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Abstract
Traumas, infections, tumors, and some congenital malformations can lead to bone defects

or even bone loss. The goal of the present study was to investigate whether inclusion of

endothelial progenitor cells derived from peripheral blood (PB–EPCs) in cell-seeded par-

tially deproteinized bone (PDPB) implants would stimulate recruitment of systemically

injected bone marrow stromal cells (BMSCs) to the implant. Methods: BMSCs were injected

intravenously with lentiviral expression vector expressing enhanced green fluorescent pro-

tein (eGFP) for tracing. Recruitment of eGFP-positive BMSCs was tested for the following

implant configurations: 1) seeded with both BMSC and PB-EPC, 2) BMSC alone, 3) PB-

EPC alone, and 4) unseeded PDPB. Protein and mRNA levels of endogenous stromal-

derived factor-1 (SDF-1) and its receptor CXCR4, as well as monocyte chemotactic protein-

1 (MCP-1) and its receptor CCR2, were evaluated on the 8th week. Immunohistochemical

staining was performed to determine eGFP-positive areas at the defective sites. Masson’s

trichrome staining was conducted to observe the distribution of collagen deposition and

evaluate the extent of osteogenesis. Results: The mRNA and protein levels of SDF-1 and

CXCR4 in the co-culture group were higher than those in other groups (p < 0.05) 8 weeks

after the surgery. MCP-1 mRNA level in the co-culture group was also higher than that in

the other groups (p < 0.05). Immunohistochemical assays revealed that the area covered

by eGFP-positive cells was larger in the co-culture group than in the other groups (p < 0.05)

after 4 weeks. Masson’s trichrome staining revealed better osteogenic potential of the co-

culture group compared to the other groups (p < 0.05). Conclusion: These experiments

demonstrate an association between PB-EPC and BMSC recruitment mediated by the

SDF-1/CXCR4 axis that can enhance repair of bone defects.

Introduction
Bone defects and morphological abnormality caused by trauma and congenital malformation
are common clinical problems. Studies have shown that autologous bone graft is likely to cause
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donor site defects. Therefore, developing methods for combining cytology and materiology to
construct tissue-engineered bone is an important goal in regenerative medicine.

Bone marrow stromal cells (BMSCs) are popular stem cells in tissue engineering and regen-
erative medicine. Osteoblasts rapidly decrease in the defective area when bone defects occur,
limiting the potential for recovery from bone damage. Transplantation of BMSCs can increase
the quantity of osteoblasts and accelerate bone repair. Previous studies focused mainly on pro-
moting speedy seed cell proliferation and rapid vascularization [1–2]. However, when implant-
ing tissue-engineered bones into the body, attention should be paid to the transformation of
exogenous stem cells and the potential of intrinsic mesenchymal stem cells to accelerate bone
repair. Repair of tissue-engineered bones can be accelerated if intrinsic stem cells move toward
the defects while promoting proliferation and osteogenesis of seed cells. Thus, promotion of
stem cell homing is a key challenge in the development of regenerative medicine, from con-
struction of 3D structures to clinical applications.

Endothelial progenitor cells (EPCs) were first identified in adult human peripheral blood
[3]. Considering the excellent self-proliferation abilities and pluripotency of EPCs [4, 5], the
use of EPCs instead of vascular endothelial cells as adult stem cells has increasingly become the
focus of research in recent years. In tissue-engineered bone construction, EPCs are often used
in rapid vascularization of bone tissues [6–9] and formation of new bones [10, 11]. Further
understanding of EPC functions and characteristics can elucidate the mechanism underlying
EPC-based bone repair. Moreover, EPCs can promote earlier vascularization and osteogenesis
of tissue-engineered bones, as well as provide nutritional support to seed cells co-cultured with
them through paracrine and adhesive capacities [12, 13]. EPCs release VEGF-A through para-
crine signaling, which can also promote MSC proliferation [14, 15]. Additionally, EPCs release
bone morphogenetic protein (BMP), which can promote MSCs expressing osteopontin and
osteocalcin [16, 17].

