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Purpose: To propose automatic segmentation algorithm (AUS) for corneal micro-
layers on optical coherence tomography (OCT) images.

Methods: Eighty-two corneal OCT scans were obtained from 45 patients with normal
and abnormal corneas. Three testing data sets totaling 75 OCT images were randomly
selected. Initially, corneal epithelium and endothelium microlayers are estimated
using a corneal mask and locally refined to obtain final segmentation. Flat-epithelium
and flat-endothelium images are obtained and vertically projected to locate inner
corneal microlayers. Inner microlayers are estimated by translating epithelium and
endothelium microlayers to detected locations then refined to obtain final
segmentation. Images were segmented by trained manual operators (TMOs) and by
the algorithm to assess repeatability (i.e., intraoperator error), reproducibility (i.e.,
interoperator and segmentation errors), and running time. A random masked
subjective test was conducted by corneal specialists to subjectively grade the
segmentation algorithm.

Results: Compared with the TMOs, the AUS had significantly less mean intraoperator
error (0.53 6 1.80 vs. 2.32 6 2.39 pixels; P , 0.0001), it had significantly different
mean segmentation error (3.44 6 3.46 vs. 2.93 6 3.02 pixels; P , 0.0001), and it had
significantly less running time per image (0.19 6 0.07 vs. 193.95 6 194.53 seconds; P
, 0.0001). The AUS had insignificant subjective grading for microlayer-segmentation
grading (4.94 6 0.32 vs. 4.96 6 0.24; P ¼ 0.5081), but it had significant subjective
grading for regional-segmentation grading (4.96 6 0.26 vs. 4.79 6 0.60; P ¼ 0.025).

Conclusions: The AUS can reproduce the manual segmentation of corneal
microlayers with comparable accuracy in almost real-time and with significantly
better repeatability.

Translational Relevance: The AUS can be useful in clinical settings and can aid the
diagnosis of corneal diseases by measuring thickness of segmented corneal microlayers.

Introduction

Optical coherence tomography (OCT) is an imag-
ing technique that captures the structures of the
underlying tissue in vivo by measuring the backscat-
tered light.1,2 It has revolutionized the field of
ophthalmology imaging with its ability to provide in

vivo high-resolution images of the ocular tissue in a

noncontact and noninvasive manner. Measuring the

thickness of different corneal microlayers can be used

in the diagnosis of corneal diseases.3–6 The cornea

microlayers have five microlayers, namely, the epi-

thelium, the Bowman’s, the stroma, the Descemet’s

membrane (DM), and the endotheiulm3 in addition to
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the basal-epithelium. The epithelium appears as a
hyperreflective band, and the basal epithelium ap-
pears as a hyporeflective band compared with the
overlying hyperreflective epithelium,7,8 due to its
columnar shape oriented ‘‘in parallel’’ to the incident
probe beam and the fact that it consists of only one
layer of cells.9 The Bowman’s microlayer is an
acellular interface between the epithelium and the
stroma,10 hence, it appears as hyporeflective band in
between,11 while Endothelium/Descemet’s complex
appears as a hyporeflective band bounded by two
smooth hyperreflective lines.12 There are six interfaces
between the corneal microlayers, namely, the air-
epithelium interface (EP), the basal-epithelial inter-
face (BS), the epithelium-Bowman’s interface (BW),
the Bowman’s-stroma interface (ST), the DM, and the
endothelium-aqueous interface (EN). Measuring the
thicknesses of those microlayers in vivo has proven to
be valuable for the diagnosis of various corneal
diseases, such as Fuchs dystrophy, keratoconus,
corneal graft rejection, and dry eye.4,5,12–15 For
example, thinning of Bowman’s microlayer has been
shown to be an accurate sign for the diagnosis of
keratoconus.4,16 Also, measurement of the thicknesses
of the endothelial/Descemet’s microlayers has been
shown to be an effective method for the early
diagnosis of corneal graft rejection and Fuchs
dystrophy.5,12 Thickening of the epithelium was
described as an accurate sign of conjunctival corneal
carcinoma in situ.14,17 Thickness measurement is done
by segmenting the corneal interfaces in the OCT
images. Manual segmentation of those interfaces is
time-consuming, due to the large volume of the
images captured by OCT, and it is highly subjec-
tive.18,19 Therefore, automated segmentation is need-
ed. Nevertheless, the absence of a robust automated
segmentation algorithm has precluded the use of OCT
of the cornea in clinical settings. Developing auto-
mated algorithm will set the stage for the introduction
of those novel diagnostic techniques to clinical
practice. Existing segmentation methods of the cornea
are limited because they only detect two or three
interfaces.18–28 Eichel et al.19,27 reported a segmenta-
tion method to segment five interfaces. Eichel et al.19

segment the EP and EN interfaces using semiauto-
matic Enhanced Intelligent Scissors, and they use
medial access transform to interpolate three inner
corneal interfaces. However, this method requires
user interaction and assumes fixed model between
interfaces. Eichel et al.27 use Generalized Hough
Transform to segment the EP and the EN interfaces,
and they interpolate three inner corneal interfaces

using medial access transform. However, this method
assumes fixed shape for each of the EP and the EN
interfaces and assumes a fixed model between
interfaces. Additionally, most of the existing methods
do not work in real-time19,28 and therefore are not
suitable for clinical practice.

In this paper, we propose a novel automatic
algorithm that segments six corneal interfaces in
almost real-time. The proposed algorithm uses a
general model for the corneal microlayer interfaces
based on previous studies.18,22,27 Additionally, we
validate the proposed algorithm against manual
operators to assess its performance.

