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THE BIGGER PICTURE We propose a global and local tensor factorization method (GLTF) to solve the
multi-criteria recommendation problem commonly experienced when e-commerce systems recommend
products to users based on multiple different ratings. The method uses additional criterion-specific ratings
in addition to existing user-item rating data for better recommendations. It can jointly learn a global predic-
tive model and multiple local predictive models, not only by discovering the overall structure of the entire
rating tensor but also by capturing diverse rating behaviors of users in individual subtensors. The GLTF
can take advantage of the user’s multi-criteria rating information to discover the user’s behavior, predict
the information and products that the user is interested in, and obtain more accurate recommendation re-
sults. In the future, we plan to apply the GLTF in a much larger dataset for evaluation and will improve the
model to mitigate the bottleneck caused by the data sparsity problem.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
In multi-criteria recommender systems, matrix factorization characterizes users and items via latent factor
vectors inferred from user-item rating patterns. However, two-dimensional matrix factorization models
may not be able to cope with the recommendation problem that involves additional criterion-specific rating
data. This study introduces a tensor factorization method to handle three-dimensional user-item-criterion
rating data. Moreover, we observe that using single global tensor factorization alone may not be sufficient
to characterize diverse preferences among different groups of users, and a combined global and local tensor
factorizationmethod (GLTF) for multi-criteria recommendation is thus proposed. One key benefit of the GLTF
is that it can leverage global user-item-criterion rating patterns while also exploiting local user-subset spe-
cific rating behaviors to jointly infer the latent factor representations for users, items, and specific item
criteria. Experimental results, which used real-life data available to the public, demonstrated that the GLTF
is superior to well-established baseline methods.
INTRODUCTION

This section introduces the study background and the previous

work related to multi-criteria recommender systems. We then

present preliminaries about matrix factorization techniques,

and some related notations are presented in Table 1, which re-

veals the problem formulation.
This is an open access article under the CC BY-N
Background
Recommender systems have become increasingly popular in

a variety of online e-commerce websites and traveling

portals. Traditional recommender systems typically operate on

two-dimensional user-item rating data and seek to predict the

preference or rating score of a user on a particular item (e.g.,

product).
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Table 1. Meanings of Notations

Notation Meaning

M number of users

N number of items

L number of criteria

um latent factor vector of user m

in latent factor vector of item n

cl latent factor vector of criterion l

D dimensionality of joint latent factor space

K number of user subsets

ukm latent factor vector of user m from subset k (k: 1, ., K)

ikn latent factor vector of item n from subset k

ckl latent factor vector of criterion l from subset k

rmnl observed rating of user m on the criterion l of item n

R observed third-order user-item-criterion rating tensor
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In recent years, various types of valuable information have

become available in addition to the user-item ratings and have

been investigated with recommender systems. In particular,

different informative contexts, such as purchase intent, time,

season, location, companion, and activity, have been leveraged

to improve recommendation performance.1–9 Online unstruc-

tured textual reviews often contain users’ opinions, attitudes,

and preferences toward products or services and have been

jointly exploited with the user-item rating data in various person-

alized recommendations.10–14

By contrast, in this work, user ratings of multiple specific

criteria of items, in addition to the overall user-item rating data,

are considered to address the recommendation problem. On

many leading e-commerce websites, online users are often al-

lowed to rate their degree of satisfaction onmultiple given criteria

or aspects of products or services besides their overall ratings.

Figure 1 shows an example of the multi-criteria rating system

from TripAdvisor, where the user can not only give a single over-

all satisfaction rating of the hotel but also share their evaluation

on each of three specific aspects related to the hotel, in this

case value, service, and location. The performance of recom-

mender systems can be greatly enhanced by exploiting a fine-

grained multi-faceted representation of user preferences based

on multi-criteria rating data.

A system that exploits multiple user ratings based on various

criteria of items to support recommendations is commonly

referred to as a multi-criteria recommender system (M-CRS). In

the past few years, significant efforts have been made to deal

with multi-criteria recommender systems. Existing approaches

can be roughly grouped into three categories, namely the heuris-

tic neighborhood-based approach, the aggregation-based

approach, and the model-based approach. The heuristic neigh-

borhood-based approaches first find a list of neighbors for a tar-

geted user by using various multi-criteria similarity metrics to

predict unknown ratings for the user based on the known ratings

of the user’s neighbors.15–19 Although the recommendation re-

sults are clearly explainable, the neighborhood-based approach

tends to suffer from a sparsity of raw rating data, and it may not

be scalable when dealing with large datasets. Assuming there is

a certain relationship between overall item ratings and individual
2 Patterns 1, 100023, May 8, 2020
criterion-specific ratings, the aggregation-based approach at-

tempts to construct an aggregation function between them

and then applies the function to aggregate the multiple crite-

rion-specific ratings for prediction.17,20–24 By contrast, the

model-based approach is primarily used to develop a predictive

model by leveraging observed multi-criteria rating data and then

use the model to predict a user’s ratings of unknown items.25–30

The different approaches have been proved to be robust for

practical recommendation problems, and we have thus adopted

the learning model-based approach to tackle the multi-criteria

recommendation problem.

Previous studies have shown that matrix factorization

methods are popular in recommender systems.31–33 Matrix

factorization methods essentially characterize users and items

via latent factor vectors learned from observed user-item rating

data, such that the interactions between the users and items

can be modeled as inner products of the two types of latent fac-

tor vectors. For multi-criteria recommendations, in addition to

existing user-item ratings, multiple criterion-specific rating data

are also available, and two-dimensional matrix factorization

may not be able to cope with recommendations that involve

additional multi-criteria rating patterns.

In this work, we propose to represent the user-item-criterion

rating data as a third-order tensor and then introduce global

tensor factorization (GTF) to deal with multi-criteria recommen-

dations, where global means that the predictive model is learned

from the whole set of rating data for all users. GTF extends

classic matrix factorization and can factor the three-dimensional

user-item-criterion tensor into low-dimensional representation.

As a result, users, items, and criteria of items can be represented

with low-dimensional vectors in a joint latent factor space. The

resulting inner products of the user, item, and criterion vectors

then capture the rating behaviors of the users.

The global model GTF predicts unknown ratings by learning

from the whole set of observed user-item-criterion rating data,

implicitly assuming that the distribution of the observed rating

data is representative of the unknown data across all users.

