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Purpose: Psf2 (partner of Sld5 2) represents a member of the GINS (go, ichi, ni, san) heterotetramer [1] and functions in
DNA replication as a “sliding clamp.” Previous in situ hybridization analyses revealed that Psf2 is expressed during
embryonic development in a tissue-specific manner, including the optic cup (retina) and the lens [2]. This article provides
an analysis of Psf2 function during eye development in Xenopus laevis.
Methods: A morpholino targeted to Psf2 mRNA was designed to knockdown Psf2 translation and was injected into
specific embryonic cells during early cleavage stages in the frog, Xenopus laevis. Injected embryos were assayed for
specific defects in morphology, cell proliferation, and apoptosis. Synthetic Psf2 RNA was also co-injected with the
morpholino to rescue morpholino-mediated developmental defects. It is well known that reciprocal inductive interactions
control the development of the optic cup and lens. Therefore, control- and morpholino-injected embryos were used for
reciprocal transplantation experiments to distinguish the intrinsic role of Psf2 in the development of the optic cup (retina)
versus the lens.
Results: Morpholino-mediated knockdown of Psf2 expression resulted in dosage-dependent phenotypes, which included
microphthalmia, incomplete closure of the ventral retinal fissure, and retinal and lens dysgenesis. Defects were also
observed in other embryonic tissues that normally express Psf2 including the pharyngeal arches and the otic vesicle,
although other tissues that express Psf2 were not found to be grossly defective. Eye defects could be rescued by co-injection
of synthetic Psf2 RNA. Examination of cell proliferation via an antibody against phospho-histone H3 S10P revealed no
significant differences in the retina and lens following Psf2 knockdown. However, there was a significant increase in the
level of apoptosis in retinal as well as forebrain tissues, as revealed by TUNEL (terminal deoxynucleotide transferase
dUTP nick end labeling) assay.
Conclusions: The results demonstrate intrinsic roles for Psf2 in both retinal and to a lesser extent, lens tissues. Observed
lens defects can mainly be attributed to deficiencies in retinal development and consequently the late phase of lens
induction, which involves instructive cues from the optic cup. Developmental defects were not observed in all tissues that
express Psf2, which could be related to differences in the translation of Psf2 or redundant effects of related factors such
as proliferating cell nuclear antigen (PCNA).

Integral to the process of DNA replication is the
recruitment of protein complexes that function as “sliding
clamps,” mediating the function of DNA polymerases alpha,
delta, and epsilon during the initiation and elongation phases
of replication [1-4]. One such sliding clamp is PCNA
(proliferating cell nuclear antigen), which forms a ring-shaped
trimeric complex and is well known for its roles in DNA
replication [3,4]. However, PCNA has been shown to also be
involved in other processes including cell cycle control and
DNA repair [5,6]. Additional evidence suggests that PCNA
may play roles in chromatin remodeling, RNA transcription,
and tissue differentiation [4,6].

Another ring-like complex called GINS (go, ichi, ni, san)
has recently been described in diverse organisms including
Saccharomyces cerivisiae and Xenopus laevis [1,7]. Four
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evolutionarily conserved components, Sld5, Psf1 (i.e., partner
of Sld5 1), Psf2, and Psf3, comprise the GINS heterotetramer.
Studies have shown that GINS binds to the pre-RC in a cdc45-
mediated and CDK-dependent manner, and the presence of
GINS components is required for DNA synthesis to occur in
Xenopus laevis egg extracts. The ring-like structure and
specific interactions suggest that GINS, like PCNA, acts as a
sliding clamp for DNA polymerase epsilon to promote
initiation and continued elongation during DNA synthesis [1,
8].

Recently, we found that Psf2 (partner of Sld5 2) is
significantly upregulated during the process of lens
regeneration (a phenomenon also known as cornea-lens
transdifferentiation) in the frog, Xenopus laevis, expressed
sequence tag (EST)  “H145” [2,9].  In situ hybridization
during embryonic stages revealed a tissue-specific Psf2
expression pattern including expression in both the
developing retina and lens (Figure 1A and see the more
thorough description in [2]). Interestingly, the spatial
expression of Psf2 differs from that of the other GINS
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components. Moreover, Psf2 expression does not simply
coincide with embryonic tissues that exhibit the highest rates
of cell proliferation [2]. Likewise, these patterns of expression
do not entirely match those of PCNA [2]. These observations
indicate that various factors involved in DNA replication are
deployed in different embryonic tissues and could have other
functions. One report demonstrated that Psf2 expression is
activated in intrahepatic cholangiocarcinoma cells [10], and
this gene also appears to play a role in chromosome
segregation [11].

In this paper, we report studies examining the function of
Psf2 during development in the frog, Xenopus laevis, via
morpholino-mediated knockdown of translation.
Additionally, knockdowns were performed in conjunction
with reciprocal tissue transplantation to ascertain the spatial-
temporal action of Psf2 during eye development. Knockdown
of Psf2 in eye tissues led to a suite of developmental defects,
demonstrating a role for Psf2 in retinal, and to a lesser extent,
lens development. Interestingly, analyses revealed no
significant differences in cell proliferation within these eye
tissues when compared to various controls. On the other hand,
there was a significant increase in the level of apoptosis within
the retina following morpholino knockdown of Psf2. Similar
increases in apoptosis were not observed in all tissues known
to express Psf2, such as the paraxial mesoderm. The data
reveal tissue specific roles for Psf2, which extend beyond
those related to DNA replication and cell proliferation.

Figure 1. Embryonic expression of Psf2. A: An example of a whole
mount in situ hybridization pattern showing localization of Psf2 in
specific embryonic tissues (stage 33) is shown. Note the expression
in the brain (labeled as cns), the retina and lens of the eye (labeled
as eye), mesoderm of the pharyngeal arches (labeled as pa), and in
stripes representing a reiterated subset of the paraxial (somitic)
mesoderm (labeled as pm). B: RT–PCR analysis of Xenopus laevis
Psf2 at different stages of embryogenesis, as noted (all stages follow
those of [15]). A portion of 1 kb ladder was run for reference (labeled
as 1kb). The 1018 bp and 506 bp bands are labeled. Expected Psf2
PCR product is 577 bp. For simplicity, positive and negative control
lanes are not shown here.