Methods

Data Sets

Forty-five consecutive patients were recruited in
this study, including 35 patients with normal corneas
and 10 patients with abnormal (i.e., pathological)
corneas. The abnormal corneas included four corneas
diagnosed with dry eye, three corneas diagnosed with
keratoconus, and three corneas diagnosed with Fuchs
dystrophy. All patients were diagnosed by a corneal
specialist from Bascom Palmer Eye Institute (MAS).
The patients signed a consent upon capturing the
images and agreed to the usage of their data for
research purposes. This research is approved by
University of Miami Institutional Review Board. A
data set consisting of 82 corneal OCT scans were
collected from the patients (i.e., 72 scans from normal
corneas and 10 scans from abnormal corneas). Three
testing data sets of OCT images were used in the
study. The first testing data sets consisted of 15 raw
(i.e., unaveraged) OCT images, which were randomly
selected from the OCT scans of the normal corneas
with no repetition in the selected scan or selected
image. The second testing data sets consisted of 50
raw (i.e., unaveraged) OCT images, which were
randomly selected from the OCT scans of the normal
corneas with no repetition in the selected scan or
selected image. In the selection of the second testing
data set, an OCT image was selected randomly from
each scan of the normal corneas and the selected OCT
images were analyzed. The images with low signal to
noise ratio (SNR) and low contrast to noise ratio
(CNR) were excluded. The images in both testing data
sets were averaged using five frames per image with a
custom developed software. The third testing data set
consisted of 10 raw OCT images selected randomly
from the OCT scans of the abnormal corneas with no
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repetition in the selected scan or selected image. The
total number of the raw OCT images used in this
study is 75, and the total number of the averaged
OCT images is 60 (i.e., the grand total is 140 OCT
images).

Capturing Machine

The corneal images were captured by a spectral-
domain OCT (SD-OCT) machine (Envisu R2210,
Bioptigen, Buffalo Grove, IL). The size of the
captured images is 1024 3 1000 pixels. The used
machine has a corrected depth of 1.58 mm using
approximate refractive index for the whole cornea of
1.38, which corresponds to an axial digital resolution
(i.e., pixel height) of 1.5 lm. However, the axial
optical resolution of the machine is approximately 3
lm. The machine has a transversal width of 6 mm,
which corresponds to a transversal digital resolution
(i.e., pixel width) of 6 lm. A radial scan pattern was
used for all the patients in the study.

Image Processing

The SD-OCT image has common types of arti-
facts, namely, the top artifact, the central artifact, and
the horizontal line artifact as shown in Figure 1a. The
top and central artifacts are due to the back reflection
at the corneal apex, which causes a saturation in the
captured image at the center and the top part.18 The
horizontal line artifact is due to the reconstruction
algorithm, which is used to obtain the OCT image.18

The top part usually does not overlap with the cornea
and can be removed without affecting the corneal
shape. On the other hand, the central artifact overlaps
with the cornea, and its removal can affect the corneal
shape. Another common artifact is the low SNR at
the peripheral parts of the image. In this paper, to
enhance the segmentation of the inner interfaces, five
raw frames for each OCT image in the test sets were
registered using the EP and the EN interfaces, then

they were averaged. Examples of raw and averaged
OCT images are shown in Figures 1b and 1c,
respectively. The steps of the proposed algorithm
are in the following subsections, and they are
illustrated in the flowchart in Figure 2.

Removal of Top Artifact
The top artifact of the raw OCT image shown in

Figure 3a was identified and removed using the
vertical projection shown in Figure 3b. The area
above the mean at the beginning of the vertical
projection (i.e., the vertical mean of the OCT image)
was identified as the top artifact. Then, the OCT
image was cropped by cutting this detected artifact as
shown in Figure 3c.

Segmentation of the EP and the EN Interfaces
The cropped raw image was first pre-processed to

obtain a corneal mask, which was used to detect the
EP and the EN interfaces. For each A-scan a of mean
grayscale value of la and standard deviation ra, the
points with grayscale values above T a ¼ la þ const 3

ra were retained and other points were set to zero.
Processing each A-scan individually ensured that
some points were retained from each A-scan. The
image, with pre-processed A-scan, is shown in Figure
4a. This step reduces the central artifact because the
A-scans within the central artifact are processed
independently and they have higher means, therefore,
most of the points of those A-scans are set to zero.
For each row r, of the resulting image shown in
Figure 4a, of mean grayscale value of lr and standard
deviation rr, the points with values above T r ¼ lr þ
rr were retained and other points were set to zero as
shown in Figure 4b. This step reduces the horizontal
line artifact, which has a higher mean; therefore, most
of the points of the horizontal line artifact are set to
zero. A 3 3 3 median filter was applied two times on
the resultant image to reduce the scattered points as
shown in Figure 4c. A post-processing step was done
using the vertical projection of the image in Figure 4c

Figure 1. (a) Typical artifacts present on OCT images, (b) an example of a raw corneal OCT image, and (c) an example of an averaged
corneal OCT image.
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to remove any outlier points at the top. An example
of the final corneal mask is shown in Figure 4d.

The first nonzero point in each A-scan of the
corneal mask was used to estimate the EP interface. A
second order polynomial was used to estimate the EP
interface where it provided good approximation for
the interfaces of the cornea as suggested by LaRocca
et al.,18 Zhang et al.,22 and Eichel et al.27 To obtain a
robust estimation, the Random Sample Consensus
(RANSAC)29 method was used to find the best fitted
polynomial. The last nonzero point in each A-scan of
the corneal mask was used to estimate the EN
interface. RANSAC was used with a second order
polynomial model to estimate the EN interface. An
example of the estimated EP and EN interfaces is
shown in blue and orange dotted lines, respectively, in
Figure 5a.