Many recent studies have reported on the functions of chemotactic axes to treat diseases.
Stromal cell-derived factor-1 (SDF-1), which is highly conserved between species, is a CXC
chemokine protein generated in MSCs and functions by binding to CXCR4 [18]. Binding of
SDF-1 and its receptor CXCR4 leads to activation of the SDF-1/CXCR4 axis, which is impor-
tant in the recruitment of BMSCs and directed migration. Kitaori T showed that SDF-1/
CXCR4 signaling is critical for the recruitment of MSCs to a fracture site during skeletal repair
in mice [19]. Moreover, SDF-1 therapy has been shown to cause increased cell migration, neo-
vascularization, and tissue repair in ischemic cardiovascular disease [20]. Besides the SDF-1/
CXCR4 axis, the MCP-1/CCR2 axis is also involved in chemotaxis. Belema et al. [21] used
DNA chip technology and in vitro migration assays and found that presence of CCR2 was nec-
essary for the movement of BMSCs to sites of cardiac ischemia. Furthermore, MCP-1 was also
found to recognize CCR2 and trigger BMSC polarization and cytoskeletal protein rearrange-
ment, leading to migration.

Based on these information, we hypothesized that EPCs may promote mobilization of
BMSCs through the SDF-1/CXCR4 and MCP-1/CCR2 axes related to homing and thereby
facilitate construction of bone defects. In this study, we established a rabbit bone defect model
and co-cultured partially deproteinized bone (PDPB) with BP–EPCs and BMSCs to construct a
tissue-engineered bone. The homing behavior of BMSCs was monitored using BMSCs trans-
duced with lentivirus carrying enhanced green fluorescent protein (eGFP). Expression of com-
ponents of the SDF-1/CXCR4 and MCP-1/CCR2 axes related to stem cell homing was
analyzed. We found an association between PB-EPC and area of BMSC that is mediated
through endogenous SDF-1 and MCP-1 to repair bone defects.

Effects of PB-EPCs on Homing Ability of BMSCs
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Materials and Methods

Ethics statement
This experiment was approved by the Institutional Animal Care and Use Committee of Kun-
ming Medical University. All aspects of the animal experiments were conducted in accordance
with the approved protocol. Animals were anesthetized with 10% chloral hydrate at a dose of 2
mL/kg, and all efforts were made to minimize their suffering.

Materials
MSCM (Sciencell), EGM-2 BulletKit (Lonza), L-DMEM (Gibco), PBS (Life), EDTA (Cxbio),
monoclonal antibodies specific for rabbit CD29, CD34, CD45 (BD Bioscience, San Diego, CA),
eGFP expression plasmid (GuangZhou FuNeng), lentivirus kit (Gene Copoeia), low-density
lipoprotein acetylated DiI complex (Invitrogen), FITC-labeled Ulex europaeus agglutinin I
(Sigma), Matrigel (BD Biosciences), SDF-1/MCP-1 enzyme-linked immunosorbent assay
(ELISA) kits (Cloud-clone Corp), DEPC (AMRESCO), Trizol (MRC, TR118), Revert Aid TM
First Strand cDNA Synthesis Kit (Fermentas), SYBR Green Master Mix (Fermentas), CXCR4,
CCR2 primary antibody (Santa Cruz), PVDF membranes (BioRad), eGFP primary antibody
(Millipore), eGFP secondary antibody kit (ZhongShan JinQiao pv-9000), and Masson’s tri-
chrome staining kit (Sigma) were the materials used in this experiment.

Methods
Isolation of rabbit BMSCs and PB–EPCs. Rabbit BMSCs: Anterior superior iliac spine

was sterilized and draped conventionally and then exposed under aseptic condition. Puncture
needle was slowly injected 1 cm below the anterior superior iliac spine to extract bone marrow
aspirate. The extracted 5 mL of bone marrow aspirate was slowly transferred into a centrifugal
tube along its wall and laid onto Percoll solution at a ratio of 1:1. Buffy coat was collected after
centrifugation. BMSC complete medium with serum and penicillin–streptomycin solution was
added to the buffy coat and mixed well. After dispersing the cell mass, the mixture was trans-
ferred into a plastic cell culture flask and then cultured in a 5% CO2 incubator at 37°C. The
medium was replaced after 48 h, and all suspended cells were removed. The medium was then
replaced every 24 h. Changes in cell morphology were observed under an inverted phase-con-
trast microscope.

Rabbit PB–EPCs: Approximately 5 mL of venous blood sampled from the edge of the rab-
bit’s ear was mixed with Percoll solution for centrifugation. Cells were separated through cen-
trifugation, cultured in EGM-2 BulletKit endothelial cell growth medium, and then inoculated
on a fibronectin-coated plate. The plate was placed in 5% CO2 incubator at 37°C, and the
medium was replaced every 24 h. Changes in cell morphology were observed under an inverted
phase-contrast microscope.