METHODS
Maintaining and handling Xenopus laevis adults and
embryos: Adult Xenopus laevis were obtained from NASCO
(Fort Atkinson, WI). Fertilized eggs were prepared following
previously published protocols [12,13]. Embryos were reared
in 1/20 normal amphibian media (1/20X NAM, [14]) at 16 °C
unless otherwise indicated below. Embryos were staged
according to reference [15].
Reverse transcription polymerase chain reaction analyses:
TRIzol reagent (Invitrogen, Carlsbad, CA) was used to extract
total RNA from embryos at the following stages: 1–4, 12, 14,
16, 19–22, 26, 30, and 42–45. RNA was treated with RQ1
RNase-free DNase (Invitrogen, Carlsbad, CA) and purified
using NucAway columns (Ambion, Austin, TX). Total RNA
(5 μg) from each of the representative stages served as
templates for reverse transcription reactions using oligo dT
primers (Superscript III M-MLV RT; Invitrogen) according
to the manufacturer’s instructions. cDNA was subsequently
treated with RNase H (Invitrogen). The following set of
primers (Invitrogen) was used for polymerase chain reaction
(PCR): H145For: 5′-GTCATGGATGCCTCTGAGG-3′;
H145Rev:  5′-GTGTGTTCTCAGCAGCCAGA-3′
(producing a product of 557 bp). PCR conditions for all
reactions included 2.0 μl of the first strand cDNA
(approximately 0.5 μg template DNA), 1.0 mM MgCl2,
Platinum Taq polymerase, and reaction buffer (Invitrogen),
54 °C annealing temperature, and 30 cycles using a PTC-200
thermocycler (MJ Research, Waltham, MA). One nanogram
of the H145 clone in pSPORT1 (Invitrogen) was used as a
positive control.
Morpholino oligonucleotide design: BLASTn analyses of
various databases revealed numerous Xenopus laevis Psf2
ESTs. None of the analyses exhibited any sequence variation
in the targeted 5′ region. Morpholinos (MO) against Psf2
called “Psf2MO” were synthesized by Genetools Inc.
(Philomath, OR) to target the 5′ translational start site and
adjacent 3′ open reading frame of the Psf2 transcript. The
targeted sequence of Psf2 including the 5′ start site is as
follows: 5′-GGATGCCTCTGAGGTCGAGTTCTTG-3′
(translation initiation site is underlined). Two Psf2 specific
morpholinos were used in this study. One morpholino
recognized part of the translation initiation site and the
downstream sequence (5′-CAAGAACTCGACCTCAGAG- 
GCATCC-3 ;  complementary  portion  of start site is under-′
lined). The second morpholino was identical in sequence but
had a 3′  lissamine tag, which  enabled lineage tracing. Both
of these morpholinos provided identical results.  In  addition,
a   standard,  untagged  or  lissamine-tagged  random  control
morpholino  (CONMO)  was  also used as a negative control

    (5'-CCTCTTACCTCAGTTACAATTTATA-3′) to assay for
                   any non-specific effects of the injections or possible cytoto-

xicity associated with morpholinos. The latter sequence was

Molecular Vision 2008; 14:906-921 <http://www.molvis.org/molvis/v14/a109> © 2008 Molecular Vision

907

http://www.molvis.org/molvis/v14/aa109


designed against a human globin intron and is not known to
target any Xenopus laevis sequences.
Generation of RNAs: A cDNA was designed to generate full-
length functional synthetic RNA, as an altered form of Psf2
RNA (altPsf2 RNA), for injection into Xenopus laevis
embryos. The sequence immediately downstream of the start
site of Psf2 was altered to prevent hybridization with Psf2MO
while preserving the original protein coding sequence. This
was accomplished via PCR to introduce third-base
substitutions of each codon represented in the Psf2MO
sequence. PCR conditions included: 100 ng template DNA,
1.0 mM MgCl2, Taq polymerase and reaction buffer
(Invitrogen), 45 °C annealing temperature, and 30 cycles
using a PTC-200 thermocycler (MJ Research). The following
PCR primers were used to generate the altered cDNA, which
was subsequently cloned into pCS2+ (Clonetech, Mountain
View, CA) following digestion with ClaI and XbaI: upstream
primer 5′-ACCATCGATATGGAcGCtTCcGAaGTtGAaTTt-

  with   underlined   bases   corresponding  to  the

the  ClaI restriction  site, and  lower case bases representing
those  altered  from  the original Psf2 sequence; downstream

5′-AGCTCTAGAGACAATTGCTTAGTAATCCT
GTGACT-3 ′  with  bases  in italics representing the XbaI

University  of  Illinois  Biotechnology  Center  (Urbana,  IL)
using  the   ABI  Prism  Dye   Terminator  cycle  sequencing
“Ready  Reaction”  kit  (ABI  Prism,  Foster  City,  CA).
Rescue  RNA  was  synthesized  using   the  SP6  mMessage
mMachine Kit (Ambion, Austin, TX) following PCR with
SP6 and T3 primers.

RNA encoding green fluorescent protein (GFP) was also
synthesized using a pCS2-GFP plasmid for use as a lineage
tracer to follow the fate of the injected blastomeres for
experiments using untagged morpholinos. GFP RNA was
synthesized using the SP6 mMessage mMachine Kit
(Ambion, Austin, TX) following digestion with NotI.
Microinjection of embryos: For morpholino injections,
embryos were dejellied and placed in 5% Ficoll in 1/20X
NAM [14] for injection. The embryos were immobilized in
clay-lined dishes for microinjection as previously described
[16,17]. Following the manufacturer’s recommendations, the
various morpholinos were dissolved at a stock concentration
of 1 mM in ultra-pure distilled water (Sigma, St. Louis, MO)
and stored at –80 °C. Thawed aliquots were heated to 65 °C
for 10 min to ensure that they were completely dissolved,
diluted to either 9 ng/nl or 18 ng/nl in distilled water, and
injected at the required volumes (using a Harvard apparatus
PLI100 Pico-Injector; Harvard Apparatus, Holliston, MA) to
deliver specific quantities of the morpholino (quantities
specified below; see also Figure 2).

To target a range of cell fates, specific quantities of
morpholinos and RNAs were co-injected into single

blastomeres at the two-cell, four-cell, and eight-cell stages. In
some cases, multiple blastomeres within a single embryo were
injected as noted. For the ease of comparison, all quantities
are expressed as the equivalent to the morpholino quantities
per individual blastomere at the eight-cell stage unless
otherwise stated (see Figure 2). With the untagged Psf2MO
morpholino, up to 125 pg of GFP mRNA was co-injected to
serve as a lineage tracer. The embryos were cultured at 16 °C
in daily changes of 1/20X NAM until at least stage 35–36
when the morphology of the eye is well developed. The
various injections were repeated multiple times using
different clutches of embryos.
Reciprocal presumptive lens ectoderm (PLE) transplants: For
transplant experiments, single cells were injected at the four-
cell stage with 18 ng of Psf2MO (equivalent to 9 ng Psf2MO
per blastomere at the eight-cell stage) to ensure a high level
of defects. Up to 125 pg GFP RNA was co-injected as a
lineage tracer. Embryos were then incubated in 1/20X NAM
until stage 14  and transferred into 3/4X NAM for
demembranation and surgery. After verifying the correct
anterior expression of GFP in the injected embryos, the
regions corresponding to the presumptive lens ectoderm were
removed with glass microneedles and swapped with the
corresponding regions of uninjected control embryos as
described in reference [12]. On the day following surgery,
embryos were equilibrated to 3/8X NAM and reared until
unoperated sibling embryos reached stage 36.
Histological analyses: Embryos were fixed in 4%
paraformaldehyde in PBS, washed in PBS, and taken through
a graded series of ethanol washes to 100% ethanol. The

