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Agents for tumor vascular infarction are recently developed therapeutic agents for the
vascular destruction of tumors. They can suppress the progression of the tumor by
preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular
infarction can be divided into three categories according to the differences in their
pathways of action: those that use the thrombin-activating pathway, fibrin-activating
pathway, and platelet-activating pathway. However, poor targeting ability, low
permeation, and potential side-effects restrict the development of the corresponding
drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this
article, the authors summarize currently used biomaterials for tumor infarction therapy with
the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of
this kind.
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INTRODUCTION

Tumor vascular infarction-based therapy was proposed by Huang et al. to treat vascular-rich tumors
(Huang et al., 1997). And vascular blockade therapy and anti-angiogenic therapy together form a
new and popular direction of oncology treatment - tumour vascular blockade therapy. Note that both
vascular infraction and anti-angiogenesis approaches cut down the nutrients and oxygen supply to
the tumor, which ultimately starve the cancer cells. Anti-angiogenesis destruct the neovasculature
formation (Oba et al., 2010; Dirisala et al., 2014). In contrast, vascular infraction approaches rely on
clot formation within the tumor blood vessels to occlude the blood vessels that feed the tumor,
subsequently causing necrosis and apoptosis of neoplastic cells. The effect of infarction treatment is
almost immediate, in contrast to chemotherapy (Pizzamiglio et al., 2021). For example, breast cancer
needs to be treated with trastuzumab for at least 9 weeks, whereas infarction treatment requires only
about 1/10 of this time (Baselga et al., 1996). Moreover, infarction treatment does not involve directly
attacking the tumor cells or influencing their pathways, and thus is unlikely to lead to the
development of resistance during treatment. The distribution of disordered blood vessels and
the hypoxic condition of the microenvironment of the tumor result in hypercoagulable blood, which
provides favorable conditions for the formation of the thrombus (Tilki et al., 2007).

However, few infarction drugs are currently used in clinical practice. Only a truncated form of the
tissue factor (tTF) has been approved by the U.S. Food And Drug Administration (FDA) (Huang
et al., 1997; Zhu and Zhu, 2017). A few shortages have contributed to this situation. First, once blood-
clotting substances form a thrombus in the normal tissues and block normal blood vessels, this causes
secondary injuries to patients. Tumor patients in general have a high platelet count and high blood
viscosity, which facilitates the formation of the thrombus to hinder the use of the agent (Hisada and
Mackman, 2017; Haemmerle et al., 2018). Second, currently available clotting agents cannot
completely block the blood vessels of the tumor, and the tumor cells can obtain nutrients from
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the remaining blood vessels or the normal surrounding
environment (Berdel et al., 2021). Third, compared with
normal blood vessels that have a complete morphology and
distinct layers, tumorous blood vessels are primitive, usually
lack smooth muscle cells and pericytes, and mainly rely on
endothelial cells to transport nutrients and oxygen. The
distribution of blood vessels in the tumor is thus disordered
and the blood pressure is higher than normal, where this is not
conducive to drug permeation (Flessner et al., 2005; Ding et al.,
2019).

The above shows that treating tumors by using clotting drugs
alone is a path riddled with obstacles. In this circumstance, the
idea of combined therapy based on biomaterials and infarction
agents offers promise to inhibit tumor progression (Zheng et al.,
2020; Zhao D. et al., 2021; Chen et al., 2021). First, currently
available biomaterials (such as peptides, nanorobots, and
antibodies) functionalize therapeutic drugs, thus enabling the
agent to precisely target endothelial cells of the tumor, improve
the safety of the drug, and enhance its anti-tumor effects (Seidi
et al., 2018; Li et al., 2020; Zhao Y. et al., 2021; Drzyzga et al.,
2021). Second, biomaterials are used as carriers to simultaneously
carry multiple therapeutic agents for combined treatment to
damage tumor cells in a multi-dimensional and
comprehensive manner (Colli et al., 2017; Wei et al., 2021;
Zheng and Ding, 2022). Third, the biomaterials ensure that
the therapeutic agent that may cause adverse reactions in
normal tissues is slow-released, thereby providing a higher
dose than if it were administered alone (Feng et al., 2020;
Feng et al., 2021; Yang et al., 2021). Fourth, the materials
prolong the duration of circulation of the drug in the blood
(Jiang et al., 2019; Xue et al., 2020; An et al., 2021). Most
therapeutic agents cannot exist in the blood for a long time
(Pippa et al., 2020). For example, thrombin is metabolically
deactivated within a few minutes under normal physiological
conditions (Ding et al., 2019). However, the emergence of such

biomaterials as nanorobots and mesoporous silica nanoparticles
prolongs the duration of circulation of therapeutic agents in the
blood (Xiong et al., 2018; Li et al., 2019; Berdel et al., 2020; Li et al.,
2020). With this extended circulation, drugs that previously could
not be used directly can accumulate on tissues of the tumor and
kill the tumor cells.