However, this assumption does not always hold true in reality

because not all users behave in the same way. Recently, Beutel

et al.34 reported that a globally optimal model is typically not the

best model to use for individual parts of the data. Although a

global model is generally effective in estimating the overall struc-

ture as it relates to most or all users, it is often poor at detecting

strong associations among individual small sets of closely

related users.35 If only a global model GTF is used for all users,

the association among each subset of like-minded users would

be ignored. This may result in an inaccurate similarity between

a pair of users, especially those who have diverse preferences,

which is a result of improper averaging, thereby reducing the

personalized recommendation performance. In other words,

the global model alone may not be sufficient to characterize

the various preferences among different groups of users for

recommendation.

To address this issue, we propose to partition the whole user-

item-criterion rating tensor into multiple subtensors along the

user dimension, whereby each subtensor collects the rating pat-

terns of the subset of like-minded users. The GTF is then

extended, and a local tensor factorization (LTF) method is devel-

oped that can learn multiple local predictive models from



Figure 1. Multi-criteria Rating System from

TripAdvisor
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individual subtensors of user-item-criterion rating data. The pro-

posed LTF method takes diverse preferences among different

groups of users into account and can recommend potential

items to a targeted user by leveraging the preferences of their

like-minded users in the same group.

Moreover, the proposed LTF has been found to be suitable

for modeling diverse preferences of various subsets of users,

especially when there are user subsets with diverse or even

opposing preferences, while the proposed GTF still performs

reasonably well at capturing overall rating patterns among

the whole set of users. We have thus developed a new uni-

fied learning framework, named global and local tensor

factorization (GLTF), which combines both GTF and LTF to

deal with the multi-criteria recommendation problem. Our

proposed GLTF method benefits from the advantages of

both global and local tensor factorization, and it can not

only jointly learn a global predictive model and multiple local

predictive models but also simultaneously assign users to the

local models.

Related Work
Recommender systems have become increasingly popular in

recent years and have been widely used on a variety of e-com-

merce websites and traveling portals. In addition to well-known

user-item rating data, modern recommender systems also need

to handle other major types of data to improve recommendation
performance, such as contextual informa-

tion (e.g., time, location, and companion,

unstructured textual user reviews on items,

and multiple user ratings on specific

criteria of items).

Context-Aware Recommender

Systems

Many definitions of context have been re-

ported in previous studies, and common

examples of this contextual information

include time, location, companion, sea-

son, activity, and intent of a purchaser.

Context has been recognized as an

important factor for improving personal-

ized recommendations. Palmisano

et al.1 exploited the contextual intents

of purchases for predictive modeling of

customers in personalized applications.

To predict user ratings on items, Rendle

et al.2 proposed a context-aware factor-

ization machine method that can tackle

various types of context, such as mood

of users, time, and location. Bhargava

et al.3 leveraged the contextual informa-

tion (i.e., who, what, when, and where)

using a tensor factorization method for

recommendation based on sparse user-

generated data, while Yuan et al.4 ex-
ploited a similar context via a non-parametric Bayesian

approach for recommendation and search for Twitter users.

Wu et al.5 presented a contextual operating tensor method

to handle a variety of interactive context data, such as com-

panion, gender, age, occupation, and title. Ishanka and Yu-

kawa6 chose two contextual parameters, i.e., emotion and

user behavior, and implemented the travel destination recom-

mendation system by using pre-filtering techniques and tensor

factorization. Zheng7 proposed a simple but effective post-

filtering algorithm to solve the problem of context-aware

recommendation in mobile data.

Furthermore, Zheng and Jose8 proposed a novel context-

aware recommendation mechanism in which user preferences

are estimated by sequential predictions based on the sequence

of context dimensions. Subsequently, Zheng et al.9 also tried to

integrate context-awareness and multi-criteria decision making

in the recommender systems by using the educational data as a

case study. Their methods were able to capture the common

semantic effects of context on users and items to improve

recommendation performance.

Review-Aware Recommender Systems

In addition to user ratings of items, other major types of feed-

back that often come with item ratings include plain-text user

reviews. User-generated review data are different from the

aforementioned contextual information, as the textual reviews

are typically unstructured. The review data often contain
Patterns 1, 100023, May 8, 2020 3



Figure 2. An Example of Third-Order User-Item-Criterion Rating

Tensor

Table 2. User-Item Rating Matrix Example

User i1 i2 i3 i4 i5

u1 4 2 ? 1 3

u2 3 ? 3 4 ?

u3 ? 1 5 3 2

u4 2 3 ? 5 4

u5 3 5 1 ? 5
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users’ opinions, attitudes, and preferences toward products

or services, and have been jointly exploited with the user-

item ratings in various personalized recommendation

systems.

McAuley and Leskovec10 proposed a hidden-factors- and

topics-based method that combined latent rating dimensions

with latent review topics to improve the product rating predic-

tion problem. Bao et al.11 developed a latent topic enhanced

matrix factorization method to simultaneously leverage user

ratings and textual reviews for recommendation. Zhang

et al.12 introduced collaborative multi-level embedded

learning from text reviews for personalized rating prediction.

Zheng et al.13 proposed a deep cooperative neural network

approach to learn item properties and user behavior jointly

from a review of text for recommendation. Cao et al.14 intro-

duced a text-enhanced matrix factorization method to jointly

exploit user rating and text data to improve cross-platform

recommendations.

Multi-criteria Recommender Systems

The proposed study is similar to the aforementioned research

because, in addition to well-known user-item ratings, various

major types of available data have been leveraged to improve

recommendations. However, instead of using contextual infor-

mation or textural reviews, our proposed approach exploits

multiple user ratings with respect to the specific criteria of

items to improve recommendations. Employing multi-criteria

ratings in recommender systems is not new, and existing tech-

niques can be concisely grouped into three categories, namely

heuristic neighborhood-based approaches, aggregation-

based approaches, and model-based approaches. The heu-

ristic neighborhood-based approach attempts to use various

multi-criteria similarity metrics to collect the neighbors of a tar-

geted user and then estimates unknown ratings based on the

known ratings of those neighbors.15 Lakiotaki et al.16 calcu-

lated the distance between pairwise users using a multi-

dimensional distance metric and employed a multi-criteria

collaborative filtering method to identify the most preferred

items for each given user. Liu et al.17 proposed a preference

lattice based on user criteria preferences to predict the ratings

for unknown items. Mikeli et al.18 estimated the overall dis-

tance between each pair of users using multi-criteria

Euclidean distance and used a collaborative filtering technique

to solve the recommendation problem. Syamala et al.19 pro-

posed a novel technique to learn the criteria preferred by

each user and also the criteria that made each item popular.