Figure 2. Summary of the effects of Psf2MO injection on eye
development. Shading depicted in the key indicates categories of
normal, minor, and severe eye defect phenotypes (see text for explicit
definitions). A: Uninjected control embryos and those injected with
the control morpholino (CONMO) exhibited minimal affects. B:
Embryos injected with lissamine-tagged Psf2MO exhibit dose
dependant eye defects. Note the increasing number and severity of
eye defects with increasing doses of Psf2MO. C: Embryos co-
injected with Psf2MO and altPsf2 RNA exhibit a dose dependent
reduction in eye defects. Error bars indicate standard error.
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embryos were embedded in polyethylene glycol 400
distearate (Ruger, Irvington, NJ) and sectioned at a thickness
of 12 µm as described in reference [18], or the embryos were
transferred to xylene and embedded in Paraplast Plus (Fisher
Scientific, Pittsburg, PA) and sectioned at a thickness of 8 µm
[16]. Other specimens were fixed in MEMFA (3.7%
formaldehyde, 100 mM MOPS, 2 mM EGTA, 1 mM
MgSO4) for in situ hybridization [2] or TUNEL assays as
described below. For immunological detection of lens
proteins, primary cross-absorbed rabbit anti-lens antibody and
goat anti-rabbit-rhodamine secondary antibody (Jackson
ImmunoResearch Laboratories Inc., West Grove, PA) were
used, as described in reference [18]. Other specimens were
stained in Harris hematoxylin (Fisher Scientific, Hanover
Park, IL) following published protocols [16,19]. Some lenses
were measured using a filar micrometer, and lens diameters
were recorded for each serial section to calculate the volume.
These values were converted to a cylindrical volume based
upon the thickness of the section, and the entire z-series was
summed to obtain the total volume of each lens. Experimental
lens volumes were then recorded as a percentage of either the
contralateral control lenses, when appropriate, or an average
of sibling control lens volumes. The percentages were then
averaged for each experimental series.
Analysis of cell proliferation via phospho-histone H3 S10P
antibody labeling: As described above, fixed embryos were
embedded in Paraplast Plus, sectioned at a thickness of 8 µm,
and mounted on albumin-subbed slides [19]. A rabbit anti-
phospho-histone H3 S10P antibody (histone H3
phosphorylated at serine 10, kindly provided by Dr. Craig
Mizzen, University of Illinois-Urbana, Urbana, IL) was used
to identify proliferating cells [20]. This antibody labels nuclei
during prophase through the anaphase of mitosis. Slides were
dewaxed in xylene, allowed to air dry, and rehydrated in PBT
(PBS containing 0.1% Tween 20). Slides were then blocked
in 5% dry milk in PBS for at least 2 h and incubated with rabbit
anti-phospho-histone H3 S10P antibody (1:500) for at least 2
h. After washing six times in PBT, slides were then incubated
with goat anti-rabbit fluorescein secondary antibody (1:100,
Jackson ImmunoResearch Laboratories Inc.) in darkness for
at least 1 h followed by six washes in PBT before mounting
in 80% glycerol with 20% PBS and a 1:10,000 dilution of
Hoechst 33342 to label all nuclei (Molecular Probes, Eugene,
OR).

Due to the relatively low number of mitotic cells
contained within the eye (e.g., nuclei labeled for phospho-
histone H3 S10P) and the need to derive a significant set of
measurements, labeled cells were counted in every serial
section that contained eye tissues (i.e., the retina and lens) for
each specimen examined. Five specimens injected with
Psf2MO that exhibited the typical severe phenotype and five
specimens injected with CONMO that exhibited the typical
normal phenotype were examined. In each case, the control
eyes (formed on the uninjected sides) and the contralateral

eyes (formed on the morpholino-injected sides) were
compared. Stage 36 embryos were selected because the
differentiated eye phenotypes are readily apparent and Psf2 is
expressed in the retina and lens at that stage [2]. Lens and
retinal areas were then determined for three random sections
of each eye using the measure function in ImageJ by tracing
the outlines of these structures. These areas were then used to
determine the total volumes of the lens and retina by an
ellipsoid volume formula derived by McKenney [21],
modified to account for unequal spacing between the three
sections used. An estimate of the total number of cells per unit
volume of the retina and lens was then derived by counting all
Hoechst 33342-labeled nuclei in three random sections
containing lens tissue and six random sections containing
retinal tissue for each specimen. These data were used to
calculate the fraction of anti-H3 S10P positively stained cell
nuclei in the retina and lens tissues for comparisons between
control uninjected, Psf2MO injected, and CONMO injected
cases. The standard deviation of the fraction of phospho-
histone H3 S10P positive cells was calculated to evaluate the
range and significance of each data set. The fractions of
positively stained cells between Psf2MO cases and CONMO
cases were compared using the Student's t-test. p values of less
than 0.05 were considered significant.
Analysis of cell death via TUNEL assay: The whole-mount
TUNEL staining protocol was adapted from reference [22]
with all washes and incubations performed with constant
agitation. Morpholino-injected embryos were fixed in
MEMFA as described above at stage 36 for no more than 1 h
at room temperature then washed and stored in 100%
methanol at –20 °C. Briefly, embryos were rehydrated in PBS,
washed in PBT (0.2% Tween 20 in PBS), washed again in
PBS, and washed in 1X terminal deoxynucleotidyl transferase
(TdT) buffer for 30 min at room temperature. Recombinant
TdT (Promega, Madison, WI) was added at a concentration
of 150 U/ml with 0.5 µM digoxigenin dUTP (Roche,
Indianapolis, IN), and embryos were incubated overnight at
room temperature. The reaction was terminated in PBS with
1 mM EDTA at 65 °C and then washed with PBS at room
temperature. The detection and chromogenic reactions were
adapted from Harland [23]. Embryos were washed in PBT/
BSA (PBS, 20 mg/ml BSA, 0.1% Triton-X; Sigma) and
blocked in PBT/BSA with 20% goat serum for 1 h at room
temperature. Embryos were further incubated overnight at
4 °C with anti-digoxigenin alkaline phosphatase antibody
(Roche, Indianapolis, IN) that was diluted 1:2000 in PBT/
BSA with 20% goat serum. Reactions were washed at least
four times with PBT/BSA at room temperature and washed
briefly with alkaline phosphatase (AP) buffer, then the stain
was developed using nitro blue tetrazolium and 5-bromo-4-
chloro-3-indolyl phosphate substrates. The reaction
developed at room temperature for 30 min and was terminated
by washing in AP buffer, and embryos were refixed in 4%
paraformaldehyde for 1 h at room temperature to stabilize the
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staining pattern. Embryos were washed in 100% methanol and
rehydrated in PBS. Using clear glass vials, embryos were
bleached of their own natural pigmentation using 4% H2O2 for
1–2 h on a fluorescent light box, washed briefly in PBS, and
then dehydrated with 100% methanol. Specimens were
cleared in 2:1 benzyl benzoate/benzyl alcohol (BABB) for
whole mount examination and then washed in three changes
of 100% methanol and finally transferred to 100% xylene for
embedding and sectioning as described above for histological
analysis.