Most clotting drugs cause vascular infarction through different
clotting pathways: by activating the fibrin, platelets, and thrombin
(Table 1). Coagulation involves the conversion of fibrinogen into
fibrin as well as platelet activation and aggregation to form a
hemostatic thrombus (Ruggeri and Mendolicchio, 2007; Kearney
et al., 2021). There is a connection between the steps, whereby
thrombin can activate fibrinogen and certain coagulation-related
factors to stimulate platelet aggregation. When the body is
functioning normally, the coagulation factors are cleared by
macrophages to avoid coagulation (Majerus and Miletich,
1978; Ho-Tin-Noe et al., 2009; Ahnstrom and Gilbert, 2021).
But in a majority of tumor patients, the composition of the blood
represents a disorder that makes it susceptible to clots. This can
not only activate the conversion of fibrinogen into fibrin through
the coagulation pathway, but can also induce platelet aggregation.

Here, we divided the article into three parts according to the
main activation direction of the treatment plan, as shown in
Scheme 1. First, we consider the activation of the thrombin
pathway. The classic drug in this context is tTF that, as the
initiator of a pathway for exogenous clotting in the human body,
is modified at the tumor site to produce clotting through
biomaterials (Bieker et al., 2009; Schmidt et al., 2017; Xiong
et al., 2018; Hoink et al., 2019; Xu et al., 2019; Berdel et al., 2020;
Schliemann et al., 2020; Zou et al., 2020; Berdel et al., 2021).
Second, we consider the activation of the fibrin pathway. In
contrast to the pathway for exogenous coagulation, fibrinogen
can be directly converted into fibrin to avoid the cascade reaction
caused by the activation of a large number of coagulation-related
factors (Jahanban-Esfahlan et al., 2017; Seidi et al., 2018; Daei

TABLE 1 | Summary of biomaterials for tumor infarction therapy.

Strategy Biomaterial Infarction
Agents

Cancers Refs

Activation of thrombin
pathway

NGR tTF Human SCLC xenograft Schmidt et al. (2017)
AS1411 MHCC-97H, B16–F10 Li et al. (2021b)
CREKA 4T1, MHCC97H, LS174T Xiong et al. (2018)
Anti-NRP-LmAb HT1080 Kessler et al. (2018)
EG3287 and O-carboxymethyl chitosan-coated iron oxide
nanoparticles

HepG2 Zou et al. (2020)

Nanorobot Thrombin MDA-MB231, B16-F10,
SK-OV3

Li et al. (2018)

Chitosan-based polymer nanoparticles MDA-MB231, B16-F10,
SK-OV3

Li et al. (2020)

Activation of fibrin
pathway

NGR Coagulase 4T1 Seidi et al. (2018)
RGD CT26, 4T1, and SKOV3 Jahanban-Esfahlan et al.

(2017)
Laminin mimic peptide Fibrin MDA-MB231 Zhang et al. (2020)

Activation of platelet
pathway

SSRBC Combretastatin
A4

Humanized HbS-knockin Sun et al. (2019)

Platelet membrane-wrapped mesoporous silica
nanoparticles

Combretastatin
A4

MHCC-97H Di Paolo et al. (2013)

Platelet-like nanoparticles — MDA-MB-231 Yang et al. (2020)
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Farshchi Adli et al., 2021). An abnormally large number of
coagulation-related factors are likely to cause secondary harm
to the patient. Third, we consider activating the platelet pathway.
Biomaterials can deliver drugs that induce platelet aggregation at
the sites of the tumor, or ones that destroy the vascular
endothelial cells to expose the subvascular collagen, which in
turn leads to platelet aggregation (Head and Jameson, 2010;
Zweifel et al., 2011). We also discuss outstanding challenges
faced by these strategies and directions of future research in
the area.