This learning aided in finding similar user/item groups for

recommending appropriate items to users. Although the

recommendation results are often explainable, the neighbor-

hood-based approaches tend to suffer from the sparsity of
4 Patterns 1, 100023, May 8, 2020
raw rating data and also may not be scalable when working

with large datasets.

Assuming that there is a certain relation between overall

user ratings and individual criterion ratings, the aggregation-

based approaches primarily aim to build the mapping function

to aggregate the multiple criterion-specific ratings for predic-

tion. Lakiotaki et al.20 proposed a utility additive method to

aggregate the marginal users’ preferences on the given criteria

for recommendation. Jannach et al.21 proposed using a sup-

port vector regression to learn the relative importance of the

individual criterion-specific ratings and then combined user-

and item-based regression models using a weighted method

to predict unknown ratings. Zheng22 proposed that the depen-

dency among multiple criteria should be taken into account,

and thus presented a criterion chain-based method to aggre-

gate the multi-dimensional ratings for recommendation. Ham-

ada et al.23 proposed an aggregation function-based method

that uses an adaptive genetic algorithm to efficiently incorpo-

rate the criteria ratings for improving the accuracy of the multi-

criteria recommender system. In addition, Zheng24 also pro-

posed a utility-based multi-criteria recommendation algorithm

that uses the vector of user expectations and evaluations to

learn user expectations and establish utility functions.

On the contrary, the model-based approaches aim to learn a

predictive model by leveraging observed multi-criteria rating

data and then employing the model to estimate the ratings of

a user on unknown items. Sahoo et al.25 proposed a probabi-

listic mixture model-based algorithm to leverage the multiple

component rating dependency structure for improving recom-

mendation. Nilashi et al.26 developed a recommendation

method based on the adaptive neuro-fuzzy inference and self-

organizing map-clustering models. Hamada et al.27 presented

a model that is based on the architecture and main features of

fuzzy sets and systems to improve the prediction accuracy of



Figure 3. CP Tensor Decomposition Process
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the recommender system. Li et al.28 utilized amulti-linear singu-

lar value decomposition technique to explore the explicit and

implicit relationships among user, item, and criteria for the

recommendation task. Hassan and Hamada29 proposed a neu-

ral network model trained using simulated annealing algorithms

to improve the prediction accuracy of multi-criteria recommen-

dation systems. Tallapally et al.30 proposed extended stacked

autoencoders (a deep neural network technique) to efficiently

learn the relationship between each user’s criteria and overall

rating.

The learningmodel-based approaches have been shown to be

robust in practical recommendation systems. In this work, we

employ the model-based technique, i.e., tensor factorization,

to cope with the multi-criteria recommendation problem. High-

order tensor, a generalization of matrix, is one of the powerful

tools for modeling multi-faceted data, and various factorization

techniques based on the tensor data have been developed for

recommendation systems.36

Rendle et al.37 presented a ranking with tensor factorization al-

gorithm to predict personalized tags for a user given an item.

Karatzoglou et al.38 used a high-order singular value decompo-

sition (HOSVD) method to deal with contextual information in

addition to the user-item data for context-aware recommenda-

tion problems. One limitation of HOSVD lies in that it primarily

works for categorical context variables. Rendle et al.2 extended

HOSVD and proposed a factorization machine-based method to

model various contextual data for context-aware rating predic-

tion. Zheng et al.39 proposed to represent the user-location-ac-

tivity relations via the third-order tensor and developed a regular-

ized tensor and matrix decomposition method for location and
Algorithm 1. Global Tensor Factorization Method

1: Input:

2: T: A set of known user-item-criterion ratings rmnl;

3: T: Maximum number of iterations;

4: aG;bG: Hyper-parameters;

5: l: Learning rate.

6: Initialization:

7: Initialize um˛RD; in˛RD; and cl˛RD randomly for each tuple (m, n, l).

8: For t = 1, ., T do

9: Randomly shuffle examples in the known training set T.

10: For each example (m, n, l) in T do

11: Make a prediction drmnl via Equation 4;

12: Compute predictive error emnl;

13: Update parameters umd; ind; and cld via Equation 6.

14: End for

15: End for
activity recommendations. They then

extended the method and employed a

ranking-based collective tensor andmatrix

factorization model to further improve the

recommendation tasks.40 Based on the

classic formulation of matrix factorization,
Bhargava et al.3 developed a straightforward tensor factorization

method to tackle context-aware collaborative recommendation,

while Yao et al.41 presented a social regularization-based tensor

factorization method for point-of-interest recommendation

problem.

On the contrary, our proposed GLTF method is different

from the aforementioned factorization techniques. On one

hand, our method leverages multiple criterion-specific ratings

in addition to user-item data and is proposed to deal with the

multi-criteria recommendation problem. We not only aim to

predict overall ratings of users on unknown items but also

aim to deal with fine-grained criterion-specific rating predic-

tion for recommendation. On the other hand, the proposed

method is not only able to build a global predictive factoriza-

tion model by discovering overall structure of the user-item-

criterion tensor data but is also able to learn multiple local pre-

dictive models via factoring user-subset specific subtensors;

moreover, both global and local factorization models are

jointly employed to predict unknown ratings for more accurate

recommendation.

We note that discovering the local structure of observed rat-

ing data is helpful for improving recommender systems.42,43

Assuming that the rating matrix is locally of low rank, Lee

et al.44 proposed a local low-rank matrix approximation method

for rank-based recommendation.45 Co-clustering for users and

items has been also shown to be effective for improving collab-

orative recommendation tasks.46–48 To the best of our knowl-

edge, almost all existing approaches to mining local behavioral

patterns for the purposes of providing recommendations were

developed to handle two-dimensional user-item data and thus
Patterns 1, 100023, May 8, 2020 5



Algorithm 2. Local Tensor Factorization Method

1: Input:

2: K: Number of user clusters;

3: Tk : A subset of known user-item-criterion ratings rmnl for user cluster k;

4: T: Maximum number of iterations;

5: aL;bL: Hyper-parameters;

6: l: Learning rate.

7: Initialization:

8: Initialize ukm˛R
D; ikn˛R

D; and ckl ˛R
D randomly for each tuple (m, n, l).

9: While Significant change in the assignments is detected do

10: For t = 1, ., T do

11: For k = 1, ., K do

12: Randomly shuffle examples in the known training set Tk .

13: For each example (m, n, l) in Tk do

14: Make a prediction drkmnl via Equation 7;

15: Compute predictive error ekmnl;

16: Update parameters ukmd; iknd; and ckld via Equation 9.