The raw OCT image was smoothed using a 3 3 3
weighted average filter.30 A search region was

constructed for the EP interface by moving its
estimate up and down using a fixed window of 5
pixels (i.e., 7.5 lm). Since the EP interface is bright,
the point with maximum grayscale value within the
vertical search window was selected. The final
detected EP is obtained by fitting a second order
polynomial to the selected points. The EN interface is
obtained using the same steps. An example of the final
detection of the EP and EN interfaces is shown in
blue and orange solid lines, respectively, in Figure 5b.

Segmentation of Inner Interfaces
In this study, we used the raw images and the

averaged images in the segmentation of the inner
interfaces and compared between their segmentation
results. The segmentation of the inner interfaces was
done in three steps: the localization, the initial
segmentation, and the final segmentation.

An image, with flat-EP, was obtained as shown in
Figure 6a by shifting each A-scan of the raw (or

Figure 3. (a) An example of an OCT image with the top artifact, (b) the mean A-scan of the OCT image in Figure 3a with detected crop
location, which is used to remove the top artifact, and (c) the image in Figure 3a after removing the top artifact.

Figure 2. The flowchart of the steps of the AUS.
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averaged) image circularly such that the EP became a
straight line. The central part, which has higher SNR,
of the flat-EP image was vertically projected. Then, the
vertical projection was smoothed using a 33 1 average
filter as shown in Figure 6b. The EP location was
detected as the first prominent peak in the vertical
projection because the EP is hyperreflective.7,8 The BW
and the ST locations were detected as the two
prominent peaks just after the EP peak because the
BW and ST are hyperreflective.10,11 The BS location
was detected as the location of the minimum value
between the EP peak and the BW peak because the BS
is hyporeflective.9 The detected locations are shown in
Figure 6c. To ensure the accuracy of the detected peaks

for BW and ST interfaces, the search was limited into a
fixed window of length of 70 pixels (i.e., approximately
105 lm) after the EP peak.

An image, with flat-EN, was obtained as shown in
Figure 7a, then the central part was vertically
projected as shown in Figure 7b. The EN location
was detected as the last peak prominent in the vertical
projection because the EN interfaces are hyper-
reflective.12 The DM was detected as the location of
the minimum value just before the EN peak in the
vertical projection as shown in Figure 7c because the
DM is hyporeflective.12 The BS, the BW, and the ST
interfaces were approximated by translating the
detected EP interface to their corresponding locations
since these interfaces are close to the EP interface. The
DM interface was approximated by translating the
detected EN interface to its location since it is close to
the EN interface.

An example of the initial segmentation of the inner
interfaces is shown in Figure 8a.

The raw (or averaged) image was used to find the
final segmentation of inner interfaces. A search region
was constructed for each of the inner interfaces by
moving its approximation up and down using a fixed
window of length of 5 pixels (i.e., 7.5 lm). Since the
BW and the ST interfaces are bright, the point with
maximum grayscale value within the vertical search
window was selected. Then, the final detection was
obtained by fitting the selected points to a second
order polynomial using least squares. Since the BS
and the DM interfaces are dark interfaces, the point
with minimum grayscale value within the vertical
search window was selected. Then, the final detection
was obtained by fitting the extracted points to a
second order polynomial using least squares. Exam-
ples of the final segmentation of the inner interfaces
and the final segmentation of all interfaces are shown
in Figures 8b and 8c, respectively.

Study Design

Five trained manual operators (TMOs) and two
corneal specialists participated in the study to validate
the automatic segmentation algorithm (AUS) against
the TMOs on normal and abnormal corneas. The
validation was done quantitatively by measuring the
repeatability of the TMOs and AUS, the reproduc-
ibility between the TMOs, and the reproducibility
between the AUS and TMOs. Additionally, a
subjective test was conducted by corneal specialists
to subjectively assess both the manual and automatic
segmentation.

The repeatability was measured by performing the

Figure 4. (a) The image in Figure 3a after setting the pixels in
each A-scan below some threshold to zero, (b) the image in Figure
4a after setting the pixels in each row below some threshold to
zero, (c) the image in Figure 4b after applying median filtering to
remove the scattered noise points, and (d) the image in Figure 4c
after post-processing to remove outlier points above the corneal
apex.

Figure 5. (a) Initial detection of the epithelium and endothelium
in the image in Figure 4d, and (b) final detection of the epithelium
and endothelium using the image in Figure 3c.
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manual and automatic segmentation twice on the
same images then calculating the intraoperator error.
The intraoperator error was calculated as the
difference in pixels between the first segmentation
and the second segmentation of the same operator
(i.e., self-difference in pixels). The first and second
TMOs were instructed to segment the images of the
first testing data set, consisting of 15 raw OCT images
and their averaged versions, twice.

The reproducibility of manual segmentation of
one operator by another operator was measured by
performing the manual segmentation on the same
images then calculating the interoperator error. The
interoperator error was calculated as the difference
in pixels between the manual segmentation of one
operator and the manual segmentation of another
operator (i.e., mutual-difference in pixels). The
interoperator error was calculated for all testing
data sets. The first testing data set was already
segmented for the repeatability, but it was used to
assess the reproducibility. The third and fourth
TMOs were instructed to segment the images of the
second testing data set, consisting of 50 raw OCT
images and their averaged versions, once. The third
and fifth TMOs were instructed to segment the
images of the third testing data set, consisting of 10
raw OCT images, once.