The number of TUNEL positive cells in these tissues was
much greater, and therefore, estimates of the fractions of
TUNEL positive cells in the retina and lens tissues were
assessed by examining random sections through the eyes in
control, uninjected embryos and morpholino-injected
embryos. Control eyes formed on the uninjected sides and
contralateral eyes formed on the MO-injected sides were
examined in five specimens injected with Psf2MO (exhibiting
the typical severe phenotype) and five specimens injected
with CONMO (exhibiting the typical normal phenotype) at
stage 36. For each embryo, three random sections from the
uninjected side and three random sections from the
morpholino-injected side were examined. Sections were
selected that contained both retina and lens tissue. In each
section, all TUNEL positive nuclei and all Hoechst 33342-
labeled nuclei were counted separately for the lens and the
retina. These data were used to obtain an estimate of the
fraction of TUNEL positive cells in the retina and lens tissues
for comparisons between the control, uninjected cases, the
Psf2MO cases, and the CONMO injected cases. As above, the
standard deviation of the fraction of TUNEL positive cells was
calculated to determine the range and significance of each data
set. Likewise, the fractions of positively stained cells between
Psf2MO cases and CONMO cases were compared using the
Student's t-test; p values of less than 0.05 were considered
significant.

RESULTS
Psf2 expression: reverse transcription polymerase chain
reaction analysis: The spatio-temporal expression pattern of
Psf2 has already been described for embryonic stages 14–37
as well as during the process of lens regeneration in Xenopus
laevis (Figure 1A and [2]). Our earlier study indicated that
Psf2 mRNA is detectable beginning at stage 14 and is present
in discrete tissues at subsequent stages of development
including the brain, retina, lens, ear, pharyngeal mesoderm,
and paraxial mesoderm derived from the somites (Figure 1A).
Here, we extended those analyses using RT–PCR to examine
a broader range of stages. Though not quantitative, the results
indicate that Psf2 transcripts can be detected throughout all
the stages examined (stages 1–45, Figure 1B).
Knockdown of Psf2 in developing embryos: Despite the fact
that numerous orthologs have been cloned in a variety of
organisms, few functional studies for Psf2 have been

undertaken. Careful functional analyses revealing a role for
Psf2 in DNA replication have only been performed in yeast
[7] and in Xenopus laevis oocytes [1]. A Drosophila mutant
is not available, but RNAi screens, which included the Psf2
ortholog in C. elegans, revealed an embryonic lethal
phenotype  ([24], gene F31C3.5 in  wormbase).  The
differential expression pattern of Psf2 during development
and cornea-lens transdifferentiation in Xenopus laevis
suggests that this gene may be necessary for the development
of a specific subset of tissues including the retina and lens
[25]. Therefore, morpholino knockdown experiments were
performed to determine whether Psf2 is necessary for normal
development in Xenopus laevis.

Single blastomeres including those known to contribute
descendents to the retina and lens were injected at the two-
cell, four-cell, and eight-cell stages. These same cells also
contribute descendents to the CNS, head and trunk neural
crest, other placodes, mesoderm, and epidermis [26-28].
Embryos were injected unilaterally to allow for the
contralateral, uninjected sides to serve as internal controls
[29,30] and also to limit the potential for early embryonic
lethality that could obscure the assessment of gene function.
Expression of GFP and the lissamine fluorescent tracer were
used to verify injections and the appropriate targeting of
embryonic domains/tissues.

The results of the various morpholino injection
experiments performed are summarized in Figure 2. The
typical phenotypes observed are shown in Figure 3. Eye
morphologies were classified into three categories: (1) those
with normal eyes, showing no morphological defects; (2)
those with minor eye defects, exhibiting slightly diminished
retinal pigmentation, smaller eye size (i.e., 50%–80% of the
diameter of the contralateral control eye) or minimal ventral
dysgenesis including phenotypes exhibiting incomplete
closure of the ventral retinal fissure (Figure 3B); or (3) those
with severe eye defects including cases with eyes less then
50% of the diameter of the contralateral control eyes, very
little or no retinal pigmentation, extensive ventral eye
dysgenesis (missing greater than 25% of the ventral-most
edge of the retina), or no detectable eyes (Figure 3E,K,Q).
Defects were almost always restricted to the progeny of the
injected blastomeres (labeled by the fluorescent tracers).