Flow cytometry. When the density of BMSCs reached 80%, 2 mL of 0.25% pancreatic
enzyme solution containing EDTA was added to the culture. Culture medium was added to
stop the digestion after the cells detached from the plate. Cell mass in the medium was dis-
persed by blowing to obtain a cell suspension. PBS was added to the cell suspension to adjust
the cell concentration to 106/mL; 20 μL of the corresponding monoclonal antibodies specific
for rabbit CD29, CD34, CD45 were added to a flow cytometry tube and mixed with 100 μL of
cell suspension. Cells incubated without antibody served as control. The mixture was incubated
without light for 30 min at 4°C. Afterward, unbound antibodies were washed off.

Characterization of EPCs. The cultured cells were confirmed to be EPCs by detecting the
presence of both low-density lipoprotein acetylated DiI complex (acLDL) and FITC-labeled
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Ulex europaeus agglutinin I (UEA- I), as well as forming 2D networks on Matrigel, which were
commonly referred to as EPC characteristics, as previously demonstrated [22, 23]. Briefly, cells
were incubated with 2.5 μg/mL acLDL at 37°C for 3 h. The cells were then fixed with 2% para-
formaldehyde for 10 min. After washing, the cells were counterstained with 10 μg/mL FITC-
labeled UEA-1 for 1 h at 37°C. Stained cells were viewed using a fluorescent microscope. Matri-
gel complex was diluted at 1:1 ratio with EGM-2 on ice after plating the mixture for 3 h. The
cells were seeded on a 24-well plate pre-coated with Matrigel matrix. Tubes were observed
under an inverted light microscope.

Preparation of BMSCs expressing eGFP. BMSCs cultured to the third generation with a
density of 1 × 105/mL were inoculated onto six-well culture plates. When the extent of cell con-
fluence reached approximately 80%, 3 mL of culture medium and 1 mL of recombinant eGFP-
carrying lentivirus (1.39 × 108 copies/mL) were added to the culture. The culture flask was
shaken slowly and then placed in an incubator at 37°C. For screening, BMSCs were transferred
to DMEM/F-12 culture medium containing 0.5 μg/mL puromycin. The inserted exogenous
plasmid was resistant to puromycin. Hence, we used puromycin to screen the stable expression
of eGFP in BMSCs. After 3 weeks, cell growth and expression of GFP were observed. Trans-
duced BMSCs, which were passaged thrice, were injected intravenously into the rabbit bone
defect model.

SDF-1 and MCP-1 protein expression of BMSCs expressing eGFP in ex vivo cultures.
The transduced BMSCs were placed in a six-well plate with a density of 105/mL. Cells were
analyzed on days 3, 7, and 14. Culture medium was changed 48 h before the assay, and super-
natant was collected from the cultured cells. Protein content was determined using SDF-1 and
MCP-1 ELISA kits in accordance with the supplier’s instructions, with a minimum detectable
concentration of 18 pg/mL. Absorbance was determined at 450 nm. SDF-1 and MCP-1 con-
tents were calculated using the absorbance values of the reference standard and samples. Each
experiment was repeated thrice.

Formation of biological bone from a combination of partially deproteinized bone
(PDPB) and seed cells. A pig vertebra obtained from the market was crushed to make bone
fragments. These bone fragments were repeatedly washed with distilled water and immersed in
ethanol for 24 h. The bone fragments were then immersed in distilled water for 30 min and in
acetone for 24 h, with the solution pH adjusted between 7.0 and 7.2. Bones were dried in a dry-
ing oven to obtain PDPB after immersion. PDPBs were ground into bone fragments with sizes
of 1.2 cm × 0.4 cm × 0.3 cm, which were washed with normal saline by using ultrasonic cleaner,
and then dried and sterilized by radiation for later use. PDPBs were randomly divided into
four groups: group 1, PDPBs cultured with BMSCs and PB–EPCs (106/mL total at 1:1 ratio,
each type cell 5×105/mL); group 2, PDPBs cultured with BMSCs alone (106/mL); group 3,
PDPBs cultured with PB–EPCs alone (106/mL); and group 4, PDPBs cultured alone. Com-
plexes were cultured for 7 days with 4 mL of complete medium. The culture medium of all
groups were replaced daily. The 7-day-old complexes were fixed with 30 g/L pentodialdehyde,
1% osmium acid post-fixation, ethanol desiccation, and isopropyl acetate replacement for
observation under a scanning electron microscope.