The reproducibility of manual segmentation by

the automatic segmentation was assessed by calcu-
lating the segmentation error between the manual
segmentation and the automatic segmentation on all
testing data sets. The segmentation error was
calculated as the difference in in pixels between the
manual segmentation of some operator and the
automatic segmentation (i.e., algorithm-operator
difference in pixels). The segmentation error was
calculated for all testing data sets. The first testing
data set was already segmented by the AUS;
therefore, the second and third testing data sets were
segmented using the AUS.

The subjective test was conducted by two corneal
specialists to assess the AUS against the TMOs. The
subjective test included microlayer-segmentation
grading to assess how good the segmentation matches
the corneal microlayer interfaces. Also, the subjective
test included regional-segmentation grading to assess
how good the segmentation matches the corneal
microlayer interfaces in central and peripheral regions
of the cornea. The subjective test had scale from ‘‘1’’
to ‘‘5’’ where ‘‘5’’ represented excellent and ‘‘1’’
represented poor. The first specialist conducted the
subjective test on the first testing data set and the
second corneal specialist conducted the subjective test
on the second testing data set.

In all comparisons, Wilcoxon rank sum test
(WRST) was used with a significance level of 0.05.

Figure 7. (a) The image in Figure 3c after flattening the endothelium, (b) the mean A-scan of the image in Figure 7a, and (c) the
detected locations of Descemet’s and endothelium in the mean A-scan.

Figure 6. (a) The image in Figure 3c after flattening the epithelium, (b) the mean A-scan of the image in Figure 6a, and (c) the detected
locations of the epithelium, basal-epithelial, Bowman’s, and stroma in the mean A-scan.
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The nonparametric WRST was used since it exhibits
no assumptions about the distribution of the data. A
P-value of less than 0.05 was considered statistically
significant. Values are presented as mean 6 standard
deviation.

All the methods and statistics have been imple-
mented and run using MATLAB 2015b (MathWorks,
Natick, MA), Windows 7 OS, and Dell Latitude
E5570 (Intel Core i7-6820HQ CPU at 2.70 GHz, 32
GB RAM).

Results

Datasets Analysis

Forty-five consecutive patients, 25 males and 20
females, participated in the study. The ages ranged
from 18 to 81 years with mean 40 6 22 years. The
first testing data set included 15 OCT images for
normal corneas in which the top artifact was present
in 15 images, the horizontal line artifact was present
in 11 images, and the central artifact was present in
12 images. The second testing data set included 50
OCT images for normal corneas in which the top

artifact was present in 44 images, the horizontal line
artifact was present in 25 images, and the central
artifact was present in 44 images. The third training
data set included 10 OCT images for abnormal
corneas in which the top artifact was present in 10
images, the horizontal line artifact was present in five
images, and the central artifact was present in six
images.

Intraoperator Error Results

The results of the intraoperator error using the
averaged images and raw images are summarized in
Tables 1 and 2. The WRST shows that the mean
intraoperator error of the AUS is significantly less
than the mean intraoperator error of the TMOs for
both averaged (0.53 6 1.80 vs. 2.32 6 2.39 pixels; P
, 0.0001) and raw images (0.46 6 0.99 vs. 2.39 6

2.68 pixels; P , 0.0001). Also, the intraoperator
errors are significant across all interfaces. For all
images, the mean intraoperator error of the AUS is

Figure 8. (a) Initial detection of the inner interfaces overlaid on
the image in Figure 3c, (b) final detection of the inner interfaces
overlaid on the image in Figure 3c, and (c) final detection of all
interfaces overlaid on the image in Figure 3a.

Table 1. Intraoperator Error (Self-Difference in Pixels) on First Testing Data Set

Interface

Error on Averaged Images Error on Raw Images

First
Operator

Error

Second
Operator

Error

Mean
Operator

Errora

Automatic
Segmentation

Errora

First
Operator

Error

Second
Operator

Error

Mean
Operator

Errorb

Automatic
Segmentation

Errorb

EP 1.89 6 1.47 1.75 6 1.37 1.82 6 1.42 0.08 6 0.10* 2.15 6 1.74 1.43 6 1.19 1.79 6 1.53 0.12 6 0.18**
BS 1.99 6 1.57 2.01 6 1.55 2.00 6 1.56 0.10 6 0.23* 2.22 6 2.05 1.81 6 1.54 2.01 6 1.82 0.38 6 0.72**
BW 2.10 6 1.70 1.66 6 1.40 1.88 6 1.57 0.05 6 0.09* 2.40 6 2.18 1.58 6 1.32 1.99 6 1.85 0.13 6 0.34**
ST 2.89 6 2.30 2.23 6 1.84 2.56 6 2.11 0.23 6 0.38* 2.96 6 2.52 2.03 6 1.90 2.49 6 2.27 0.19 6 0.30**
DM 3.02 6 3.59 2.86 6 2.97 2.94 6 3.29 1.39 6 2.90* 3.20 6 3.83 3.20 6 3.75 3.20 6 3.79 1.10 6 1.60**
EN 2.80 6 3.46 2.67 6 3.15 2.75 6 3.30 1.35 6 2.94* 3.25 6 3.82 2.53 6 3.37 2.88 6 3.62 0.87 6 1.28**
Mean 2.45 6 2.55 2.20 6 2.22 2.32 6 2.39 0.53 6 1.80* 2.69 6 2.85 2.10 6 2.47 2.39 6 2.68 0.46 6 0.99**

a *P , 0.0001.
b **P , 0.0001 (significance level ¼ 0.05).

