.pcbi.1002964
http://dx.doi.org/10.1007/s10729-012-9199-6
http://dx.doi.org/10.1086/644779
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.1073/pnas.1019712108
http://dx.doi.org/10.1038/nature07084
http://dx.doi.org/10.1016/0025-5564(78)90023-8
http://dx.doi.org/10.1016/0025-5564(78)90023-8
http://dx.doi.org/10.1007/s11538-005-9047-7
http://www.scipy.org/
http://dx.doi.org/10.1016/j.vaccine.2009.09.008
http://dx.doi.org/10.1016/j.vaccine.2009.09.008
http://dx.doi.org/10.1073/pnas.1101694108
http://dx.doi.org/10.1073/pnas.1101694108
http://dx.doi.org/10.1073/pnas.0908491107
http://dx.doi.org/10.1016/j.vaccine.2010.05.010
http://dx.doi.org/10.1016/j.vaccine.2010.05.010

	Reactive vaccination in the presence of disease hotspots
	Introduction
	Methods
	Transmission model
	Proactive vaccination
	Reactive vaccination

	Results
	Proactive vaccination
	Reactive vaccination
	Timing
	Connectivity
	Transmission potential heterogeneity


	Discussion
	Acknowledgements
	Funding statement
	References