Establishment of rabbit radial defect model and grouping. Healthy New Zealand white
rabbits aged 4 weeks and weighing 800±10 g received intraperitoneal anesthesia via injection of
10% chloral hydrate at a dosage of 2 mL/kg. After routine sterilization and draping, 12 mm
long defects were made in the middle radius of bilateral forearms under aseptic condition
through skin incisions. The periosteum was then removed and a 12 mm critically sized defect
was osteotomized using a bone-grinding instrument. A total of 48 rabbits were randomly
divided into four groups (n = 12 each) to receive the following implants: Co-culture group, in
which animals were implanted with PDPBs seeded with both BMSC and PB-EPC (i.e., injected
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BMSC would augment the number of seeded BMSC); BMSC group, in which animals were
implanted with PDPBs seeded with BMSC alone (i.e., implanted BMSC would recruit injected
BMSC); EPC group, in which animals were implanted with PDPBs seeded with EPC alone (i.e.,
implanted PB-EPC would recruit injected BMSC); and Unseeded group, in which animals
implanted with PDPBs that were unseeded (i.e., baseline control to account for injected BMSC
recruitment to the wound site). PDPBs of the four groups were precisely implanted in the
defects using a stainless plate fixed with screws on the proximal and distal ends of the radius.
The wounds were then sutured layer by layer. Rabbits were reared in separate cages under the
same condition and injected with gentamicin sulfate at 2 × 104 units per day to prevent infec-
tion. Rabbits that developed fast heartbeat and breathing received 10% chloral hydrate at a
dose of 0.5 mL/kg. Rabbits were monitored daily for any complication or abnormal behavior
following surgery. After 48 h, rabbits from each group were injected through the caudal vein
with BMSC suspension with stable expression of eGFP at a concentration of 5 × 106/mL. No
cases of infection, fracture, or death occurred during the course of the experiment.

Quantitative real-time PCR assay. PDPB-embedded rabbit bone tissues were harvested
after the animals were sacrificed through an overdose of chloral hydrate at 8 weeks after sur-
gery. Samples were ground and treated with Trizol to extract the total RNA of cells, as recom-
mended by the manufacturer. Afterward, cDNA was immediately synthesized. Second-strand
synthesis and amplification were performed by mixing 1 μL of cDNA, 2 μL of PrimerScript RT
Master Mix, 1 μL of PCR forward primer, 1 μL of PCR reverse primer, and pure water to obtain
a total volume of 10 μL. The following PCR conditions were used: 95°C for 5 min followed by
40 cycles of 95°C for 15 s, 57°C for 15 s, and 72°C for 30 s. The Ct value was recorded, and
GAPDH was used as an internal reference. All reactions were performed in triplicate. Relative
gene expression was calculated using the 2−ΔΔCt method.

ELISA. The SDF-1 and MCP-1 levels of each cell group were measured using ELISA. A
specific ELISA kit was employed with a minimum detectable concentration of 18 pg/mL.
Briefly, serum samples were collected at 8 weeks postoperatively. Standard wells, sample wells,
and blank wells were diluted as instructed by the corresponding suppliers. Absorption at 450
nm was determined using a microplate reader. The SDF-1 and MCP-1 levels in each serum
sample group were calculated using the absorbance values of the reference standard and sam-
ples. Each experiment was repeated thrice.

Western blot. Subsequently, we investigated whether SDF-1 receptor CXCR4 and MCP-1
receptor CCR2 were involved in the homing ability of BMSCs. The material-embedded rabbit
bone tissues were harvested after the animals were sacrificed through an overdose of chloral
hydrate at 8 weeks after surgery. Protein lysates were obtained in a RIPA lysis buffer with pro-
tease inhibitors and protein concentrations determined using Bradford assay (BioRad).
Approximately 50 μg of protein was separated on precast 10% SDS-PAGE denaturing gels,
which were then transferred to PVDF membranes. Western blot analysis was performed with
anti-rabbit CXCR4 and anti-rabbit CCR2 primary antibodies, as well as with relevant second-
ary antibodies by using standard techniques [24]. All values were averaged at least thrice and
normalized to the constitutive actin expression.