Table 2. Mean Intraoperator Error (Self-Difference in
Pixels) on First Testing Data Set

Interface
Mean

Operator Errora
Mean Automatic

Segmentation Errora

EP 1.80 6 1.48 0.10 6 0.15*
BS 2.01 6 1.70 0.24 6 0.55*
BW 1.93 6 1.72 0.09 6 0.25*
ST 2.52 6 2.19 0.21 6 0.35*
DM 3.07 6 3.55 1.25 6 2.35*
EN 2.81 6 3.46 1.11 6 2.28*
Mean 2.36 6 2.54 0.50 6 1.45*

a *P , 0.0001 (significance level ¼ 0.05).
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significantly less than the mean intraoperator error of
the TMOs (0.50 6 1.45 vs. 2.36 6 2.54 pixels; P ,

0.0001). Given the axial resolution of the system, the
AUS has a mean intraoperator error of 0.531.5 lm¼
0.75 lm compared with 2.36 3 1.5 lm¼ 4.96 lm for
the TMOs.

Interoperator Error Results

The results of interoperator errors are summa-
rized in Table 3. The WRST shows that the mean
interoperator error for the averaged images is
significant compared with the mean interoperator
error for the raw images (2.93 6 3.02 vs. 3.17 6 3.87
pixels; P , 0.0001). Also, the interoperator errors
are significant across all interfaces except DM
interface. The DM and the EN interfaces have the

largest errors. Given the axial resolution, the mean
interoperator error across all images is 3.05 6 3.47
pixels, which is approximately 3.05 3 1.5 lm ¼ 4.58
lm.

Segmentation Error Results

The results of the segmentation errors between the
AUS and the TMOs for normal corneas are
summarized in Tables 4 and 5 for the averaged
images and raw images, respectively. The WRST
results show that the mean segmentation error of the
AUS is significantly different than the mean interop-
erator error between the TMOs for the averaged
images (3.44 6 3.46 vs. 2.93 6 3.02; P , 0.0001). The
mean segmentation error of the AUS is significantly
different than the mean interoperator error between

Table 3. Interoperator Error (Mutual-Difference in Pixels) on First and Second Testing Data Setsa

Interface

Error on Averaged Images Error on Raw Images

Mean Error
Over All
Images

First vs.
Second

Operators

Third vs.
Fourth

Operators Meanb

First vs.
Second

Operators

Third vs.
Fourth

Operators Meanb

EP 2.12 6 1.65 1.39 6 1.10 1.79 6 1.47* 2.15 6 1.76 1.81 6 1.63 1.99 6 1.71 1.89 6 1.60
BS 3.99 6 2.47 2.02 6 1.55 3.09 6 2.32* 3.53 6 2.53 1.84 6 1.65 2.78 6 2.34 2.94 6 2.34
BW 2.61 6 2.17 1.33 6 1.15 2.03 6 1.89* 3.00 6 2.88 1.45 6 1.19 2.31 6 2.42 2.17 6 2.17
ST 3.43 6 3.06 1.70 6 1.48 2.66 6 2.63* 3.98 6 3.88 1.98 6 1.73 3.22 6 3.38 2.93 6 3.02
DM 7.54 6 4.13 2.25 6 1.85 5.43 6 4.28** 7.43 6 6.03 2.53 6 1.88 5.62 6 5.46 5.52 6 4.89
EN 3.38 6 4.06 2.01 6 1.90 2.81 6 3.41* 4.41 6 6.70 1.98 6 1.58 3.48 6 5.48 3.13 6 4.54
Mean 3.84 6 3.54 1.76 6 1.55 2.93 6 3.02* 4.08 6 4.66 1.90 6 1.64 3.17 6 3.87 3.05 6 3.47

a First and second operators segmented the first testing data set, and the third and fourth operators segmented the
second testing data set.

b *P , 0.0001, **P ¼ 0.0528 (significance level ¼ 0.05).

Table 4. Segmentation Error (Algorithm-Operator Difference in Pixels) on Averaged Images of First and Second
Testing Data Setsa

Interface
Error With

First Operatorb
Error With

Second Operatorb
Error With

Third Operatorc
Error With

Fourth Operatorc Mean Error

EP 2.86 6 2.00 2.65 6 2.10* 1.35 6 1.80 2.77 6 2.07** 2.43 6 2.09
BS 4.68 6 2.54 2.12 6 1.83* 5.58 6 3.74 5.38 6 3.00** 4.35 6 3.14
BW 2.20 6 2.05 1.96 6 1.60* 2.26 6 2.10 2.21 6 2.23** 2.15 6 2.00
ST 3.48 6 3.16 2.98 6 2.57* 3.39 6 2.60 3.35 6 2.83** 3.29 6 2.81
DM 7.31 6 4.56 3.49 6 4.51* 4.55 6 4.55 3.89 6 3.52** 4.91 6 4.63
EN 3.77 6 5.02 4.18 6 4.81* 2.52 6 3.14 3.69 6 3.80** 3.59 6 4.40
Mean 4.05 6 3.81 2.90 6 3.26* 3.26 6 3.42 3.54 6 3.11** 3.44 6 3.46

a First and second operators segmented the first testing data set, and the third and fourth operators segmented the
second testing data set.

b *P , 0.0001.
c **P , 0.0001 (significance level ¼ 0.05).
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the TMOs for the raw images (3.83 6 4.11 vs. 3.17 6

3.87; P , 0.0001). However, in both cases, the
difference between the mean errors is less than one
pixel for the averaged images (i.e., 0.51 pixel; 0.77 lm)
and for the raw image (i.e., 0.66 pixel; 0.99 lm). Also,
the segmentation error with the first TMO is
significantly different than the segmentation error
with the second TMO for both averaged and raw
images (P , 0.0001). The segmentation error with the
third TMO is significantly different than the segmen-
tation error with the fourth TMO for both averaged
and raw images (P , 0.0001). This means that the
segmentation error is not enough to judge the
segmentation of the AUS due to the subjectivity of
the manual segmentation; therefore, the specialist
subjective test was further conducted. Finally, the
WRST shows that the mean segmentation error of the
averaged images is significantly less than the mean

segmentation error of the raw images (3.44 6 3.46 vs.
3.83 6 4.11 pixels; P , 0.0001).