17: End for

18: End for

19: End for

20: For m = 1, ., M do

21: Assign user m to each of K clusters;

22: Compute respective predictive errors based on updated parameters;

23: Identify the cluster k for user m, where the lowest error is achieved.

24: End for

25: End while
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may not be able to handle issues that involve additional crite-

rion-dependent rating data. One key advantage of our pro-

posed method is that it can learn both global and local predic-

tive models by jointly capturing overall rating structures and

those specific to user subsets of third-order user-item-criterion

data.
Preliminaries
Previous studies have indicated that matrix factorization and

their variants are the dominant techniques used in modern

recommender systems.32,33,45

Basically, in recommendation, matrix factorization models

deal with two-dimensional preference relations between users

and items. Table 2 shows an example of pairwise user-item rat-

ings whereby each user is allowed to flexibly rate a given item on

a 5-point rating scale from 1 to 5, while ‘‘?’’ refers to unknown

ratings.

Based on known ratings data, the model then projects the

users and items into a joint latent factor space, such that the

user-item preferences can be modeled as the inner products

of the latent factors in the space. Formally, let um be a latent fac-

tor representation derived from thematrix factorizationmodel for

user m, and in is the latent representation for item n. The prefer-

ence rating drmn by user m of item n can then be estimated ac-

cording to Equation 1,

crmn = uT
min: (Equation 1)

Clearly, the key challenge in the recommendation system is

how to derive the representations of users and items in the joint
6 Patterns 1, 100023, May 8, 2020
latent factor space. To accomplish this, the regularized squared

loss on the set of observed user-item rating data is minimized us-

ing Equation 2,

loss = min
fu�;i�g

X
ðm;nÞ˛O

1

2
ðrmn � crmnÞ2 +

b

2

�kumk22 + kink22
�

+aðkumk1 + kink1Þ;
(Equation 2)

where O refers to the set of user-item pairs (m, n) for which the

ratings rmn are known. The first term is the squared prediction er-

ror, and both the second and third terms are L2-norm and L1-

norm regularizes that control model complexity, where a and b

are hyper-parameters. The optimization problem in Equation 2

can be solved using the classic stochastic gradient descent

method, which iteratively updates the latent factor vectors of

users and items.49 Once the optimization process is done, Equa-

tion 1 can then be used to straightforwardly predict the ratings of

a given user of unknown items.

Problem Formulation
Generally, multi-criteria recommender systems (MCRSs) refer to

systems that leverage multiple user ratings of various item

criteria in addition to overall user-item ratings to support recom-

mendations. Following Adomavicius and Kwon,15 theMCRS can

be formulated as follows:

U 3 I 3 C/ R0 3 R1 3 $ $ $ 3 RL�1,

whereU, I, andC on the left side are the sets of users, items, and

item criteria, respectively, while on the right, R0 represents the



Algorithm 3. Global and Local Tensor Factorization Method

1: Input:

2: K: Number of user clusters;

3: Tk : A subset of known user-item-criterion ratings rmnl for user cluster k;

4: T: Maximum number of iterations;

5: aG;bG;aL;bL: Hyper-parameters;

6: l: Learning rate;

7: g_m: Personalized weight initialized as 0.5 for each user m.

8: Initialization:

9: Randomly initialize global latent vectors um˛RD; in˛RD; and cl˛RD, and local latent vectors ukm˛R
D; ikn˛R

D; and ckl ˛R
D

for each tuple (m, n, l).

10: While Significant change in the assignments is detected do

11: For t = 1, ., T do

12: For k = 1, ., K do

13: Randomly shuffle examples in the training set Tk .

14: For each example (m, n, l) in Tk do

15: Make a prediction drmnl via Equation 10;

16: Compute predictive error emnl;

17: Update parameters umd; ind; cld; ukmd; iknd; and ckld via Equation 12;

18: Update parameter g_m via Equation 13.

19: End for

20: End for

21: End for

22: For m = 1, ., M do

23: Assign user m to each of K clusters;

24: Compute respective predictive errors based on updated parameters;

25: Identify the cluster k for user m, where the lowest error is achieved;

26: Update personalized weight parameter g_m.

27: End for

28: End while
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overall ratings of the items by users, and R1, RL�1 represent user

ratings of individual item criteria (L is the number of criteria). Note

that the overall rating information is treated as a special type of

criterion rating in the formulation.

Given observed user-item-criterion rating data, a multi-criteria

predictive model must first be built by fitting the observed data,

and the model is then applied to predict the overall ratings as

well as multiple criterion-specific ratings that a user would give

to unknown items.

Naturally, we introduce a third-order tensor, a generaliza-

tion of matrix, to represent the three-dimensional user-item-

criterion rating data. Figure 2 shows an example, in this

case a toy, which uses a third-order user-item-criterion rating

tensor whereby each user rates various criteria of the item on

a rating scale from 1 to 5, with the question mark

indicating an unknown rating. Next, several factorization

methods were developed based on the tensor data or,

more specifically, GLTF methods, to obtain the multi-criteria

recommendations.

Clearly, two-dimensional matrix factorization techniques may

not be able to provide recommendations that involve multiple

criterion-specific ratings in addition to user-item data. Thus,

the classic matrix factorization model was expanded, and

tensor factorization methods were used to learn predictive

models based on the three-dimensional user-item-criterion rat-

ing data.
RESULTS

We introduced a GTFmethod that is proficient inmodeling overall

rating behaviors of the whole set of users. We then employed an

LTF method to characterize the diverse preferences among

different groups of users. To take advantage of both methods,

we developed a unified learning framework (i.e., GLTF method)

to address the issues associated with providing multi-criteria rec-

ommendations. Our new GLTF method can jointly learn one

global andmultiple local predictivemodelswhile it simultaneously

tackles the assignment of users to the local models. Furthermore,

we validate various proposed methods and also compare them

with existing approaches for rating prediction, evaluating statisti-

cal significance of the differences with p values. The effect of

initialization methods is then studied for clustering users, and

the impacts of varying numbers of user clusters and latent factors

are evaluated respectively. We analyze the interplay between

global and local models for prediction.

Global Tensor Factorization
We generally described classic matrix factorization in the previ-

ous section Preliminaries, and proposed a GTF method, where

global means that a single predictive model was used in estima-

tions for all the users.