Immunohistochemistry. The material-embedded rabbit bone tissues were harvested at 2,
4, and 8 weeks after surgery and then fixed in 4% paraformaldehyde. A hard tissue slicer was
used to cut the tissues into 4 μm-thick sections. Briefly, deparaffinized sections were washed
with PBS. Subsequently, eGFP primary antibodies (1:100 dilution) were incubated overnight at
4°C. Polymer helper- and poly peroxidase-tagged anti-rabbit IgG were then dropped to the sec-
tions, which were later incubated at 37°C and developed with DAB solution. The sections were
routinely sealed and examined under a microscope. Three sections were randomly selected for
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each sample, and five visual fields were randomly selected for each section. The positively
stained area of eGFP was calculated using Image-ProPlus 6.0 image analysis system.

Histological analyses. Sections were collected via immunohistochemistry at 2, 4, and 8
weeks after surgery. Sections of each group received Masson’s trichrome staining to study the
collagen deposition and evaluate the new bone formation of the samples. The distribution of
collagen deposition was detected as blue color by using Masson’s trichrome staining kit in
accordance with the manufacturer’s instructions. The region of collagen deposition in the sam-
ples was calculated using Image J 4.5 version software. Three selected sections from randomly
chosen high-power fields (HPFs) were quantified and analyzed. The number of pixels obtained
from the three HPFs was summed.

Statistical analysis
Data were analyzed using SPSS 21.0 statistical software. All data were presented as
average ± standard deviation (x ± s). One-way ANOVA was conducted for intergroup compar-
ison. P< 0.05 was considered statistically significant.

Results

Cell morphology and identification
Primary BMSCs began to adhere to the inner walls of the flask after 12 h, but cell mass still
existed. At 96 h, cell adherence was obvious and the cell volume increased, with the nucleus
lying in the middle of the cell. In the third generation, cells showed a typical long-spindle shape
and good growth status with logarithmic growth. Some cell adherence was observed after the
primary EPCs were cultured for 24 h. Nonadherent cells were gradually removed by replacing
the culture medium, and the EPCs were purified. The cell volume decreased, with the shape of
a short spindle or pebble. Upon sorting the cells through a flow cytometer, the following phe-
notypes were noted: 97.1% of BMSCs were CD29-positive and all others were CD34- and
CD45-negative (Fig 1A–1C). After 1 week of culturing, EPCs were confirmed by the DiI–
acLDL uptake and UEA-1 lectin binding (Fig 2A–2D), as determined by fluorescence micros-
copy. The capillary formation capability of the attached cells was confirmed using the Matrigel
network formation assay. After 48 h, capillary-like structures appeared (Fig 3).

Expression patterns of MCP-1 and SDF-1 in BMSCs expressing eGFP
in ex vivo cultures
To focus our study on the specific homing phase, we developed an in vivo tail vein injection
model, which allowed the evaluation of site-specific seeding of stem cells. BMSCs with con-
stant, stable, and bright green fluorescence were obtained after 3 weeks (Fig 4A). ELISA results
showed that the quantity of SDF-1 gradually increased with time. The secretion difference of
MCP-1 at days 7 and 14 presented no statistical significance (Fig 4B).

Partially deproteinized bones (PDPBs) in ex vivo cultures
The PDPB was made largely of ivory-white color (Fig 5A). No floating attachments were found
after washing the PDPB with double-distilled water. Compared with mineralized bones, the
PDPB was softer, with higher plasticity and smooth tactility. As observed under a scanning
electron microscope, after the cell-combined PDPB was cultured for 7 days ex vivo, confluent
cells covered the surface of PDPB, and large amounts of multifilament were produced, which
almost infiltrated the pores. The cells and the PDPBs combined closely (Fig 5B).