To determine if lenses were present, embryos were
sectioned and the anti-lens antibody was used to detect lens
proteins (following reference [18], Figure 4A). Lenses were
present in all of the cases observed; however, they were
smaller and generally proportional to the smaller retinas that
formed (Figure 4A-G). The most severe cases lacked normal
morphology, and the lens cells did not appear to be fully
differentiated, were lacking overt fiber cells, and did not have
a well established polarity. Ectopia lentis was observed in a
few cases (data not shown). In comparison to control retinas,
retinal tissues targeted with Psf2MO were smaller in size,
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Figure 3. Results of Psf2 morpholino knockdown and RNA rescue experiments. Dorsal is toward the top in each figure. A-F: Typical eye
defects observed following unilateral injection of lissamine-tagged Psf2MO into single blastomeres at the two-cell stage (equivalent to 2.25
ng/cell at the eight-cell stage) are shown. A: Normal control (uninjected, CON) side is shown. This side is the normal part the embryo shown in
B-C. B: Minor eye defect is observed on the Psf2MO-injected side (opposite that shown in A) as indicated by arrow. Note the slight decrease
in retinal pigmentation in the ventral region and the reduced size of the optic cup compared to that shown in A. C: Corresponding fluorescence
image to that shown in B, the image shows the distribution of the lissamine-tagged morpholino (LIS). D: Normal control, uninjected side is
shown. This side is the normal part of the embryo shown in E-F. E: A severe eye defect phenotype is observed following Psf2MO injection.
Note the smaller size of the eye and severe reduction in the ventral region of the optic cup, denoted by the arrow in E. F: The corresponding
fluorescence image shows the distribution of the lissamine-tagged morpholino for the embryo shown in E. G-I: The typical result observed
following the co-injection of 2.25 ng Psf2 morpholino and 1000 pg synthetic altPsf2 RNA is shown. G: The normal control, uninjected side
of the embryo shown in H-I is displayed. H: There was normal morphological development following the co-injection of Psf2MO (equivalent
to 2.25 ng/blastomere at the eight-cell stage) and 1000 pg rescue RNA (altPsf2 RNA). I: The corresponding fluorescence image to that shown in
H shows distribution of the lissamine-tagged morpholino. J-L: Typical severe eye defect is observed following the unilateral injection of
lissamine-tagged Psf2MO into single blastomeres at the two-cell and four-cell stages (equivalent to 4.5 ng/blastomere at the eight-cell stage).
J: The normal control, uninjected side of the embryo shown in K-L is pictured. K: Typical severe eye defect phenotype is observed following
Psf2MO injection. Note the smaller size of the eye and severe reduction in the ventral region of the optic cup, denoted by the arrow in K. L:
The corresponding fluorescence image shows the distribution of the lissamine-tagged morpholino for the embryo shown in K. M-O: The
typical result is observed following the co-injection of 4.5 ng Psf2 morpholino and 1000 pg synthetic altPsf2 RNA. M: The normal control,
uninjected side of the embryo shown in N-O is displayed. N: Normal morphological development is observed following the co-injection of
Psf2MO (equivalent to 4.5 ng/blastomere at the eight-cell stage) and 1000 pg rescue RNA (altPsf2 RNA). O: The corresponding fluorescence
image to that shown in N shows the distribution of the lissamine-tagged morpholino. P-R: Typical severe eye defect is observed following
unilateral injection of lissamine-tagged Psf2MO into single blastomeres at the two-cell and four-cell stages (equivalent to 6 ng/blastomere at
the eight-cell stage). P: The normal control, uninjected side of the embryo shown in Q and R is shown. Q: The typical severe eye defect
phenotype is displayed following Psf2MO injection. Note the severe reduction in the ventral region of the optic cup, denoted by the arrow in
Q, and the overall lack of retinal pigmentation. R: The corresponding fluorescence image shows the distribution of the lissamine-tagged
morpholino for the embryo shown in Q. S-U: The typical result is observed following co-injection of 6 ng Psf2 morpholino and 1000 pg
synthetic altPsf2 RNA. S: The normal control, uninjected side of the embryo shown in T-U is displayed. T: There is normal morphological
development following the co-injection of Psf2MO (equivalent to 6 ng/blastomere at the eight-cell stage) and 1000 pg rescue RNA (altPsf2
RNA). U: The corresponding fluorescence image to that shown in S shows the distribution of the lissamine-tagged morpholino. The scale bar in
U is equal to 450 µm.
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lacked clearly organized neural retinal cell layers, and were
without a fully developed retinal pigmented epithelium
(Figure 4A-G).

Equivalent and higher doses of the control morpholino
(CONMO) did not exhibit many noticeable defects other than
a very low frequency of minor defects (i.e., slight reduction
in eye size in some cases; Figure 2A). A very small, baseline
level of eye defects was also seen in uninjected control
embryos (Figure 2A). These results are consistent with those
of contemporaneous studies in our laboratory showing that
significant levels of eye defects are not observed with
equivalent doses of the control morpholino [16,17]. These
findings indicate that the significant levels of developmental

defects detected in Psf2MO-injected cases cannot be simply
attributed to the injection procedure or to non-specific
cytotoxicity of the morpholinos.

When Psf2MO was localized to non-eye tissues,
additional malformations were observed. For example, the
overall size of the developing brain was reduced on the
injected side (Figure 4A,D-E,H-I). Sections through these
specimens revealed that the CNS on the morpholino-injected
side contained fewer cells and even lacked a definitive
proliferative (ventricular) zone (Figure 4A,D-E). The otic
vesicles were reduced or absent on the Psf2MO side as well
(Figure 4H-I). The incidence of eye defects was rare when
Psf2MO was targeted to non-eye tissues, and this frequency

Figure 4. Transverse sections of specimens demonstrating severe eye defects following Psf2MO-mediated knockdown. Dorsal is toward the
top in each figure. A: Image montage of a typical specimen shows the Psf2 morpholino-injected side on the left and the internal control,
uninjected side on the right. This image was viewed with differential interference contrast (DIC). The red color in A shows overlain distribution
of rhodamine fluorescence of secondary antibodies revealing immunoreactive lens crystallin proteins within both lenses. The cornea epithelium
overlying the eye on the left is thicker compared to the uninjected side on the right, characteristic of undifferentiated embryonic ectoderm.
Note that the lens and retina of the morpholino-affected eye are smaller and not as fully differentiated. The forebrain is also smaller and less
differentiated on the left, Psf2MO-injected side. B and C are the higher magnification views of the left and right eyes shown in A, respectively.
D-E: The left and right sides of the head of a second case stained with Hematoxylin/Eosin are shown. F and G are higher magnification views
of the eyes shown in D and E, respectively. Note that the forebrain and retina are malformed on the left, Psf2MO-injected side shown in D and
F compared to the control side shown in E and G. On the Psf2MO-injected side (D, F), only a small lens vesicle possessing a central lumen
has formed. This lens vesicle exhibits some polarization and evidence of elongating primary fiber cells. Also note the retarded differentiation
of the cornea in D and F compared to the respective control cornea shown in E and G. H-I: More posterior sections show the reduction in
hindbrain size and the absence of the otic vesicle on the Psf2MO-injected side (H) compared to the normal pattern of development seen on
the control, uninjected side (I). cn, cornea epithelium; fb, forebrain; fg, foregut; hb, hindbrain; le, lens epithelium; lf, lens fiber cells; ln, lens;
lv, lens vesicle; on, optic nerve; ov, otic vesicle; rpe, retinal pigmented epithelium; rt, neural retina. The scale bar in I is equal to 160 µm in
A-B, 85 µm in B-C, 170 µm in D-E, 100 µm in F-G, and 190 µm in H-I.
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was no higher than that observed in uninjected or CONMO-
injected control embryos (data not shown). Some observations
of particular toxicity effects for very high morpholino dosages
have been reported in other studies [29,30] including axial
truncations and aberrant cell death. Such defects were not
observed for injections of control morpholinos with the doses
used in this study (Figure 2A).
Specificity of the Psf2MO knockdowns: RNA rescue
experiments: To determine the specificity of Psf2MO
knockdown, we initially obtained rabbit polyclonal antibodies
raised against the Psf2 protein (as prepared by the Takisawa
laboratory, Osaka University, Osaka, Japan [1]).
Unfortunately, in our hands, this antibody failed to display a
band of expected size in western blots using control,
uninjected embryos (21,325 Da).