The results of the segmentation errors between the
AUS and the TMOs for abnormal corneas are
summarized in Table 6 for the raw OCT images.
The mean segmentation error of the AUS is
significantly different than the mean interoperator
error between the TMOs (4.90 6 4.27 vs. 1.90 6 1.64;
P , 0.0001). However, the difference between the
mean errors (i.e., 3 pixels; 4.5 lm) is comparable with
the optical resolution of the machine (i.e., 3 lm).

Running Time Results

The AUS has mean running time of 0.19 6 0.07
seconds per image compared with mean running time
of 193.95 6 194.53 seconds for the TMOs. The
WRST shows that the running time of the AUS is
significantly less than that of the TMOs (P , 0.0001).

Table 5. Segmentation Error (Algorithm-Operator Difference in Pixels) on Raw Images of First and Second
Testing Data Setsa

Interface
Error With

First Operatorb
Error With

Second Operatorb
Error With

Third Operatorc
Error With

Fourth Operatorc Mean Error

EP 2.46 6 1.71 2.71 6 2.17* 2.71 6 2.42 3.60 6 2.70** 2.84 6 2.29
BS 4.44 6 2.60 2.66 6 2.40* 6.81 6 4.26 5.23 6 3.51** 4.66 6 3.53
BW 2.00 6 1.91 2.36 6 2.28* 3.20 6 3.14 2.50 6 2.38** 2.47 6 2.47
ST 3.12 6 2.99 3.33 6 3.35* 4.47 6 3.57 3.92 6 3.51** 3.61 6 3.37
DM 8.53 6 6.60 3.65 6 5.70* 6.63 6 4.84 4.07 6 3.68** 5.79 6 5.89
EN 3.97 6 6.41 4.23 6 5.66* 2.46 6 2.23 4.01 6 4.31** 3.78 6 5.21
Mean 4.09 6 4.74 3.16 6 3.95* 4.34 6 3.92 3.88 6 3.48** 3.83 6 4.11

a First and second operators segmented the first testing data set, and the third and fourth operators segmented the
second testing data set.

b *P , 0.0001.
c **P , 0.0001 (significance level ¼ 0.05).

Table 6. Interoperator Error (Mutual-Difference in Pixels) and Segmentation Error (Algorithm-Operator
Difference in Pixels) on Third Testing Data Set

Interface Interoperator Errora
Segmentation Error

With Third Operatorb
Segmentation Error

With Fifth Operatorb
Mean

Segmentation Errora

EP 1.81 6 1.63* 3.87 6 2.88 3.45 6 2.34** 3.67 6 2.64
BS 1.84 6 1.65* 6.79 6 4.85 4.54 6 3.48** 5.69 6 4.38
BW 1.45 6 1.19* 5.12 6 4.93 3.64 6 3.03** 4.39 6 4.17
ST 1.98 6 1.73* 5.53 6 4.39 4.74 6 3.38** 5.12 6 3.92
DM 2.53 6 1.88* 10.34 6 6.16 4.58 6 3.83** 7.63 6 5.94
EN 1.98 6 1.58* 4.16 6 3.64 3.49 6 3.14** 3.84 6 3.42
Mean 1.90 6 1.64* 5.74 6 4.93 4.01 6 3.21** 4.90 6 4.27

a *P , 0.0001.
b **P , 0.0001 (significance level ¼ 0.05).
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Subjective Test

The results of the subjective test for microlayer
grading in both the averaged and raw images are
summarized in Tables 7 and 8, respectively. The mean
subjective microlayer grading of the AUS is not
significant from the mean subjective microlayer grading
of the TMOs (4.94 6 0.32 vs. 4.96 6 0.24; P¼ 0.5081)
for the averaged images and (4.92 6 0.32 vs. 4.96 6

0.25; P¼ 0.0525) for the raw images. The results of the

subjective test for regional grading in both the averaged

and raw images are summarized in Tables 9 and 10.

The mean subjective regional grading of the AUS is

significantly higher than the mean subjective regional

grading of the TMOs (4.96 6 0.26 vs. 4.79 6 0.60; P¼
0.0275) for the averaged images and (4.94 6 0.23 vs.

4.69 6 0.71; P¼ 0.0083) for the raw images.

Table 7. Subjective Microlayer-Segmentation Grading on Averaged Images

Interface

First Specialist Grading
on Averaged Images of

First Testing Data Set

Second Specialist Grading
on Averaged Images of

Second Testing Data Set Mean
Operator
Grading*

Mean
Automatic

Segmentation
Grading*

First
Operator

Second
Operator

Automatic
Segmentation

Third
Operator

Forth
Operator

Automatic
Segmentation

EP 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 a

BS 5.00 6 0.00 4.93 6 0.25 4.70 6 0.70 4.80 6 0.56 5.00 6 0.00 5.00 6 0.00 4.94 6 0.27 4.80 6 0.59 b

BW 5.00 6 0.00 4.83 6 0.46 4.87 6 0.43 4.87 6 0.35 5.00 6 0.00 5.00 6 0.00 4.92 6 0.31 4.91 6 0.36 c

ST 5.00 6 0.00 4.83 6 0.46 4.87 6 0.43 5.00 6 0.00 4.93 6 0.26 5.00 6 0.00 4.93 6 0.29 4.91 6 0.36 d