For third-order user-item-criterion tensor data, the objective of

tensor factorization is to map the users, items, and criteria in a
Patterns 1, 100023, May 8, 2020 7



Table 3. MAE of Various Methods on Three Different Datasets

(p = 0.95)

Method TripAdvisor Yahoo!Movie RateBeer

GTF 0.6878 ± 0.0326 0.6217 ± 0.0286 0.6471 ± 0.0125

LTF 0.6724 ± 0.0085 0.5966 ± 0.0179 0.6206 ± 0.0059

GLTF0 0.6775 ± 0.0183 0.5992 ± 0.0301 0.6387 ± 0.0057

GLTFf 0.6425 ± 0.0123 0.5509 ± 0.0159 0.5800 ± 0.0109

GLTF 0.6178 ± 0.0163 0.5076 ± 0.0155 0.5747 ± 0.0089

AFBM 0.8638 ± 0.0117 0.6509 ± 0.054 0.7026 ± 0.0062

CC 0.8258 ± 0.0935 0.6177 ± 0.0099 0.6460 ± 0.0077

The lowest MAE of each dataset is highlighted in bold type.
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joint latent factor space, such that the preferences of the users

with respect to specific item criteria can be formulated as inner

products of corresponding latent factor vectors in the space.

Perhaps one of the most popular tensor factorization paradigms

is CANDECOMP/PARAFAC (CP), possibly due to its key advan-

tage of linear time complexity.29 Hence, we employed CP to fac-

tor the rating tensor data.

In the GTF model, given a user-item-criterion rating tensor R˛
RM3N3L, CP can decompose the tensor into a sum of rank-1 ten-

sors across the entire set of users with Equation 3,

Rz
XD

d= 1
ud+id+cd; (Equation 3)

where ud˛RM; id˛RN; cd˛RL,D is the dimensionality of the joint

latent space, and the symbol means the vector outer product.

Figure 3 shows the CP decomposition of the third-order user-

item-criterion tensor.

Then, according to CP decomposition, the preference rating

by user m of criterion l of item n can be estimated using

Equation 4,

drmnl =
XD

d= 1
umdindcld; (Equation 4)

where um˛RD; in˛RD; and cl˛RD are the latent factor represen-

tations of userm, item n, and criterion l, respectively. The resulting

inner product of the latent vectors describes the interactive rela-

tionship among the given tuple of user, item, and criterion. Once

the latent factor representations are learned, the rating prediction

can then be accomplished straightforwardly via Equation 4. To

address this, we minimized the following regularized squared

loss on the observed set of user-item-criterion rating data:

loss = min
fu�;i�;c�g

X
ðm;n;lÞ˛T

1

2
ðrmnl � drmnl Þ2 +

bG

2

�kumk22 + kink22 + kclk22
�

+aGðkumk1 + kink1 + kclk1Þ;
(Equation 5)

where T is the set of user-item-criterion tuples (m, n, l) for which

rmnl is known (i.e., training set) and drmnl is the predicted rating by

user m of criterion l of item n using Equation 4. The first term in

Equation 5 is the squared error between the observed and pre-

dicted ratings. The second and third terms are L2-norm and

L1-norm regularizers, where bG and aG are hyper-parameters,

respectively.
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Following Koren et al.,32 we employ stochastic gradient

descent (SGD) to optimize the loss from the GTF method. SGD

loops through the entire observed user-item-criterion ratings in

the training set. For each given training example (m, n, l), the sys-

tem first makes a prediction drmnl and then calculates the predic-

tive error as

emnl = rmnl � drmnl :

Using SGD, the parameters are then updated by a magnitude

proportional to the learning rate l in opposition to the gradient,

yielding Equation 6,

8<
:

umd = umd � lðaG + bGumd � emnlindcldÞ
ind = ind � lðaG + bGind � emnlumdcldÞ
cld = cld � lðaG + bGcld � emnlumdindÞ

: (Equation 6)

The pseudocodes of the proposed GTF method are summa-

rized in Algorithm 1. After the system completes the training pro-

cess, the learned global model can be straightforwardly em-

ployed to predict the overall ratings that a user gives to

unknown items, as well as their specific ratings of item criteria.
Local Tensor Factorization
TheGTFmodel is generally good at discovering the overall struc-

ture that relates to most or all users. However, the global model

may not be able to detect the strong associations among individ-

ual subsets of closely related users.35 In other words, if using

only a single global model for all users, the similarity between a

pair of users who typically have different preferences would

tend to be inaccurately represented by some average value.

Thus, it may not be sufficient to build a global factorizationmodel

alone if the objective is to capture diversified preferences of all

the users, especially when there are user subsets with different

or even opposite preferences.

To address this critical issue, we developed a new LTFmethod

for multi-criteria recommendation systems. In particular, LTF

first assigns each given user to a subset that consists of their

like-minded users and then partitions the entire third-order

user-item-criterion tensor into multiple subtensors according to

the user subsets. Next, CP decomposition is employed to factor

individual subtensors and learn multiple local user-subset spe-

cific predictive models. One key benefit of LTF is that it primarily

recommends a user for the items enjoyed only by their associ-

ated subset of like-minded users.

Formally, let subset k be the cluster that contains given userm,

and Rk be the corresponding user-item-criterion subtensor for

the subset. The user-subset specific prediction for the rating

by user m of criterion l of item n on the subtensor can then

be made:

drkmnl =
XD

d = 1
uk
mdi

k
ndc

k
ld; (Equation 7)

where ukm; ikn; and ckl are user-subset specific latent factor rep-

resentations for given user m, item n, and criterion l on the local

subtensor Rk , respectively. Next, to learn the local latent factor

vectors of users, items, and criteria for a given particular user-

subset, we propose to minimize the following regularized

squared loss of the LTF method:



Table 4. Dataset Description

Dataset Users Items Records Sparsity Criteria

TripAdvisor50 6,134 1,763 23,066 99.79% value, location, service, and overall

Yahoo!Movie25 1,827 1,479 50,673 98.13% story, acting, direction, visual effects, and

overall

RateBeer51 3,630 4,896 48,605 99.73% appearance, aroma, palate, taste, and

overall
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loss = min
fuk�;ik�;ck�g

XK

k = 1

X
ðm;n;lÞ˛Tk

1

2

�
rmnl � drkmnl

�2

+
bL

2

�
kuk

mk
2

2 + kiknk
2

2 + kck
l k

2

2

�
+aL

�kuk
mk1 + kiknk1 + kck

l k1
�
;

(Equation 8)

where K is the number of user subsets, Tk is a user-subset spe-

cific to user-item-criterion tuples (m, n, l) for which the ratings are

known, and both bL and aL are hyper-parameters. Given a user-

subset k and a known training example (m, n, l), the first term rep-

resents the squared prediction error (i.e., ekmnl = rmnl � drkmnl ), and

both second and third terms are L2-norm and L1-norm regular-

izers, respectively.