As an alternative approach, the specificity of the
morpholino knockdown was verified by RNA rescue.
Specifically, a cloned DNA variant was designed to generate
an altered form of synthetic rescue RNA encoding full-length
functional Psf2 protein (see Methods). RNA rescue represents
a highly stringent test for specificity as the experiments rely
on the functional capacity of the injected RNA. Cells were co-
injected with both lissamine-tagged Psf2MO and the altered
Psf2 rescue RNA (altPsf2 RNA) at different concentrations.
The co-injection of altPsf2 RNA with Psf2MO significantly
reduced the overall frequency and severity of eye defects in a
dose dependent fashion (compare Figure 2B versus Figure 2C,
and Figure 3P-R versus Figure 3S-U). Sibling control and
Psf2MO-injected embryos were raised alongside these
samples, and these confirmed that the overall effectiveness of
the morpholinos injected during these experiments was as
expected (Figure 2A-B).
Reciprocal presumptive lens ectoderm transplants in
Psf2MO-knockdown embryos: It is well established that
reciprocal inductive signals control the development of both
the lens and the retina [31-36]. Because Psf2 morpholino
knockdowns perturb the development of both of these
structures, it is important to distinguish between primary
intrinsic requirements of Psf2 function in the lens and/or retina
and possible secondary effects related to defects in their
reciprocal induction. To examine this, we combined
morpholino injections with reciprocal transplantation of the
presumptive lens ectoderm (Figure 5). Embryos were co-
injected at the four-cell stage to produce severe eye defects
(e.g., phenotypes seen in Figure 3K,Q). Injected embryos
were raised to stage 14, and those with proper GFP expression
in the presumptive retina and lens were used for reciprocal
presumptive lens ectoderm transplants with uninjected control
embryos (see Methods and Figure 5). Specimens were then
raised to stage 36 and scored for eye and lens defects. Larvae
with morpholino-containing donor tissue were scored for the
presence of GFP in tissues derived from the donor transplant
(i.e., the lens and head ectoderm), and morpholino-containing

hosts were examined for GFP in the retina. Those that met the
above conditions with transplants correctly located over the
eye were sectioned and subsequently analyzed for the
presence of lens proteins using the anti-lens antibodies.
Results are presented in Figure 6 and Figure 7A-N. A set of
control experiments was also performed using the control
morpholino (CONMO) to assess the background rate of eye
defects associated with the surgeries (Figure 6). Both control
and morpholino-injected embryos not used in the transplant
experiments were raised alongside the transplant embryos,
and these confirmed that the overall effectiveness of the
morpholinos injected during these experiments was as
expected.

The CONMO host specimens containing uninjected
transplants produced antibody positive lenses with an 80%

Figure 5. Diagrams illustrating the tissue transplantation experiment
performed to localize Psf2 function in the eye. This experiment
involves reciprocal transplantation of stage 14 presumptive lens
ectoderm (ple) between uninjected embryos (upper example) and
morpholino (MO)-injected embryos (lower example). Single
blastomeres were injected with morpholino at the four-cell stage as
shown. Green color shows the distribution of the co-injected
morpholino and GFP RNA tracer. See text for further details.

Figure 6. Summary of the data obtained from the reciprocal tissue
transplantation experiments diagramed in Figure 5. See also the text
and Figure 7. aGreen color denotes the presence of the morpholino.
bData from Henry and Grainger is shown [18]. HRP stands for
horseradish peroxidase. The exact lens sizes were not reported in that
study but were less than the full size. cSee Methods for details on
these measurements.
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frequency, and the lenses produced were on average 88.6%
the volume of the contralateral, unperturbed lenses (Figure 6).
Similar results were observed with CONMO donors and
uninjected hosts in which antibody positive lenses formed
80% of the time and the lenses were 79.5% the size of the
control lenses. In both cases, the lenses that formed from the
donor tissue were well differentiated. These results are similar
to those reported by Henry and Grainger [12] in which stage
14 control presumptive lens ectoderm was transplanted to the
presumptive lens ectoderm region of another stage 14 control
embryo. In those cases, antibody positive lenses were formed
in 82% of the cases (Figure 6 and [12]).

Specimens with Psf2MO-targeted retinas and control
donor presumptive lens ectoderm developed malformed
retinas with morphologies consistent with those observed in

Psf2MO-injected embryos. Lentoid tissues with positive
responses to the anti-lens antibody were produced in only 33%
of the cases (Figure 6, Figure 7A-G). Those tissues that were
responsive to the antibody were very small (at 9.4% volume
compared to the contralateral lenses, Figure 7D-G),
resembling small lens vesicles or thickened lens placodes.
Furthermore, none of these tissues contained obviously
differentiated fiber cells indicative of normal lenses.

Conversely, Psf2MO-containing donor presumptive lens
ectoderm transplanted to the presumptive lens region of
uninjected control hosts produced lenses 83% of the time
(Figure 6 and Figure 7H-N). This frequency of lens formation
from these transplants is similar to the frequencies described
above for the various control transplantation experiments.
However, lenses that formed averaged only 48.0% of the

Figure 7. Examples of the results observed from reciprocal presumptive lens ectoderm transplants between control and Psf2MO-injected
embryos. Dorsal is toward the top in each figure. Arrowheads point to eyes in the whole mounts shown in A-C and H-J. A-G: This example
shows the typical result that is observed when the presumptive lens ectoderm from a control embryo is transplanted to the lens-forming region
of a Psf2MO-injected host (see Figure 5, the text, and Figure 6). A: The view of the control (“CON”), unoperated side of the larva is shown.
B: The view of the operated side that received the transplanted PLE (“TRANSPLANT”) shows abnormal development of the retina and lens.
C: The whole mount fluorescence image corresponds to that shown in B, which reveals the location of the transplanted ectoderm via distribution
of GFP expressed in the donor tissue (“GFP”). D and E: High magnification DIC images of transverse sections through the control side (D)
and the operated side that received the transplanted tissue (E) are displayed. F and G: Corresponding immunofluorescence images show anti-
lens antibody staining of the sections shown in D and E, respectively. Note formation of an abnormal retina and small lens body in E and G.
H-N: This example shows the typical result that is observed when the presumptive lens ectoderm from a Psf2MO-injected embryo is
transplanted to the lens-forming region of a control host (see Figure 5, the text, and Figure 6). H: The view of the control (“CON”), unoperated
side of the larva is shown. I: The view of the operated side that received the transplanted PLE (“TRANSPLANT”) shows smaller overall size
of the eye. J: The whole mount fluorescence image corresponds to that shown in I, which reveals the location of the transplanted ectoderm
via distribution of GFP expressed in the donor tissue (“GFP”). K-I: High magnification DIC images of transverse sections through the
unoperated, control side (K), and the side that received the PLE transplant derived from the Psf2MO-injected embryo (L), are shown. M and
N display the corresponding immunofluorescence images showing anti-lens antibody staining of the sections presented in K and L,
respectively. Note that the retina and lens formed on the operated side (L and N), although smaller compared to the unoperated side (K and
M), exhibit fairly normal morphology. Labels are the same as those used in Figure 4. lb stands for lens body. The scale bar in N is equal to
450 µm in A-C and H-J and 80 µm in D-G and K-N.
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volume of the contralateral lenses overall but generally
exhibited normal lens polarity including differentiated
primary and secondary fiber cells and lens epithelial tissue
(Figure 7K-N).
Examination of cell proliferation and apoptosis: Specimens
were examined for differences in the levels of cell
proliferation and cell death specifically in the retina and the
lens following injections with Psf2MO and CONMO (Figure
8 and Figure 9). No significant differences were detected in
the levels of proliferation in lens or retinal tissues compared
to the controls (Figure 8). Within the retina, labeled cells were
mainly located within or in close proximity to the region of
the ciliary margin. Within the lens, these were situated within
the lens epithelium. The presence of Psf2MO did not
significantly influence the fraction of mitotic cells in the lens
or retina (p=0.12 and 0.88, respectively, relative to CONMO
injection). If anything, there was a slight increase in the
fraction of mitotic cells in the retina following injections of
Psf2MO (Figure 8I). On the other hand, a threefold to fourfold
difference was detected in the level of apoptosis in the retina
in the Psf2MO-injected embryos (Figure 9). In the retina, the
fraction of apoptotic cells was significantly higher in the
Psf2MO cases than in the CONMO cases (p=0.013).
Similarly, significant increases in the level of apoptosis were
also measured in the forebrain following Psf2 morpholino
knockdown (Psf2MO mean=7.3%, SD=2.9%; CONMO
mean=2.1%; SD=0.6%; uninjected control mean=1.7%,
SD=1.1%). The fraction of apoptotic cells was significantly
higher in the Psf2MO-injected cases compared to the
CONMO-injected cases (p=0.011). Apoptotic cells were seen
throughout the retina but predominantly located within the
differentiating neuronal layers. A slight increase in the level
of apoptosis was also seen in the lens (Figure 9G) where the
fraction of apoptotic cells in the lens differed significantly
between Psf2MO-injected and CONMO-injected cases
(p=0.03) but not when compared to the uninjected controls
(p=0.07). Increases in the level of apoptosis were also noticed
in the pharyngeal region and the gut (Compare Figure 9A
versus Figure 9D and Figure 9C versus Figure 9F). However,
not all tissues that express Psf2 exhibited these increases. For
instance, there was no noticeable difference in the level of
apoptosis in the somitic mesoderm in the trunk and tail
following a pattern that mirrors the distinct repeated (striped)
Psf2 mRNA expression pattern seen in this tissue (for
instance, compare the whole mount expression pattern shown
in Figure 1A, and those more specifically described by Walter
and Henry [2], to the TUNEL staining patterns shown in
Figure 9A-B,D-E).

