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ZIF-Derived Nitrogen-Doped 
Porous Carbons for Xe Adsorption 
and Separation
Shan Zhong1, Qian Wang2 & Dapeng Cao1

Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great 
challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature 
carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors 
and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption 
measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe 
capacity of 4.42 mmol g−1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as 
CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar 
conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much 
larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-
doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

Noble gas xenon plays an important role in human industrial development and has increasingly extensive appli-
cations in aspects of lighting1, medicine2,3, nuclear magnetic resonance4 and so on. In order to obtain pure Xe 
for further utilization, the energy-intensive cryogenic fractional distillation was often used to concentrate the 
noble gas Xe from air. Alternatively, researchers have also made great efforts to adopt various kinds of absorbents 
to study Xe adsorption5–8. However, Xe has a very low concentration (0.086 ppmv) in air, and the traditional 
adsorbents like zeolites hold only very low Xe uptake9, which leads to a great challenge for Xe adsorption and 
separation. Therefore, finding high capacity adsorbents with large selectivity to capture Xe (including adsorption 
and separation) is very important and significant.

Recently, metal-organic frameworks (MOFs) and covalent-organic polymers (COPs), as a new class of porous 
materials, have attracted enormous attention in the field of gas adsorption and separation owing to their tunable 
pore structures, modified functional groups, multidimensional networks and high porosity & BET surface areas 
etc10–13. Thallapally et al.14–17 carried out a series of experiments to explore Xe adsorption capacity on MOFs, 
and found that Ni/DOBDC with high surface area, uniform porosity and polarization of metal cations exhibits 
a large Xe uptake of 4.16 mol kg−1 at 1 bar and 298 K, which is higher than that of activated charcoal17. Besides, 
Greathouse et al.5,18 used computational methods to study Xe adsorption/separation from air on several kinds of 
MOFs, and explored the effects of pore size and framework topology on noble gas selectivity. Similarly, Snurr et 
al.19 performed grand canonical Monte Carlo (GCMC) simulations to predict Xe uptake and Xe/Kr separation, 
and further screened the promising MOFs for Xe/Kr adsorption and separation among 137000 hypothetical 
MOFs20. Moreover, some other groups6,21 also investigated Xe adsorption and separation on MOFs containing 
open metal sites. It is still a great challenge to search for this kind of absorbent with both high capacity and excel-
lent selectivity.

Nevertheless, Ben et al.22,23 found that the fully carbonized PAF-1-450 shows not only high CO2 capacity of 
4.5 mmol g−1 at 273 K and 1 bar, but also large selectivity of 209 for a 15/85 CO2/N2 mixture, which was greatly 
better than the matrix PAF-1, because the carbonization approach can achieve dehydrogenation of phenyl rings 
in PAF-1, and efficiently decrease the excluded effects of hydrogen atoms of phenyl rings on the gas molecules 
adsorbed. Interestingly, the recently reported MOF-derived nitrogen-doped porous carbons not only demon-
strate excellent electrochemical performance as electrode materials24–26, but also exhibit the improved gas adsorp-
tion capacity for H2 and CO2

27,28.
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In this work, we adopted zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite as precursors 
to prepare nitrogen-doped porous carbons and further investigated the Xe adsorption and separation in the 
nitrogen-doped carbons. For comparison, we also explored the Xe adsorption and separation in the matrix ZIF-8. 
In addition, our previous GCMC simulations suggest that CuBTC among several representative MOFs and COFs 
shows the highest Xe uptake of 3.60 mmol g−1 at 1 bar and 298 K29. Therefore, we also experimentally synthesized 
the CuBTC material for Xe adsorption and separation30. On the one hand, we can confirm the rationality and 
accuracy of the GCMC prediction of Xe adsorption on CuBTC. On the other hand, we can demonstrate if the 
ZIF-derived nitrogen-doped porous carbon is better than CuBTC material for Xe adsorption or not. For dis-
crimination, we marked the ZIF-8 derived nitrogen-doped carbon as Carbon-Z and the ZIF-8/xylitol composite 
derived nitrogen-doped carbon as Carbon-ZX. The detailed synthesis process was presented in elsewhere24,26,30 
and also in Supporting Information.

Results and Discussion
Figure 1(a,b) displays the SEM images of Cu-BTC and ZIF-8 with their specific crystal appearance, which can 
be confirmed by the PXRD in Figure S1. It can be seen that the patterns agree well with the simulation peaks, 
meaning no impurity and a high purity phase. Figure 1(c,d) shows amorphous morphology of Carbon-Z and 
Carbon-ZX which coincides with their PXRD in Figure S2 with two typical peaks 2 θ  ≈  23° and 43° ascribed to 
the (002) and (101) planes of graphitic carbon31. Raman results in Figure S3 indicate the typical G band and D 
band, which originate from ideal sp2 carbons vibration in plane and defected carbons, respectively. Then, IG/ID 
values of both Carbon-Z and Carbon-ZX are ~1.02, revealing the existence of graphitic and disordered struc-
tures in ZIF-derived porous carbons32,33. Besides, 2D peak also demonstrates the stack of graphite layer to some 
extent33–35. X-ray photoelectron spectroscopy (XPS) was also used to determine nitrogen content and found 
that the nitrogen contents of Carbon-Z and Carbon-ZX are 2.99% and 4.06%, respectively (Figure S4). Besides, 
Figure S4 also shows tthree different nitrogen types in Carbon-Z and Carbon-ZX, including pyridinic nitro-
gen, quaternary nitrogen and pyrrolic nitrogen27, implying the different bonding configurations in ZIF-derived 
nitrogen-doped porous carbons. Although there is no nitrogen element in xylitol, Carbon-ZX shows a higher 
nitrogen content than Carbon-Z, probably because the premelting and polymerization of xylitol molecules 
around ZIF-8 surface can protect the nitrogen losing in process of carbonization26.