SGD is employed to optimize the loss function of the local

factorization model, and the user-subset specific parameters

are updated using Equation 9.

8>>><
>>>:

uk
md = uk

md � l
�
aL + bLu

k
md � ek

mnl i
k
ndc

k
ld

�
iknd = iknd � l

�
aL + bLi

k
nd � ek

mnlu
k
mdc

k
ld

�
ck
ld = ck

ld � l
�
aL + bLc

k
ld � ek

mnlu
k
mdi

k
nd

� : (Equation 9)

To find clusters of like-minded users, LTF adopts a heuristic

approach that can jointly tackle the assignment of users to indi-

vidual subsets and learn the predictive models that achieve

lower predictive error.

Specifically, all users are initially partitioned into K clusters

randomly or by using an existing clustering method. During

training, prediction errors are obtained for the assignment of

each user to different clusters. The assignment of the user is

then adjusted to an appropriate cluster for which the lowest pre-

diction error is achieved. The process is performed iteratively un-

til no significant change in the assignments is detected, where
significant change refers to the number of users switching clus-

ters is more than 1% of total number of given users. Algorithm 2

summarizes the main steps of the proposed LTF method.
Global and Local Tensor Factorization
The GTF method can discover the overall behavioral patterns

from the whole set of user-item-criterion rating data, while the

LTF method takes diverse preferences into account among

different subsets of like-minded users and is thus adept at min-

ing local interactive behaviors for personalized recommenda-

tion. In fact, the local factorization method optimizes the loss

for individual user subsets; thus, the users with more observed

ratings in a subset are often considered to be more important

than users with fewer ratings. As a result, the learned local pre-

dictive models tend to be biased toward relatively popular users

within individual subsets.

To take advantage of the above two factorization methods, we

then developed a new unified learning framework, i.e., a GLTF

method that provides multi-criteria recommendations. Notably,

GLTF can leverage global user-item-criterion interactive pat-

terns while also exploiting local user-subset specific preference

behaviors to derive latent factor representations for users, items,

and specific item criteria.

When using GLTF, the whole set of users must first be parti-

tioned into various subsets, and respective subtensors must

be obtained by dividing given third-order user-item-criterion

tensor data according to the user subsets. The local latent fac-

tors for users, items, and criteria are derived based on the sub-

tensors, and generate the global latent factor representations

based on the whole rating tensor. Then, to estimate the ratingdrmnl that a userm gives to criterion l of an item n, the global model

and corresponding local predictive models for user-subset k are

used together as follows:
Figure 4. Comparison between Two Initiali-

zation Methods for User Subsets on Three

Different Datasets
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Figure 5. Top-K Recommendation in Terms of NDCG@K on Three Different Datasets
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drmnl = g m
XD

d= 1
umdindcld + ð1�g mÞ

XD

d= 1
uk
mdi

k
ndc

k
ld;

(Equation 10)

where um; in; and cl refer to global latent factor representations

of users, items, and criteria, respectively, while ukm; ikn; and ckl
correspond to their local latent factor representations. g_m is a

personalized hyper-parameter that tunes the interplay between

global and local predictive models. When g_m is equal to 1,

GLTFwould be reduced toGTF for rating prediction, and it would

then be reduced to LTF when g_m is equal to 0.

Next, based on multiple subsets of known user-item-criterion

rating data, the following combined squared loss of the GLTF

method is minimized to jointly learn the optimal global and local

latent factor vectors for users, items, and criteria of the items, as

expressed in Equation 11,

loss = min
fu�;i�;c�g;fuk�;ik�;ck�g

XK

k = 1

X
ðm;n;lÞ˛Tk

1

2
ðrmnl � drmnl Þ2

+
bG

2

�kumk22 + kink22 + kclk22
�
+ aGðkumk1 + kink1 + kclk1Þ

+
bL

2

�
kuk

mk
2

2 + kiknk
2

2 + kck
l k

2

2

�
+aL

�kuk
mk1 + kiknk1 + kck

l k1
�
:

(Equation 11)

The first term is the squared prediction error, both second and

third terms are global L2-norm and L1-norm regularizers, and the

last two terms are local L2-norm and L1-norm regularizers. bG,

aG, bL, and aL are respective hyper-parameters. The optimiza-

tion problem in Equation 11 can be solved using the SGD

method.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

umd = umd � lðaG + bGumd � emnlg mindcldÞ
ind = ind � lðaG + bGind � emnlg mumdcldÞ
cld = cld � lðaG + bGcld � emnlg mumdindÞ

uk
md = uk

md � laL + bLu
k
md � emnlð1� g mÞikndck

ld

iknd = iknd � laL + bLi
k
nd � emnlð1� g mÞuk

mdc
k
ld

ck
ld = ck

ld � laL + bLc
k
ld � emnlð1� g mÞuk

mdi
k
nd

: (Equation 12)

The global predictive model and local predictive models are

combined with personalized weights g_m, which is updated

automatically. To compute the personalized weight g_m, we
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minimize the squared loss of Equation 11 for user m, which

comes from subset k, over all items n and criteria l. By setting

the derivative of the squared loss to 0, we get Equation 13,

g m =

P
ðm;n;lÞ˛Tk

rmnl �
PD

d = 1u
k
mdi

k
ndc

k
ldPD

d = 1umdindcld �
PD

d= 1u
k
mdi

k
ndc

k
ld

S
;

(Equation 13)

where S is the total number of user-item-criterion ratings given

by user m. After learning the global model and local models,

GLTF updates the personalized weight g_m for each user with

Equation 13. GLTF assigns every user m to each possible sub-

set. In each subset, the weight g_m and training error are calcu-

lated. Thus, user m would be assigned to the subset with the

smallest training error. Note that if there is no subset for which

the training error is smaller, user m remains in the same subset.

The process is performed iteratively until it converges. The main

steps of GLTF are summarized by Algorithm 3.

Based on GLTF, we also present two variants, i.e., GLTF0 and

GLTFf. GLTF0 stands for the variant GLTF without refinement for

user clustering. In particular, both the global model and local

models are learned jointly per user weight g_m. However, the

initial assignment of users to subsets via an external clustering

method remains fixed. In our experiments, classic K was used

to denote the clustering algorithm. GLTFf stands for the variant

GLTF with fixed personalized user weight g_m. In other words,

all the main steps of the GLTFf algorithm are the same as

GLTF, except that no updating is applied to the parameter

g_m. In our setting, we initialized the value of g_m as 0.5

in GLTFf.
Comparison Results
Table 3 lists the rating prediction accuracy of the evaluated

methods, where the lowest mean absolute error (MAE) of each

dataset is highlighted in boldface.