DISCUSSION
Morpholino-mediated knockdown of Psf2 leads to specific eye
defects: Morpholinos have been shown to be reliable for the
analysis of gene function in Xenopus laevis [30,37,38]. They
are stable and effective quite late in development (into the

early tadpole stages in Xenopus laevis [29]). The morpholino
knockdown studies reported here clearly demonstrate an
important role of Psf2 in the development of the eye. Other
defects were also observed in brain tissues where Psf2 is also
normally expressed. When Psf2 morpholino was targeted to
non-eye tissues, defects were not observed in the eye above
the low levels of background minor defects seen in uninjected
or CONMO-injected embryos. These results demonstrate that
the defects seen in the eye are directly correlated to the
presence of Psf2MO in those progenitors. Furthermore, co-
injection of rescue altPsf2 RNA with Psf2MO significantly
reduced both the frequency as well as the severity of the
defects observed versus those seen using comparable
morpholino dosages without altPsf2 RNA (compare Figure
2B,C). These observations corroborate the specificity of the
Psf2 morpholino knockdown effects in this study.

In situ hybridization analysis shows that Psf2 is expressed
in the anterior CNS of neurula stage embryos particularly in
the region of the forebrain and presumptive retina [25]. During
the later stages of optic cup development, Psf2 expression
continues in the lens and optic cup and more intensely in the
ciliary marginal zone [25]. The latter has been shown to be
the site of proliferative activity responsible for increased
growth of the retina [39]. Other tissues also express Psf2
including the pharyngeal mesoderm and paraxial mesoderm
within the tail (Figure 1A and see [2]). Interestingly, there
were no significant differences noted in the level of
proliferation in the retina or the lens following injections with
Psf2MO. On the other hand, there were elevated levels of
apoptosis particularly in the retina. Apoptotic cells were
mainly seen in the differentiating layers of the retina. This may
imply that Psf2 is required at some level for the differentiation
or survival of retinal cells. Although elevated levels of
apoptosis were also detected in other tissues that express Psf2
(including the forebrain and the pharyngeal region) following
Psf2MO injections, we did not observe similar increases in
the paraxial mesoderm of the tail. These findings suggest that
Psf2 may be important for only a subset of tissues that express
this gene. These observations could also be related to
differences in the translation of the protein or to redundant
effects of other related factors such as PCNA.

The role of Psf2 in optic cup development and lens induction:
Lens formation is normally directed by two phases of
induction including an early phase that occurs during
gastrulation (stages 10.5–19) and a late phase that occurs
when the developing optic vesicle contacts the presumptive
lens ectoderm (stages 19+; see [12,18]). Furthermore, the
presumptive lens ectoderm also provides reciprocal signals
for proper morphogenesis of the optic cup [31-36]. Therefore,
it is important to distinguish between intrinsic and extrinsic
roles of particular genes in the development of retinal and lens
tissues. Reciprocal transplants using control, uninjected
tissues and those affected by Psf2 morpholino knockdown
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Figure 8. Effects of Psf2MO and CONMO injections on cell proliferation in the neural retina and lens. A-H: Transverse sections of eyes in
Psf2MO-injected and CONMO-injected embryos show corresponding pairs of differential interference contrast and fluorescence micrographs.
Fluorescence micrographs in B, D, F, and H show distribution of proliferating cells labeled with anti-phospho-histone H3 S10P antibody
(green). White arrowheads point to examples of these labeled cells within the retina. A and B: The normal, control eye derived from the
uninjected side of one example is displayed. C and D: Opposite, defective eye derived from the Psf2MO-injected side of the same embryo
shown in A-B is displayed in these panels. E and F: The normal, control eye derived from the uninjected side of another embryo is shown. G
and H: Opposite, normal-appearing eye derived from the CONMO-injected side of the same embryo shown in E-F is displayed in these panels.
I: Graphical depiction of the levels of cell proliferation in the neural retina and the lens is shown. Bars represent the mean fraction of histone
H3 S10P labeled cells (depicted as a percentage along the y-axis) while the different tissues and conditions examined are depicted along the
x-axis, as indicated. Error bars representing the standard deviation are also shown. See Methods for further details explaining the preparation
of this data. Labels are the same as those used in Figure 4. Scale bar in H equals 100 µm.
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Figure 9. Effects of Psf2MO and CONMO injections on the level of apoptosis. A-B,D-E: Whole mount examples show gross distribution of
apoptotic cells (containing blue colored NBT-BCIP precipitate). These whole mount embryos have been cleared with BABB. A and B: These
views of an embryo show sides derived from Psf2MO-injected and uninjected blastomeres, respectively. C: Transverse section through the
head of a Psf2MO-injected embryo is shown. The white dashed line separates the side containing tissues derived from the Psf2MO-injected
blastomere (on the left side of the figure) from those derived from the uninjected blastomere (on the right side of the figure). D and E: These
views of an embryo show sides derived from CONMO-injected and uninjected blastomeres, respectively. F: Transverse section through the
head of a CONMO-injected embryo is shown. The white dashed line separates the side containing tissues derived from the CONMO-injected
blastomere (on the left side of the figure) from those derived from the uninjected blastomere (on the right side of the figure). Note the increased
level of apoptosis in head tissues derived from Psf2MO-injected cells, especially in the forebrain and neural retina (e.g., compare A versus D
and C versus F). Black arrowheads point to examples of labeled apoptotic cells within the retina and brain. G: A graphical depiction of the
levels of apoptosis in the neural retina and the lens is displayed. Bars represent the mean fraction of apoptotic cells (depicted as a percentage
along the y-axis) while the different tissues and conditions examined are depicted along the x-axis, as indicated. Error bars representing the
standard deviation are also shown. See Methods for further details explaining the preparation of this data. Labels are the same as those used
in Figure 1 and Figure 4. Scale bar in F equals 600 µm for A-B and D-E and 110 µm for C and F.
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demonstrate a key role of Psf2 in retinal development and a
secondary, indirect function for Psf2 in lens induction.