BIOMATERIALS-MEDIATED THERAPY
THROUGH ACTIVATION OF THROMBIN
PATHWAY
The thrombin pathway causes thrombus mainly through the
activation of thrombin to induce platelet aggregation and
accelerate the conversion of fibrinogen to fibrin. The activated
thrombin can provide positive feedback to expand the
coagulation reaction as well as clotting substances for the
pathway for exogenous coagulation (Van Der Meijden et al.,
2012; Tripisciano et al., 2020).

The tTF containing the extracellular domain of the tissue
factor has been used to induce thrombosis in tumorous blood
vessels. It can cascade to the signaling pathways downstream to
activate thrombin through pathways of exogenous clotting.
The tTF has the following benefits: 1) Immune resistance. tTF
derived from the human body has no activating effect on the
immune system (Kessler et al., 2018; Luo et al., 2021). 2) High
efficiency. The agents activate the relevant coagulation factors
and quickly form thrombus through the pathway for
exogenous coagulation (Fujikawa et al., 1974; Stern et al.,

1985). However, the tTF cannot completely restrain tumor
development. In addition, large doses of the tTF may affect
normal tissues and organs. In this context, combining the tTF
with other materials to reduce drug toxicity is a promising
solution.

Schmidt et al. connected the NGR (asparagine-glycine-
arginine)-targeting peptide to the end of the factor to
modify the tTF to obtain tTF-NGR (Schmidt et al., 2017).
This compound did not change the coagulation function of the
tTF, whereas tTF-NGR had the ability to selectively target to
tumor because NGR is a CD13-targeting peptide (Corti et al.,
2008). tTF-NGRmainly targets the tTF with aminopeptidase N
on angiogenic endothelial cells (Amin et al., 2018). It is the first
candidate drug of this type for the coagulation ligand, and can
be used on cancer patients in clinical research (Schliemann
et al., 2020). And they established an HTB119 human small-
cell lung cancer (SCLC) xenograft model, and injected tTF-
NGR and saline once every 2 days for a total of six injections.
At the end of the experiment, the tumor was removed for
observation and comparison. Compared with the control
group, the growth of the tumor in the tTF-NGR group was
significantly reduced. The results also showed that the targeted
tissue factor had a good inhibitory effect on the growth of
SCLC tumors. Therefore, in subsequent clinical trials,
Schliemann et al. used dose-increasing tTF-NGR treatment
on 17 patients with advanced cancer who had exceeded
standard therapies in a phase I study (Schliemann et al.,
2020). The results again proved that tTF-NGR, as a drug
for vascular therapy, can suppress the tumor and is safe.

However, the synthesis of the targeting peptide is complicated
and costly, which hinders its large-scale application. Li et al.
conjugated a DNA aptamer targeting nucleolin (a protein that is
overexpressed in the liver tumors) to the tTF, through

SCHEME 1 | The vascular infarction treatment activates three pathways: the thrombin pathway, fibrin pathway, as well as platelet pathway.
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sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-
carboxylate (sulfo-SMCC). The tTF-AS1411 conjugate could
not only accurately target and inhibit the tumor, but also did
not affect the normal tissues (Figure 1A) (Li et al., 2021b). The
data showed that tTF-AS1411 could significantly inhibit the
growth of liver tumors on metastasis of human hepatocellular
carcinoma (MHCC-97H) (Figure 1B,C). Moreover, its simple
process of preparation and low price enable the wide use of the
conjugate. Nevertheless, AS1411 mainly acts on tumor cells rich
in nucleolar protein, such as those that cause breast cancer, lung
cancer, pancreatic cancer, and acute myeloid leukemia. The
specificity of AS1411 decreases for tumor cells with low
nucleolar protein expression.

Thus, a material that can target most tumors is needed.
CREKA (Cys-Arg-Glu-Lys-Ala), as a tumor-homing peptide
identified by phage display technology, can solve the above
problem. It can recognize microthrombus-related
fibrin–fibronectin complexes that are selectively overexpressed
in the vascular endothelium and stroma of the tumor but not in
normal tissues (Ruoslahti et al., 2010; Yamashita and Hashida,
2013).