Effects of PB-EPCs on Homing Ability of BMSCs
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SDF-1/CXCR4 and MCP-1/CCR2 mRNA levels
To assess the involvement of SDF-1/CXCR4 and MCP-1/CCR2 in the homing of BMSCs pro-
moted by EPCs, qPCR was performed to determine the relative expression levels of SDF-1/
CXCR4 and MCP-1/CCR2 mRNAs in the defective tissues. Results showed that relative expres-
sion levels of SDF-1 mRNAs in the co-culture group were higher than those in the BMSC
group (p = 0.037< 0.05), the EPC group (p = 0.012< 0.05), and the unseeded group
(p = 0.000< 0.01). The mRNA levels of CXCR4, the SDF-1 receptor, in the co-culture
group were also higher than those in the BMSC group (p = 0.036< 0.05), the EPC group
(p = 0.046< 0.05), and the unseeded group (p = 0.001< 0.01). MCP-1 mRNAs in the co-cul-
ture group were higher than those in the BMSC group (p = 0.034< 0.05), the EPC group
(p = 0.003< 0.01), and the unseeded group (p = 0.000< 0.01). However, the mRNA levels of
the MCP-1 receptor CCR2 in the co-culture group showed no significant difference compared
to the BMSC group (p = 0.345> 0.05), the EPC group (p = 0.773> 0.05), and the unseeded
group (p = 0.204> 0.05) (Fig 6A). These observations indicated that the homing phenomenon
may be related to the SDF-1/CXCR4 axis and MCP-1.

Protein quantification of SDF-1/CXCR4 and MCP-1/CCR2
Based on our data on mRNA levels of SDF-1, its receptor CXCR4, and MCP-1, we deduced
that the SDF-1/CXCR4 and MCP-1/CCR2 chemotactic axes were relevant for the promotion
of BMSC homing. In order to find out if these mRNA levels translate to changes at the protein
levels, we also determined the protein levels of the four factors. At 8 weeks, SDF-1 secretion in
the co-culture group was greater than that in the BMSC group (p = 0.029< 0.05), the EPC
group (p = 0.015< 0.05), and the unseeded group (p = 0.000< 0.01). The CXCR4 protein
level in the co-culture group was higher than that in the BMSC group (p = 0.000< 0.001),
the EPC group (p = 0.037< 0.05), and the unseeded group (p = 0.000< 0.001). However,
MCP-1 secretion in the co-culture group was only greater than that in the unseeded group
(p = 0.004< 0.05) and not in the other groups (p>0.05). The CCR2 protein levels were not sta-
tistically different between the co-culture group and the other groups (p>0.05) (Fig 6B–6D).

Positively stained eGFP area in the injected BMSCs
After the animals were injected through the caudal vein with a suspension of BMSCs showing
stable expression of eGFP, the BMSCs migrated to the bone defect area. Immunohistochemical
assays indicated that after tail intravenous injection of BMSCs expressing eGFP, expression of
eGFP could be detected in all the groups in the eighth week (Fig 7A–7E). No difference was
detected in eGFP expression among these groups during the second week (p>0.05). However,

Fig 1. BMSC characterization. A: control group. B: BMSCs were positive for CD29 and negative for CD45.
C: BMSCs were positive for CD29 and negative for CD34.

doi:10.1371/journal.pone.0145044.g001
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the positive expression in co-culture group was stronger than that in the other groups after 4
weeks (p<0.05) (Fig 7F).

Masson’s trichrome staining
Collagen deposition is important for the formation of new bones. After removing proteins, col-
lagen on PDPB was barely detected. Thus, to confirm the contribution of EPCs in repairing
bone defects, the osteogenic capability of the tissue-engineered bone was evaluated by quantita-
tively analyzing deposition of newly formed collagen using Masson’s Trichrome staining in all
groups in vivo (Fig 8A–8E). Software analysis determined that collagen composition of the co-
culture group was higher than that of the other groups at each time point (p< 0.05). Collagen

Fig 2. EPC characterization.Cells were positive for both DiI–acLDL uptake (A) and UEA-1 lectin binding (B) under fluorescence microscope, the markers of
EPCs. C: Overlay. D: Nuclear counterstaining was performed using DAPI (blue).

doi:10.1371/journal.pone.0145044.g002
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Fig 3. Adherent cells formed tubes in 2 days when cultured on Matrigel under an inverted light microscope.

doi:10.1371/journal.pone.0145044.g003

Fig 4. Observation and protein expression of BMSCs expressing eGFP. A: Expression of eGFP was
observed in BMSCs. Selection using DMEM/F-12 culture medium containing 0.5 μg/ml puromycin yielded
transduced cells with constant, stable, and bright green fluorescence after 3 weeks. B: SDF-1 and MCP-1 of
BMSCs expressing eGFP by ELISA.SDF-1 and MCP-1 protein expression of BMSCs expressing eGFP in ex
vivo cultures at days 3, 7, and 14. The quantity of SDF-1 and MCP-1 gradually increased with time. *p < 0.05,
n = 4.

doi:10.1371/journal.pone.0145044.g004
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in the co-culture group developed rapidly from the fourth week to the eighth week, whereas
those in the other groups increased steadily (Fig 8F).