The results of the reciprocal transplant experiments
indicate that the presence of CONMO in the presumptive lens
ectoderm (PLE) does not adversely affect lens development
beyond that normally attributed to this type of surgery. Only
slight reductions in both the frequency of lens formation and
the volume of the lens were observed. In fact, the results of
these control experiments are comparable to those reported by
Henry and Grainger [12,18] for transplantation experiments
involving non-morpholino-injected embryos (Figure 6).

On the other hand, the results of experiments using
Psf2MO are quite different and demonstrate an intrinsic role
for Psf2 in the development of the retina. In the transplants
involving Psf2MO-injected retinal tissue, the retinas
exhibited dysmorphogenesis similar to those observed in the
initial injection morpholino experiments using comparable
doses. In contrast, the transplants involving normal retinal
hosts and Psf2-injected donor presumptive lens epithelium
generally resulted in the hosts forming well differentiated
retinas. A slight decrease in eye size overall can be attributed
to the transplantation surgery as discussed above. Considering
that the retinas are not malformed or degenerated, knockdown
of Psf2 in the lens does not appear to appreciably disrupt the
ability of the lens to produce inductive signals or to direct
retinal development.

Psf2 was also found to have an intrinsic role in the
development of the lens, albeit to a lesser extent than within
the retina. Psf2 morpholino-containing presumptive lens
ectoderm (stage 14), transplanted to the lens forming a region
of equivalent-stage uninjected hosts, formed properly-
differentiated lenses at a frequency consistent with both
CONMO injected and uninjected control transplants (see
Figure 6 and [18]). This demonstrates that the presumptive
lens ectoderm, even with diminished Psf2 function, is still able
to receive and respond to the inductive signals from an
unaffected optic cup (Figure 7L,N). These lenses were,
however smaller in size compared to the control, contralateral
lenses (Figure 6 and Figure 7K-M). The difference in lens size
between the Psf2MO lenses (average of 48.0% of normal size)
and the controls (e.g., using the control morpholino resulting
in lenses average of 79.5% of normal size; Figure 6) indicates
that Psf2 may play an intrinsic role for full development of the
lens. These data coincide with our observations that the levels
of apoptosis increased slightly in lenses derived from
Psf2MO-injected cells. (Figure 9G).

Our experiments demonstrate that lenses fail to form
normally when the retina is perturbed via Psf2 knockdown.
Unlike the transplants involving Psf2MO donors, transplants
of uninjected stage 14 presumptive lens ectoderm to stage 14
hosts that were injected with Psf2MO resulted in a marked
reduction in both lens formation frequency and lens quality
(Figure 6 and see Figure 7E,G). Henry and Grainger [18]

showed that when any further inductive signaling to stage 14
presumptive lens ectoderm is curtailed, the ectoderm is unable
to consistently form lens tissue. None of the cases formed lens
tissue when the presumptive lens ectoderm was explanted, and
only 15% of the cases formed lens tissues when the anterior
neural plate tissue that included the retinal rudiments was
removed. When Psf2 function is perturbed in the optic cup,
proper retinal development is inhibited. Consequently, the
optic vesicle is unable to produce key inductive signals
required for normal lens development (i.e., the late phase of
lens induction is compromised).
Psf2 expression is not directly correlated with embryonic
patterns of cell proliferation: Recent analyses have examined
the expression of a variety of cell cycle regulatory and DNA
replication genes (e.g., cdk2, cyclin E, cdc45, PCNA, Sld5,
Psf1, Psf2, and Psf3) [2,40,41]. Although many of these genes
are expressed together in neural tissues, each one exhibits
unique spatial domains within other tissues. For instance, Psf2
is expressed only in a subset of tissues including the somitic
mesoderm, the pharyngeal arches, the otic vesicles, the
anterior CNS, and the eye [2]. These findings are somewhat
unexpected as genes important for DNA replication, cell cycle
control, and cell division are generally thought to be expressed
ubiquitously within developing organisms.

Proliferation patterns have been determined in Xenopus
laevis embryos using BrdU incorporation to monitor DNA
replication   [42]   and   anti-phospho-histone  H3   S10P
antibodies to detect mitotic cells [43].  These studies reveal
high   levels  of   proliferation  in  the  developing  central
nervous  system  and  lesser  degrees  of  cell  division in the
epidermal  ectoderm.  As  mentioned above, the expression
patterns of various DNA  replication factors are spatially
restricted  and  do  not  necessarily correlate with all sites of
proliferation  within  the  developing embryo.  This suggests
that  several  of  these  genes  including Psf2 may have roles
beyond that of DNA replication and cell proliferation.

The activity of GINS (comprised of Psf1, Psf2, Psf3, and
Sld5) appears to be analogous to that of PCNA, a trimeric
sliding clamp, which also binds to a variety of DNA
polymerases. Although PCNA is involved in DNA
replication, several studies suggest that it may indeed function
in different capacities. These roles not only include aspects of
cell cycle control and DNA repair [3] but may also include
roles in differentiation and transcription [44-46]. Evidence
such as this emphasizes the delicate balance between cell
proliferation and fate determination that is required for proper
development. Studies in which a cell’s ability to exit the cell
cycle was perturbed have demonstrated shifts in cell fate from
those normally anticipated [47,48]. Perturbing Psf2 activity in
the retina may likewise alter the cells’ usual exit from
proliferation, forcing them to either remain in an
undifferentiated state, proceed along an incorrect
determination pathway, or undergo apoptosis, depending on
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the extrinsic and intrinsic factors available at that stage of
development. This may therefore disrupt the inductive
potential of the retina and subsequently alter the development
of the lens.
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