DM 4.97 6 0.18 5.00 6 0.00 5.00 6 0.00 4.87 6 0.35 5.00 6 0.00 5.00 6 0.00 4.97 6 0.18 5.00 6 0.00 e

EN 4.93 6 0.37 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 4.98 6 0.21 5.00 6 0.00 f

Mean 4.98 6 0.18 4.95 6 0.24 4.91 6 0.38 4.92 6 0.31 4.99 6 0.11 5.00 6 0.00 4.96 6 0.24 4.94 6 0.32 g

* a P ¼ NaN (i.e., not a number).
b P¼ 0.0627.
c P ¼ 0.9914.
d P ¼ 0.7930.
e P ¼ 0.2206.
f P ¼ 0.4893.
g P ¼ 0.5081 (significance level ¼ 0.05).

Table 8. Subjective Microlayer-Segmentation Grading on Raw Images

Interface

First Specialist Grading
on Raw Images of

First Testing Data Set

Second Specialist Grading
on Raw Images of

Second Testing Data Set Mean
Operator
Grading*

Mean
Automatic

Segmentation
Grading*

First
Operator

Second
Operator

Automatic
Segmentation

Third
Operator

Forth
Operator

Automatic
Segmentation

EP 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 a

BS 5.00 6 0.00 5.00 6 0.00 4.77 6 0.57 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 4.84 6 0.47 b

BW 4.97 6 0.18 4.90 6 0.40 4.87 6 0.35 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 4.96 6 0.26 4.91 6 0.29 c

ST 4.97 6 0.18 4.90 6 0.40 4.87 6 0.35 4.73 6 0.70 4.87 6 0.35 4.93 6 0.26 4.89 6 0.41 4.89 6 0.32 d

DM 4.97 6 0.18 4.97 6 0.18 5.00 6 0.00 5.00 6 0.00 4.60 6 0.74 4.80 6 0.56 4.91 6 0.36 4.93 6 0.33 e

EN 4.93 6 0.25 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 4.87 6 0.52 4.98 6 0.15 4.96 6 0.30 f

Mean 4.97 6 0.16 4.97 6 0.20 4.93 6 0.31 4.96 6 0.30 4.91 6 0.36 4.93 6 0.33 4.96 6 0.25 4.92 6 0.32 g

* a P ¼ NaN (i.e., not a number).
b P ¼ 0.0014.
c P ¼ 0.1813.
d P¼ 0.5735.
e P ¼ 0.6197.
f P ¼ 0.9927.
g P¼ 0.0525 (significance level ¼ 0.05).
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Segmentation Results

To show the robustness of the proposed algorithm
for different types of OCT images artifacts, some
examples of the segmentations for normal corneas are
shown in Figure 9, and some examples of the
segmentation for abnormal corneas are shown in
Figure 10. Also, examples of bad segmentation are
shown in Figure 11 where the images have low SNR
and CNR. To compare the AUS and the TMOs
segmentations, the AUS is plotted against the TMOs
segmentation. Figures 12, 13, and 14 show examples
that highlight differences between TMOs and AUS
segmentations.

Discussion

There is a strong evidence in the literature that
measuring the thicknesses of corneal microlayers in
vivo is valuable for the diagnosis of numerous corneal
diseases, such as Fuchs dystrophy, keratoconus, and
corneal graft rejection.4,5,12–15 Those studies have
shown excellent potential in the diagnosis of these

pathologies using thickness of corneal microlayers,
but they have also disclosed limitations in the
technology. Those most significant limitation is the
lack of a robust AUS to extract quantitative data
from the OCT images. Those limitations have
precluded the use of corneal microlayer tomography
in clinical settings.

In our experiments, it has been shown that the
proposed AUS is able to segment all six corneal
microlayer interfaces with excellent repeatability
(i.e., less intraoperator error) that is significantly
better than manual segmentation by the TMOs.
Additionally, the AUS has mean segmentation error
comparable to the mean interoperator error for
normal corneas. We have noted that the AUS is less
accurate when applied on abnormal corneas. Never-
theless, the segmentation error is comparable with
the optical resolution of the machine. The subjective
test results show that there is no significant
difference between the segmentation of the AUS
and the manual segmentation for both the averaged
and raw images. The AUS is significantly better in
peripheral regions than the manual operators be-

Table 10. Subjective Regional-Segmentation Grading on Raw Images

Interface

First Specialist Grading
on Raw Images of

First Testing Data Set

Second Specialist Grading
on Raw Images of

Second Testing Data Set Mean
Operator
Grading*

Mean
Automatic

Segmentation
Grading*

First
Operator

Second
Operator

Automatic
Segmentation

Third
Operator

Forth
Operator

Automatic
Segmentation

Central 5.00 6 0.00 5.00 6 0.00 4.97 6 0.18 4.93 6 0.26 5.00 6 0.00 5.00 6 0.00 4.99 6 0.11 4.98 6 0.15 a

Peripheral 4.97 6 0.18 4.97 6 0.18 4.87 6 0.35 3.13 6 0.52 3.40 6 0.83 5.00 6 0.00 4.40 6 0.91 4.91 6 0.29 b

Mean 4.98 6 0.13 4.98 6 0.13 4.92 6 0.28 4.03 6 1.00 4.20 6 1.00 5.00 6 0.00 4.69 6 0.71 4.94 6 0.23 c

* a P ¼ 1.0000.
b P ¼ 0.0016.
c P ¼ 0.0083 (significance level ¼ 0.05).