Shi et al. established three types of tumor models—the 4T1
model, the MHCC97H liver tumor model, and the LS174T
colon tumor model—and treated the tumors with tTF-CREKA.
CREKA and tTF were optimized for the prokaryotic cells
and purified with isopropyl-β-D-thiogalactoside (IPTG) for

4 hours to obtain tTF-CREKA (Xiong et al., 2018). The authors
found that tTF-CREKA had an inhibitory effect on the tumors
in the three models, especially in the 4T1 model, because this
model featured more blood vessels than the other two (Pulaski
and Ostrand-Rosenberg, 2001). The authors also compared
tTF-CREKA with a truncated tissue factor with pH (low)
insertion peptides (tTF-pHLIP). Under the same treatment
conditions, the therapeutic effect of tTF-CREKA was almost
the same as that of tTF-pHLIP on LS174T tumors but was
more active against the 4T1 and MHCC97H tumors. This was
mainly owing to its different effective positions on the tumor
cells. Because pH-responsive drugs are not favorable for
patients with diseases such as ischemic myocarditis
(Estabragh and Mamas, 2013; Kociol et al., 2020), tTF-
CREKA is more effective than tTF-pHLIP.

However, the specific site at which CREKA binds to tumor cells
is relatively simple such that the tumor cells are prone to generate
avoidance mechanisms to avoid binding to the polypeptides.
Kessler et al. localized the anti-NRP-1-mAb to the surface of the
vascular endothelial cells of the tumor to induce vascular
infarction (16) (Kessler et al., 2018), through the coupling of
water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
and N-hydroxysulfosuccinimide, to couple the mAb to the
polypeptide. The anti-tumor activity of the mAb-SA:tTF-B
system was evaluated in mice bearing HepG2,a hepatocellular
carcinoma cell line. The growth of the tumor in the mice

FIGURE 1 | Antitumor activity of tTF-AS1411 (A) The inhibition of the growth of MHCC-97H liver tumors in mice (B) Cumulative survival of MHCC-97H tumor-
bearing mice (C) Illustration of the hypothesized progression of tTF-AS1411 within tumor vessels. Reprinted with permission from (Li et al., 2021b).
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treated with mAb-SA:tTF-B decreased compared with the other
treatment groups considered. However, the effect of coagulation of
the material was too prominent, where this is not conducive to
controlling the treatment dosage for patients, especially those with
cardiovascular diseases. After all, the safety of the drug is
considered the primary criterion for evaluating this strategy.
Zou et al. subsequently proposed a fusion coagulant protein
tTF-EG3287 comprising of the tTF and the NRP-1 targeting
peptide EG3287and O-carboxymethyl chitosan-coated iron oxide
nanoparticles bemixed as a magnetic carrier (Zou et al., 2020). tTF-
EG3287 does not have a procoagulant effect on blood circulation.
But when it is combined with neuropilin-1 (NRP-1), which is
prominently expressed in tumor-related vascular endothelial cells,
it yields a strong procoagulant capability (Min et al., 2019). The
authors evaluated the anti-cancer activity of mesotetra(4-
carboxyphenyl)porphyrin (mTCPP), a photosensitizer against
HepG2 in tumor-bearing BALB/c nude mouse model, including
in cases of subcutaneous transplantation and orthotopic
transplantation. The results showed that after the intravenous
injection of MTPCP, thrombosis in particular occurred in the
tumor-related blood vessels. This retarded the growth of the
tumor but did not damage the normal organs.

Thrombin is a key enzyme in the coagulation cascade that can
cleave the plasma fibrinogen into fibrin monomers that can then
spontaneously form insoluble polymers (Wells and Di Cera,
1992). Thrombin can also activate coagulation factors VIII (to
VIIIa) and V (to Va) as well as platelets to aggregate platelets and
block blood vessels (Downes et al., 2022). Of course, the role of
thrombin is not limited to coagulation events. It also stimulates
“mitosis” events by interacting with receptors on the cell surface,
and plays a key role in the healing of wounds (Tao et al., 2021).
Although thrombin has been used clinically as a therapeutic drug,
the potential systemic side-effects caused by blood leakage during
circulation, increase in values of the coagulation parameters, and
avascular necrosis of normal tissues have hindered further
research (Cines et al., 2014; Gajos et al., 2018). Therefore, a
series of biomaterials that can enable thrombin to overcome these
difficulties is in demand.