Adsorption–desorption isotherms of nitrogen at 77 K were used to further study the BET surface area and 
total pore volume by ASAP 2020 analyzer, and shown in Fig. 2. The porosity parameters are listed in Table 1. 
Obviously, Cu-BTC, Carbon-Z and Carbon-ZX exhibit type-I isotherm with almost all micropores (see Fig. 2b), 
while ZIF-8 displays type-IV isotherm with clear hysteresis hoop according to IUPAC classification36. Pore size 
distributions in Fig. 2 indicate that ZIF-8 possesses hierarchical pore structure including micropores less than 
2 nm and meso- & macropores larger than 10 nm, while Cu-BTC only holds the micropore less than 1 nm, and 
both Carbon-Z and Carbon-ZX have micropores less than 2 nm. ZIF-8 holds the high surface area of 1321 m2 g−1, 

Figure 1. Scanning electron microscopy (SEM) images of (a) Cu-BTC, (b) ZIF-8, (c) Carbon-Z, and  
(d) Carbon-ZX.
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while ZIF-8 derived Carbon-Z shows the smaller BET of 603 m2 g−1, possibly owing to the partial collapse of 
skeleton in the process of heating. Surprisingly, compared with Carbon-Z, introducing additional carbon source 
‘xylitol’ apparently improves the BET and pore volumes of Carbon-ZX (see Table 1). This possible reason is that 
in carbonization process, xylitol absorbed on ZIF-8 forms a premelting layer around ZIF-8 surface to keep skel-
etal integrity of product, which causes that Carbon-ZX possesses larger BET of 1470 m2 g−1 and pore volume of 
0.68 cm3 g−1, compared to Carbon-Z. The observation is in good agreement with literature25,37.

Xe adsorption measurements at low pressure and 298 K were conducted using ASAP 2020 equipped with 
a constant temperature device by circulating water and glycol at 1:1 ratio, and the Xe adsorption isotherms are 
shown in Fig. 3, where all adsorption isotherms increase with pressure with no saturation. Interestingly, exper-
imental uptake of Xe in Cu-BTC excellently matches with the GCMC simulation data29, suggesting that GCMC 
simulation is a powerful tool to predict the gas adsorption with high accuracy and rationality to some extent. 
However, Xe adsorption capacity of ZIF-8 was over-predicted in simulation way, which is largely higher than 
experimental results. This over-prediction phenomenon for gas capture on ZIF-8 also occurred in literature5, 
possibly owing to the crystal defects or marcopores existence of experimental product which are unfavorable for 
adsorption in practice. Compared to ZIF-8, Cu-BTC possesses higher Xe capacity of 3.39 mmol g−1 at 1 bar and 
298 K, which is ascribed to open metal sites with polarity in Cu-BTC16,20.

Figure 2. N2 adsorption-desorption and pore size distribution of Cu-BTC, ZIF-8, Carbon-Z and 
Carbon-ZX. 

Sample SBET(m2 g−1) V(cm3 g−1) Xe uptake(mmol g−1)

Cu-BTC 1090 0.46 3.39

ZIF-8 1321 1.17 1.21

Carbon-Z 603 0.30 3.17

Carbon-ZX 1470 0.68 4.42

Table 1.  BET surface area, total pore volume and Xe uptake at 298 K and 1 bar of four samples.

Figure 3. Experimental and simulated isotherms for Xe adsorption of Cu-BTC, ZIF-8, Carbon-Z and 
Carbon-ZX at 298 K, where simulation data is taken from Ref. 29. 
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It is noteworthy that Xe capacity of Carbon-ZX reaches 4.42 mmol g−1 at 1 bar and 298 K, which is a triple 
improvement compared to its matrix ZIF-8 (see in Table 1), although ZIF-8 and Carbon-ZX hold the similar BET 
surface area. This observation sufficiently indicates that the carbonization approach can efficiently achieve dehy-
drogenation of ZIF materials, and enhance the affinity of samples for Xe molecules by eliminating the excluded 
effects from hydrogen atoms of aromatic rings23,28. On the other hand, nitrogen-doping would lead to the asym-
metrical distribution of charges on the carbon surface38,39, which also further enhances the electrostatic attraction 
between the charges on nitrogen-doped porous carbon surfaces and polarizable Xe molecules22,40. The synergistic 
effects of two reasons above result in the excellent performance of Carbon-ZX for Xe adsorption22,41.