Discussion
The slow pace of in vivo osteogenesis is a challenge in the clinical application of tissue-engi-
neered bones for repairing bone defects. Ensuring sufficient quantity, stable adhesion, and fast
proliferation of seed cells on scaffolds are important for successful transplantation in bone tis-
sue engineering. The scaffold adhesion rate of seed cell is limited when tissue-engineered bones
are implanted into the body, and immunological rejection caused by the allograft further
reduces the seed cells of the scaffold. In addition, regulating homeostasis, mobilizing endoge-
nous stem cells, and promoting homing ability of stem cells are crucial means of accelerating
osteogenesis in vivo [25].

In the present study, PB–EPCs were used as ancillary cells to establish a co-culture system
with BMSCs (target stem cells). By combining the co-culture system and the PDPB designed
by the research group and implanting them into the body, we found that the eGFP-positive
area of the co-culture group tissue was larger than that of the other groups after 4 weeks. Bind-
ing of SDF-1 and its receptor CXCR4 leads to activation of the SDF-1/CXCR4 axis, which plays
an important role in the recruitment of BMSCs and in directed migration. Furthermore, results
of our qPCR analyses revealed that the mRNA levels of SDF-1 and its receptor CXCR4 and
MCP-1 were higher in the co-culture group than in the other groups, which indicated that
SDF-1, CXCR4 and MCP-1 were involved in the BMSC homing process promoted by BP–
EPCs.

ELISA results showed that SDF-1 in the co-culture group was significantly higher than
those in the BMSC groups and the EPC group at 8 weeks after surgery. This finding indicated
that co-culture of PB–EPCs and BMSCs promoted higher SDF-1 expression. The result was
also consistent with CXCR4 expression in all the groups, indicating that PB–EPCs significantly
increased SDF-1 /CXCR4 levels. Thus we concluded that an association between PB-EPC and
BMSC recruitment mediated by the SDF-1/CXCR4 axis that can enhance repair of bone defects

Fig 5. Electronmicroscopy images of PDPB. A: PDPB formation; interconnected pores with different sizes were observed on PDPB. B: PDPB-cell
combination was cultured before implantation. Cells that adhered to the PDPB proliferated and expanded, producing large amounts of multifilament
extracellular matrix deposited by the cells.

doi:10.1371/journal.pone.0145044.g005
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MCP-1 in all the groups showed no statistical difference except between co-culture groups and
the unseeded group. Similarly, the CCR2 protein levels of all the groups showed no statistical
difference at 8 weeks.

Fig 6. SDF-1, CXCR4, MCP-1, and CCR2mRNA and protein levels. A: EPCs upregulated SDF-1, CXCR4, and MCP-1 mRNA levels. SDF-1, CXCR4, and
MCP-1 mRNA levels in the co-culture group were higher than those in other groups. *p < 0.05, * *p < 0.01, n = 4. CCR2 mRNA levels exhibited no difference
between groups. B: SDF-1 and MCP-1 protein levels were detected using ELISA at 8 weeks. SDF-1 level in the co-culture group was greater than that in the
BMSC group, the EPC group, and the unseeded group. *p < 0.05, * *p < 0.01, n = 4. MCP-1 level in the co-culture group was greater than that in the
unseeded group. *p < 0.05, n = 4. However, no significant difference in MCP-1 level was found among the other groups. C: CXCR4 and CCR2 protein levels
of the four groups were analyzed byWestern blot. The only change observed was upregulation of CXCR4 protein level by EPCs. p < 0.05, * *p < 0.01, n = 4.
D: Western blot electrophoretogram showing CXCR4 and CCR2 protein levels.

doi:10.1371/journal.pone.0145044.g006
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SDF-1/CXCR4 is an important homing axis of BMSCs that also plays a crucial role in hom-
ing and migration of hematopoietic stem cells [26, 27] and mobilization of bone marrow-
derived osteoblast cells [28]. Fujio M et al. [29] used a mouse fracture model to demonstrate
that SDF-1 enhances osteogenesis-mediated skeletal tissue regeneration by recruiting endothe-
lial precursors. Ryu et al. [30] showed that migration of human umbilical cord blood mesen-
chymal stem cells (hUCB–MSCs) was also mediated by SDF-1/CXCR4, and that the Akt,
ERK, and p38 signaling pathways were involved in hUCB–MSC migration by SDF-1. SDF-1/
CXCR4 mobilizes calcium, decreases cyclic AMP within cells, and activates multiple signal