DNA origami technology was first applied to the
transportation of substances in 2006, and greatly improved the
feasibility of targeted drug therapy. Li et al. applied it to the
treatment of vascular infarction (Li et al., 2018). The half-life of
thrombin in the body is relatively short, which hinders its clinic
use (Van Cott et al., 2017). To enable thrombin to persist for a
longer time in the body, Li et al. combined it with a nanorobot to
prevent the thrombin from being metabolized during transit to
the target tumor cells. While the nanorobot was combined with
the nucleolin in the tumor, it exposed the thrombin wrapped in
the material to the surface. And when not bound to tumors, the
nanorobots protected the thrombin from being cleared by
macrophages as it circulated. The authors then compared two
tumor models (of melanoma and ovarian cancer) to compare the
effects of the material on different tumors based on differences in
vascular density. Although the final results showed that the effect
of treatment was much better on patients of melanoma than those
of ovarian cancer, the nanomaterials were also found to have a
significant inhibitory effect on ovarian cancer.Whereas, because

the drug could not completely block the tumor’s supply of blood
vessels, the tumor could still obtain the materials needed for
growth (Schwoppe et al., 2013). Li et al. used an ion gel-based
method to prepare chitosan-based polymer nanoparticles, and
used it to integrate thrombin and the chemotherapy drug
doxorubicin (Dox) into a single nanocarrier to kill tumors (Li
et al., 2020). Unlike in case of the separate administration of the
two drugs, this system produced a synergistic effect by
simultaneously affecting two independent aspects of tumor
viability. The results showed that the dual drug delivery
system had a more powerful treatment effect than single drug
delivery. When treating different tumor models, tumors with a
large number of blood vessels have better therapeutic effects. In
addition to being non-cytotoxic to normal tissues, this system has
been proven to prolong the duration of circulation of the drug in
the body and thus can better suppress the tumor.

BIOMATERIALS-MEDIATED THERAPY
THROUGH ACTIVATION OF FIBRIN
PATHWAY
The blood vessels of cancer patients are in an abnormal state,
because of which the changes (of blood viscosity and
haemodynamics) in blood brought about by the drug easily
affect the human body. Moreover, a few coagulation factors
stimulate the growth and metastasis of tumor cells (Cohen
et al., 2018; Kalinich and Haber, 2018). These problems hinder
the use of traditional blocking drugs, and this creates the need
for a pathway to clotting that does not activate cascaded
amplification. The literature has proposed that the
activation of only fibrinogen to transform into fibrin,
without activating the other coagulation substances, can
minimize the impact of thrombus formation on the body
(Zhang et al., 2020).

Coagulase is a substance similar to thrombin that can
transform the fibrinogen in plasma into fibrin and coagulate
the plasma (Tripisciano et al., 2020) (Friedrich et al., 2003; Luo
et al., 2021). Because coagulase does not activate platelets nor
change factors influencing blood coagulation, a growing
number of researchers have attended to it. However, free
coagulase has a short half-life in the body. Combining
coagulase with biological materials to target tumorous blood
vessels and extend the time of residence of the drugs in the
body is now a trend in this field. Jahanban-Esfahlan et al.
connected the truncated coagulase to RGD (Arg-Gly-Asp)
(tCoa-RGD), where the coagulase retained its activity and
had a close affinity with αvβ3 endothelial cell receptors
(Jahanban-Esfahlan et al., 2017) (Bhagwat et al., 2001). To
verify the effect of tCoa-RGD in terms of tumor inhibition, the
authors established a CT26 mouse colon model, a 4T1 mouse
breast model, and an SKOV3 human ovarian tumor model,
and found that the systemic injection of lower doses of tCoa-
RGD significantly inhibited solid tumor growth due to CT26,
4T1, and SKOV3 in animals. Thrombosis and a large number
of necrotized tumor cells were also observed in the tumor
tissues. The research showed that the tCoa-RGD fusion
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protein can induce thrombosis while ensuring non-toxicity in
normal tissues.

However, the RGD peptide recognizes only the αvβ3 integrin
(Ghabraie et al., 2020), which are transmembrane heterodimers
that protect against immune evasion. Seidi et al. used bi-specific
NGR peptides that can recognize CD13 and αvβ3 to improve the
efficiency of targeting of the drug and its tumor-killing ability
(Figure 2A–C) (Seidi et al., 2018). The result of ELISA showed
that when tTF-NGR and tTF-RGD were combined with HUVEC
in a ratio of 1:10, the competitive inhibition due to tTF-NGR
resulted in an 80% reduction in the binding capacity of tTF-RGD
to HUVEC while tTF-NGR reduced this by only 46%.
(Figure 2D,E) On the 4T1 breast cancer model of the mouse,
tCoa-NGR showed a better effect of suppressing the tumor as
well. However, due to the existence of the edge effect (Dienst et al.,
2005), the remaining tumor cells continued to grow through
blood vessels of the surrounding normal tissue and accelerated
the metastasis of the cells. To solve this problem, Adli et al.
combined the administration of vadimezan and recombinant
coagulase-NGR to kill tumor cells (Daei Farshchi Adli et al.,
2021). The volume of the tumor in mice in the melanoma model

treated by the combined administration group was 73.12%,
smaller than that of the control tumor. A combination of the
two was not only effective for the infarction of tumorous blood
vessels, but also changed the immune microenvironment around
the cells, leading to changes in the concentration of cytokines and
activating the immune cells, thus leading to immune responses
(Krem and Di Cera, 2001; Gajewski et al., 2013).