The proposed methods, notably GLTF, clearly outperformed

the well-established baselines in terms of MAE. The results indi-

cated that the proposed tensor factorization-based methods

jointly modeled multi-criteria rating information and can take

the correlation among user, item, and criterion dimensions into

account to improve prediction performance. By contrast, the ag-

gregation function-based method (AFBM) applied support



Figure 6. MAE versus Number of Clusters on

Three Different Datasets
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vector regression to aggregate the criteria information, which

only considered the correlation between any two of the three di-

mensions, such as that between user and criterion, or between

item and criterion. Surprisingly, tensor factorization was a

good fit for MCRS, as it was an excellent way of modeling the

intrinsic interactions among the three dimensions, i.e., users,

items, and criteria.

We further do the experiment to evaluate the statistically sig-

nificance of the differences reported in the experimental results.

The p value is 0.95, which shows that our results are statistically

significant.

The performance of the criteria chain method (CC) was not

very stable compared with the proposed methods. The CC

method relies on the tensor technique and criteria chains to

exploit the correlation and dependencies among users, items,

and item criteria. However, it is often difficult to accurately define

the sequence of criteria in the chains because the correlation be-

tween each pair of criteria is typically complicated. In addition, it

is very likely for CC to result in an accumulation of errors due to

the rating prediction for current criterion depending on the pre-

diction for previous criterion on the chain. In other words, the

prediction for current criterion could be wrong if the previous

predictions are incorrect.

Compared with either GTF or LTF, GLTF achieves the best

performance with the lowest MAE values on all three data-

sets, i.e., about 0.62 on TripAdvisor, 0.51 on Yahoo!Movie,

and 0.57 on RateBeer. The result demonstrates the impor-

tance of combining global model with local models. In other

words, when local models and global model are combined in

a user-specific way, as in the case of GLTF, we get the best

performance for rating prediction. The MAE of GLTF are

much lower than that of GTF (TripAdvisor about 0.07,

Yahoo!Movie about 0.12, RateBeer about 0.07) and LTF (Tri-

pAdvisor about 0.06, Yahoo!Movie about 0.09, RateBeer

about 0.05). The comparison between LTF and GLTF shows

the benefit of adding a global model, while the comparison

between GTF and GLTF shows the benefit of considering

local predictive models. GLTFf and GLTF0 are two variants

of GLTF. The improvement of GLTF over GLTFf displays

the effect of adding user-specific weight g_m, while the

improvement of GLTF over GLTF0 demonstrates the benefit

of allowing users to switch subsets.

As described in Table 4, theMAE ofGLTF0 is a little higher than

that of LTF. This is because the assignment of users to subsets

remains fixed once user subsets were initialized in GLTF0. If the

initialization for user subsets happens to be inappropriate, we
may learn undesired local predictive

models. As a result, the performance of

GLTF0 for rating prediction drops, as the

ratings are predicted by using both global

and local models.

Comparing LTF with GTF, we find that

the performance of LTF is much better

than that of GTF. This suggests that
learning local predictive models for individual user subsets can

capture the differences of users’ preferences effectively and

improve the rating prediction.

To further evaluate the Top-K item recommendation, the

experimental results in term of NDCG@Kobtained from three da-

tasets are shown in Figure 5, where K varies from 2 to 10. A

similar conclusion can be drawn from Figure 5 demonstrating

that GLTF achieves the best performance of three datasets for

all cases.

Effect of Clustering Methods
We can use either existing clustering algorithms or a random

partition method to initialize user subsets in GLTF. In other

words, the performance of GLTF is not dependent on the clus-

tering algorithm. To verify this, we compare the performance of

GLTF under two different settings, i.e., using K-means clustering

to initialize user subsets or simply splitting users into subsets at

random. Figure 4 shows the performance of GLTF with different

user-subset initialization methods, respectively. In Figure 4 we

can see that, when the number of iterations increases, GLTF

achieves comparable performance under the two different initial-

ization settings on the TripAdvisor, Yahoo!Movie, and RateBeer

datasets.

The experimental results from three datasets are similar.

The gap between the curves of the two initialization clustering

methods is large when the number of iterations is relatively

small. This is expected, as in the first few iterations the

assignment of users to optimal subsets has not yet been per-

formed. Thus, the local models learned based on the user

subsets by the clustering method are more meaningful than

that with random initialization. However, as the iterations

progress, much better allocation of users to subsets can be

achieved by GLTF. We see that the MAE of GLTF with

random initialization drops quickly and then reaches the

converged state. As shown in the figures, the performance

of GLTF for rating prediction is very similar for the two

different initialization methods for user subsets on the data-

sets. This is because during training, GLTF is able to itera-

tively assign users to various subsets and then generate

optimal clustering results upon completion. We conclude

that our GLTF method was able to learn robust local models

in addition to a global predictive model, even with random

initialization for user subsets. It is worth noting that, when

starting from random assignment of user subsets, the pro-

posed GLTF may need more iterations in order to achieve a

satisfactory performance.
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Figure 7. MAE versus Dimensionality of

Latent Factor Space on Three Different Da-

tasets
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Effect of Number of Clusters
Figure 6 shows how the number of user clusters affects the per-

formance of the proposed methods. We can see that GLTF out-

performs all the other methods for all the numbers of user clus-

ters. On the TripAdvisor and RateBeer datasets, GLTF

achieves its best performance when the number of clusters is

about 5. For Yahoo!Movie dataset, the best performance is

achieved when the number of clusters is about 40. This is

because the densities of the TripAdvisor dataset (0.21%) and

RateBeer dataset (0.27%) are much lower than that of the

Yahoo!Movie dataset (1.87%). When the density of dataset is

low, if the number of user subsets is large, the neighbors of the

targeted user in the same subset would be scarce. As a result,

the prediction accuracy of local models would be reduced.

Effect of Dimensionality of Latent Factor Space
Figure 7 shows how the dimensionality of latent factor space

affects the performance of the proposed methods. GLTF out-

performs the other methods across almost all given dimension-

ality values. Specifically, all the proposed methods tend to

achieve the best MAE when mapping users, items, and criteria

to the latent factor space of smaller dimensionality (e.g., 10) on

the TripAdvisor dataset. On the Yahoo!Movie dataset, mapping

users, items, and criteria to the latent space of medium dimen-

sionality (e.g., 70) is helpful for the methods to attain decent

performance. In contrast, with increasing the dimensionality,

almost all the methods improve the performance for rating

prediction.