Fig 7. Immunohistochemical assay of eGFP-positive regions. A: Higher resolution of an example location. B–E: Representative immunohistochemical
sections at 8 weeks post-surgery. F: Homing ability of BMSCs expressing eGFP was analyzed by quantifying eGFP-positive regions. No statistical
differences were detected in eGFP expression among the various groups during the first 2 week (P > 0.05). After 4 weeks, expression in the experimental
group was found to be significantly stronger than that in groups B, C and D. *p < 0.05, * *p < 0.01, n = 4.

doi:10.1371/journal.pone.0145044.g007
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transduction pathways, including PI3K, phospholipase C-c/protein kinase C, and the MAP
kinases ERK1/2 [31, 32]. Interestingly, Wang J [33] found that MAPK/ERK was not required
for SDF-1-mediated migration of progenitor cells. Thus, the signal transduction pathways
involved in SDF-1/CXCR4-mediated cell migration appears to be cell type-specific. Cheng M
et al. [34] identified the Src family protein kinases as critical downstream effectors of SDF-1/
CXCR4 signaling that play an essential role in the chemotactic response of bone marrow pro-
genitor cells. Except for SDF-1/CXCR4, stem cell homing is also related to HGF/c-met [35]
and VLA-4/VCAM-1 [36] receptor–ligand axes.

SDF-1, which binds its receptor CXCR4 and leads to the formation of SDF-1/CXCR4 axis,
is important for recruitment of BMSCs and directed migration [37]. SDF-1 is also vital in
MSCs differentiating into cartilages and bones [38,19]. The effects of SDF-1 on potentiating
the migration of host MSCs and enhancing healing of osteochondral defects has been demon-
strated previously [38]. In a mouse fracture model, SDF-1 was shown to promote bone regener-
ation by recruiting MSCs [19] to the injured bone. Hosogane et al. showed that blocking the
SDF-1 signaling pathway inhibited BMP2-induced osteogenic differentiation, indicating that
the SDF-1 signaling pathway is essential to the osteogenic process [39]. Zhu et al. also demon-
strated that blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic
differentiation of ST2 BMSCs, and the interaction between SDF-1 and BMP2 signaling was
mediated via intracellular Smad and MAPK activation [40]. Results of Masson’s trichrome
staining in our study showed that PB–EPCs of the co-culture group caused significantly greater
bone formation than the other groups without PB–EPCs. This result is consistent with our
findings on changes in SDF-1 expression. Thus, we conclude that EPCs might act on BMSCs

Fig 8. Masson’s trichrome staining. A–D: Collagen was observed in co-culture groups, the EPC group, and the unseeded group at 8 weeks. Blue staining
indicates new collagen deposition and red staining indicates muscles and cytoplasm. E: A negative control image (After removing proteins, collagen was
barely detected in the PDPB). F: Newly formed bone in the form of collagen was quantified by pixel density analysis, and EPCs were found to promote new
bone formation starting the second week. *p < 0.05, * *p < 0.01, n = 4.

doi:10.1371/journal.pone.0145044.g008
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through SDF-1, which also promotes osteogenesis of BMSCs. Overall, these results are consis-
tent with and supportive of the findings of previous studies [19,39,40]. However, this study has
some limitations. For instance, the eGFP-positive areas do not only reflect the quantity of hom-
ing BMSCs, but also the proliferation of eGFP-expressing BMSCs. Further investigation is
needed to determine the signaling pathways activated when EPCs mediate homing of BMSCs.

In summary, EPCs are closely related to homing, osteogenesis, and angiogenesis of BMSCs.
The multiple functions of EPCs make them potential seed cells for the construction of tissue-
engineered bones. Our findings suggest that the gene expression patterns related to BMSC
homing change during co-culture with EPCs. Hence, targeted gene modification in BMSCs is
expected to be a direct and effective measure for promoting BMSC homing to injured or defec-
tive sites. This assumption provides new ideas for the acceleration of stem cell homing in vivo.
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