Table 9. Subjective Regional-Segmentation Grading on Averaged Images

Interface

First Specialist Grading
on Averaged Images of

First Testing Data Set

Second Specialist Grading
on Averaged Images of

Second Testing Data Set Mean
Operator
Grading*

Mean
Automatic

Segmentation
Grading*

First
Operator

Second
Operator

Automatic
Segmentation

Third
Operator

Forth
Operator

Automatic
Segmentation

Central 5.00 6 0.00 4.97 6 0.18 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 5.00 6 0.00 4.99 6 0.11 5.00 6 0.00 a

Peripheral 5.00 6 0.00 4.87 6 0.43 4.87 6 0.43 4.33 6 0.98 3.53 6 0.92 5.00 6 0.00 4.60 6 0.79 4.91 6 0.36 b

Mean 5.00 6 0.00 4.92 6 0.33 4.93 6 0.31 4.67 6 0.76 4.27 6 0.98 5.00 6 0.00 4.79 6 0.60 4.96 6 0.26 c

* a P ¼ 0.4893.
b P ¼ 0.0250.
c P ¼ 0.0275 (significance level ¼ 0.05).
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cause it can extrapolate the segmentation at low
SNR regions. These results suggest that the AUS can
replace the TMO in segmenting the corneal micro-
layer interfaces. Moreover, the comparison of the
running time has shown that the AUS operates in
almost real-time; while the TMOs have taken, on
average, 1021 folds the time taken by the AUS to
segment one image. This highlights the fact that
manual segmentation is not practical in a clinical
setting. On the other hand, the AUS could be
adopted in clinical practices.

In our experiments, it has been shown that the
registration and averaging significantly reduces the

error. The intraoperator errors for the averaged
images are significantly less than those for the raw
images. The interoperator errors for the averaged
images are significantly less than those for the raw
images. The segmentation errors between the AUS
and the TMOs for the averaged images are signifi-
cantly less than the raw images. These results
indicate the importance of the registration and
averaging step in improving the segmentation
quality.

In our experiments, it has been shown that the
two interfaces with the largest segmentation errors
are the DM and the EN interfaces. The results were
consistent across all the experiments. This could be
attributed to the low SNR of these interfaces, which
makes the segmentation difficult. Therefore, the
segmentation of the DM and the EN interfaces is
very subjective, and this necessitates the usage of
automatic segmentation, which has better repeat-
ability.

Our AUS segments the six microlayer interfaces of
the cornea, unlike most of the existing automatic
segmentation methods in the literature that only
segment two or three interfaces.18,20,22–25,28 Moreover,
our AUS is faster than methods proposed by other
authors. The comparison of running time results are

Figure 10. Examples of segmentation result for abnormal corneas: (a) an OCT image of a patient with a dry eye, (b) an OCT image of a
patient with keratoconus, and (c) an OCT image of a patient with Fuchs dystrophy.

Figure 9. Examples of the results of the proposed segmentation
algorithm for normal corneas. (a) Segmentation of an OCT image
with dark central artifact and low SNR at the periphery, (b)
segmentation of an OCT image with the cornea touching the top
artifact, (c) segmentation of an OCT image with bright central
artifact and low SNR at the periphery, and (d) segmentation of an
OCT image with strong horizontal artifact and low SNR at the
periphery.

Figure 11. Examples of bad segmentation result for (a) an OCT
image with low SNR at the epithelium and (b) an OCT image with
very low SNR at the endothelium.
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summarized in Table 11. The AUS is almost real-time
as it takes less than a quarter a second compared with
other methods. The registration and averaging of
images take running time of two seconds per image on
average. The averaging is done on all images before

segmenting them, and it is separate from the AUS;
therefore, we could have excluded its time, but we
included the averaging running time to give estima-
tion of the total time. The comparison of the
segmentation error between the AUS and other
methods that detect three interfaces18,22,28 is summa-
rized in Table 12. To fairly compare the methods, the
error in pixels is expressed in micrometers to be
independent of the machine pixel resolution. The
segmentation error results for the proposed algorithm
and Eichel et al.27 are summarized in Table 13. Our
results are comparable with the reported methods, but
our algorithm is a fully automated algorithm and
segments all possible interfaces. Additionally, our
algorithm does not impose any relationship or model
between the interfaces as reported in the Eichel et al.27

method.
Limitations of the proposed algorithm include

usage of a second order polynomial model for the
corneal shape, and it is less accurate when applied on
abnormal corneas. For future work, the algorithm
will be validated on abnormal corneas with a more
generic model for the corneal shape.

In conclusion, the proposed algorithm has a
strong potential to improve the diagnosis of
important corneal diseases by thickness measure-
ment of the segmented corneal microlayer interfac-
es. Our algorithm might potentially allow the use of

Figure 14. Comparison between the manual segmentation of
the second operator (red) and the automatic segmentation (blue)
using an averaged OCT image. (a) The compared regions
highlighted on the OCT image, (b) red window at the
epithelium-air interface, (c) green window at the EN, and (d)
blue window at the epithelium-air interface.

Figure 12. Comparison between the manual segmentation of
the first operator (red) and the automatic segmentation (blue)
using an averaged OCT image. (a) The compared regions
highlighted on the OCT image, (b) red window at the
epithelium-air interface, (c) green window at the EN, and (d)
blue window at the epithelium-air interface.

Figure 13. Comparison between the manual segmentation of
the first operator (red) and the automatic segmentation (blue)
using another averaged OCT image. (a) The compared regions
highlighted on the OCT image, (b) red window at the epithelium-
air interface, (c) green window at the EN, and (d) blue window at
the epithelium-air interface.
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corneal microlayer tomography in clinical trials to
set the stage for its introduction to everyday clinic
flow.
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