Interplay between Global and Local Predictive Models
To discover how the local models and global model affect the

rating prediction, we analyzed personalized weights g_m, which

control the interplay between the global and local predictive

models. As shown in Equation 10, g_m varies from 0 to 1.
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When g_m is equal to 1, only the global

model is used. If g_m is equal to 0, it means

that the perdition is only affected by the

local models. When g_m is greater than

0.5, the global model plays a more impor-

tant role than the local models in GLTF
for rating prediction and vice versa. In Figure 8, the bars indicate

changes of the g_m value during the iteration and the line repre-

sents the change of the MAE value on each dataset. It can be

found that, by increasing the number of iterations, the percent-

age of g_m which is greater than 0.5 becomes smaller, and the

MAE value shows a decreasing trend. This observation suggests

that the effect of local information on the models becomes

greater as the iterations progress. As a result, local models

have more influence on rating prediction than the global model.

DISCUSSION

In this paper, we addressed the multi-criteria recommendation

problem that typically involves multiple criterion-specific ratings

in addition to user-item rating data. We proposed the tensor

factorization techniques, notably, GLTF, to address the problem.

In GLTF, we not only learned a global predictive model from the

whole user-item-criterion tensor data but also simultaneously

learned multiple local models from partitioned user-subset spe-

cific subtensors of rating data. Both global and local models

were then jointly employed to predict the ratings of a given

user on unknown items and the criteria of the items. Experi-

mental results with real-world data have shown that the pro-

posed GLTF method is superior to well-established baseline

methods for tackling the multi-criteria recommendation

problem.

More specifically, this study provides four important contri-

butions: (1) A principal tensor factorization method was devel-

oped to leverage additional criterion-specific ratings in addi-

tion to existing user-item rating data for better

recommendation; (2) a new unified global and local tensor

factorization framework is proposed, which can jointly learn

a global predictive model and multiple local predictive models

for the purposes of recommendation; (3) our proposed GLTF
Figure 8. The Interplay between the Global

and the Local Part of the Model on Three

Different Datasets
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method is adept at discovering the overall structure of the

whole rating tensor while also capturing diverse rating behav-

iors of users in individual subtensors; and (4) extensive exper-

iments have been conducted with real-life data to validate the

value of GLTF as a way to resolve certain well-known issues

associated with multi-criteria recommendation.

A significant amount of work needs to be conducted in the

future. We plan to obtain more data for a larger dataset for eval-

uation. At the same time, we realize that the sparsity problem is a

very important issue, and we will further deliberate on improving

the model to mitigate this problem.
EXPERIMENTAL PROCEDURES

This section presents the experimental procedures used to evaluate the pro-

posed model for multi-criteria recommendation with real-world data.

Resource Availability

Lead Contact

H.Y. takes responsibility for the Lead Contact role. Her email address is yhn6@

bit.edu.cn.

Materials Availability

The study did not generate new unique reagents.

Data and Code Availability

To evaluate the algorithms, we used three different datasets from TripAdvi-

sor,50 Yahoo!Movie,25 and RateBeer,51 as shown in Table 3.

TripAdvisor is the largest travel site in the world, where users can use the

1-to-5 star rating system to rate four criteria of hotels, including value, location,

service, and overall (i.e., special criteria). After cleaning, there were 23,066 re-

cords given by 6,134 users based on four criteria for 1,763 hotels. Each user

gave at least two ratings. The sparsity level of the dataset was around

99.79%. The Yahoo!Movies dataset, except for movie ID, user ID, and rating,

provides the gender and ages of the users. After cleaning, there were 50,673

records given by 1,827 users based on five criteria for 1,479 movies, where

the five criteria are story, acting, direction, visual effects, and overall. The rat-

ings vary from 1 to 13. Each user rated at least ten movies. The sparsity level of

the dataset was around 98.13%. The RateBeer dataset includes users’ evalu-

ation of beers. After cleaning, there were 48,605 records given by 3,630 users

on five criteria, namely appearance, aroma, palate, taste, and overall, for 4,896

beers. Each user rated at least five beers. The sparsity level of the dataset was

around 99.73%.

Experimental Setting

Performance Metric

In experiments, 5-fold cross-validation was applied to each dataset, and MAE

and normalized discounted cumulative gain (NDCG) were adopted to evaluate

the recommendation performance:

MAE =

PI
i =1jp i � q ij

N
; (Equation 14)

where N is the number of pairs of observed ratings p_i and predicted ratings

q_i in the test set. Note that the lower theMAE, the better the recommendation

performance.

NDCG@K = ZK

XK

i = 1

2r i � 1

log2ði + 1Þ; (Equation 15)

where ZK ensures a value of 1 for the perfect ranking result and ri is the graded

significance of the item at position i.

Baseline Methods

We validated our proposed methods, notably GLTF, as well as the variants,

GLTF0 and GLTFf, to produce multi-criteria recommendations. Note that

GTF can be treated as a representative of normal tensor factorization baseline.

We also compared the proposed methods with three other well-established

baseline methods, including AFBM15 and CC.22 In particular, the AFBM em-
ploys a matrix factorization to factor the observed user-criterion rating data,

then uses the learned model to estimate the ratings of a user on individual

criteria (excluding special overall criterion). Next, it applies a support vector

regression to aggregate the estimated criterion ratings for predicting overall

ratings. CC attempts to leverage the dependency among multiple criteria for

rating prediction.

Parameter Settings

For the purposes of this study, the value of regularization parameters bG, bL,

aG, and aL were set as 0.1, and initialized g_m = 0.5 in Algorithm 3 and method

GLTF0. For the TripAdvisor dataset, we set the learning rate l = 0.01, the

dimensionality of latent factor space D = 70, the number of iterations as 50,

and the number of subsets K = 5 in Algorithms 2 and 3 and method GLTF0,

GLTFf. For Yahoo!Movie dataset, we set the learning rate l = 0.005, the dimen-

sionality of latent factor space D = 80, the number of iterations as 30, and the

number of subsetsKwas set as 5 in Algorithm 2,methodGLTF0,GLTFf, and 40

in Algorithm 3. For RateBeer dataset, we set the learning rate l = 0.001, the

dimensionality of latent factor space D = 80, the number of iterations as 80,

and the number of subsets K was set as 5 in Algorithms 2 and 3 and methods

GLTF0, GLTFf.
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