Actually, Xe adsorption capacity of 4.42 mmol g−1 at 298 K and 1 bar for Carbon-ZX is not only higher than 
Cu-BTC, but also larger than almost all other pristine MOFs, including Ni/DOBDC of 4.16 mmol g−1, MOF-5 of 
1.97 mmol g−1 under the same conditions17, monohalogenated IRMOF-2 series of 1.5–2.0 mmol g−1 at 292 K and 
1 bar42, Al-MIL-53 of 2.0 mmol g−1 at 308 K and 1 bar5, CC3 of 2.69 mmol g−1 at 298 K and 1 bar7. However, Xe 
capacity of Carbon-ZX is slightly smaller than the value of 4.88 mmol g−1 for Ag-modified Ag@MOF-74Ni15. In 
short, ZIF-derived nitrogen-doped porous Carbon-ZX is an excellent candidate for Xe adsorption at low pressure 
and room temperature.

Besides Xe adsorption, separation of Xe from mixtures is another important issue. Accordingly, we used ideal 
adsorption solution theory (IAST) as a credible tool to predict the gas selectivity43–46. Considering the fact that 
Xe has a very small concentration in air, therefore we plan to explore the selectivity for Xe/CO2 and Xe/N2 at the 
small ratio 1/99. Due to the requirement of IAST calculation, we also measured adsorption of CO2 and N2 adsorp-
tion in four samples at 298 K and their isotherms were shown in Fig. 4. The calculated selectivities for Xe/CO2 and 
Xe/N2 at the ratio of 1/99 were demonstrated in Fig. 5.

Figure 4 shows that ZIF-8 possesses the lowest adsorption for both CO2 and N2. Actually, the CO2 adsorption 
capacity of ZIF-8 at 1 bar coincides with the data reported in literature47. It is noted that Cu-BTC shows the high-
est CO2 adsorption at p >  0.5 bar compared with others, primarily attributed to the interactions between quadru-
polar CO2 molecules and positive charges in unsaturated metal sites48. Furthermore, except Cu-BTC, both CO2 
and N2 adsorption capacity follows the order of Carbon-ZX >  Carbon-Z >  ZIF-8, which means that ZIF-derived 
nitrogen-doped porous carbons hold remarkable property of gas adsorption.

Figure 4. Experimental adsorption isotherms for gases on Cu-BTC, ZIF-8, Carbon-Z and Carbon-ZX 
samples at 298 K. (a) CO2, (b) N2.

Figure 5. Adsorption selectivities of four samples for (a) Xe/CO2, (b) Xe/N2 at molar fractions y CO2 =  0.99,  
y N2 =  0.99, respectively.
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Figure 5 shows the selectivity of four samples for Xe/CO2 and Xe/N2 at the same ratio 1/99. Clearly, Carbon-ZX 
exhibits the highest selectivity for both Xe/CO2 and Xe/N2 mixtures. With the increase of pressure, Sads(Xe/CO2) 
of Carbon-ZX gradually drops, while Sads(Xe/N2) almost keeps the same value about ~120.0 which is much higher 
than almost all other MOFs, for example, S =  11.7 ~ 32.0 of NOTT series, S =  5.3 ~ 18.2 of MOF-74 series, S =  44.0 
of PCN-1421, and S <  10.0 of other MOFs including IRMOF-1 and UMCM-129. Moreover, the selectivity trends 
for Xe/N2 follow the order of Carbon-ZX >  Carbon-Z >  CuBTC >  ZIF-8 just like gas adsorption capacity rank-
ing. Actually, Carbon-ZX possesses not only the highest Xe capacity but also the highest selectivities for both 
Xe/CO2 and Xe/N2 mixtures among four samples studied, which indicates that the ZIF-derived nitrogen-doped 
porous carbon is an excellent candidate in potential noble gas adsorption and separation from the air.

In summary, we have successfully synthesized nitrogen-doped porous carbons (Carbon-Z and Carbon-ZX) 
by using ZIF-8 and ZIF-8/xylitol composite as matrix. It is found that the prepared nitrogen-doped Carbon-ZX 
shows much better Xe adsorption properties, compared to matrix ZIF-8. Actually, the nitrogen-doped Carbon-ZX 
exhibits not only extremely high Xe adsorption capacity of 4.42 mmol g−1 at room temperature and 1 bar, which 
is larger than almost all other MOFs, but also excellent selectivity of ~120 for Xe/N2 at the same ratio 1/99, which 
is mainly attributed to the asymmetrical charge distribution on the nitrogen-doped porous carbon network and 
elimination of the excluded effects of H atoms on aromatic rings for the guests via carbonization. In previous 
reports, ZIF-derived nitrogen-doped porous carbons have shown excellent performance in supercapacitors and 
oxygen reduction reaction of fuel cells, while this work demonstrates that ZIF-derived nitrogen-doped carbon is 
also an excellent candidate for gas adsorption and separation, especially for noble gas Xe.
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