In addition to using coagulase to activate fibrinogen to form a
fibrin network, some researchers sent fibrin directly into tumorous
blood vessels to mediate the vascular blockage of the tumor. This
strategy was safer and more efficient than previous blocking
methods. Zhang et al. designed a laminin mimetic peptide
(LMMP), which has the hydrogen-bonding sequence Lys-Leu-
Val-Phe-Phe (KLVFF) as part of fibrillation, to target the peptide
sequence CREKA to bind the microthrombus, with the pH-
responsive sequence His6 to modulate the speed of fibrillation
and oligo-ethylene glycol to improve hydrophilicity. This
biomaterial performed its function through the in-situ dual
regulation of the pH values of tumorous blood vessels and the
microthrombus. In the MDA-MB-231 tumor model, the authors
compared the effects of LMMP-lacking CREKA, LMMP-lacking

FIGURE 2 | Molecular dynamic studies of tCoa-NGR proteins and therapeutic potential of tCoa-NGR proteins in vivo (A) Protein structure of tCoa-NGR (B) 3D
structure of tCoa-NGR (C)Molecular dynamic simulation of tCoa-NGR-prothrombin complex (D).Illustrative photos of mice bearing prostate cancer xenografts (PC3) at
the end of treatment treated with tCoa-NGR (right) or tCoa (left) (E) 4T1 and PC3 tumor-bearing mice were treated by the indicated formulations. Reprinted with
permission from (Seidi et al., 2018).
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His6, and normal LMMP on tumor treatment, and found that they
were equivalent with respect to a lack of a targeting function, a lack of
pH responsiveness, and dually regulated drugs, respectively. The
results showed that the dual regulation drugs groups had better
targeting and tumor-suppressive effects than the others (Zhang et al.,
2020).

BIOMATERIALS-MEDIATED THERAPY
THROUGH ACTIVATION OF PLATELET
PATHWAY
Platelet activation is commonly observed in cardiovascular
diseases—for example, myocardial infarction and pulmonary
embolism (Torbicki et al., 2008; Thygesen et al., 2019). The
occurrence of the disease usually begins with injury to the
endothelial cells, which leads to the exposure of the
subcutaneous collagen. The exposed collagen (mainly type I
and III collagen) then activates the platelets and provides
adhesion sites for their aggregation to eventually form
thrombus (Yuan et al., 1997; De Meyer et al., 2009; Smeets
et al., 2017). Some researchers have tried to transfer this

pathological process into the blood vessels of tumors. This
strategy induces thrombus formation by artificially exposing
the subcutaneous collagen by treating the vascular endothelial
cells of the tumor with specific vascular destructors. Moreover,
the environment of the tumor exhibits a state of high coagulation,
which provides a substantial material basis for the
implementation of this strategy.

However, currently commonly used drugs, such as
combretastatin A4 and apatinib, have poor water solubility
and low accuracy of targeting the tumor. CA4, as a clinical
drug that has been marketed, has been approved by the FDA
(Rastogi et al., 2018). It binds to tubulin in the cells to arrest cell
division and induce apoptosis, especially in endothelial cells. It
further hinders the sliding of microtubules and microfilaments,
leading to the deformation of the structure of the endothelial
cells, and attracts the neutrophils to provoke an immune
response. Its efficient killing effect makes it unique in this
field, but its low water solubility and cytotoxicity on normal
organs limit its use. Most importantly, CA4, like other vessel
infarction drugs, does not prevent the residual tumor cells from
absorbing nutrients and oxygen from the surrounding normal
tissue.

FIGURE 3 | Illustration of the proposed action mechanism and the tumor-killing effect of MSN@PM-C-A in tumor vessels. (A) Proposed antitumor mechanism of
MSN@PM-C-A in the tumor-bearing mouse model. (B) Pictures of mice with treatments. (C) Tumor growth curves of MHCC-97H tumor-bearing mice treated with
different agents. Reprinted with permission from (Li et al., 2021a).
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Solve the above problems is the focus of research in the area.
Sun et al. combined the vascular disrupting agent combretastatin
A-4 (CA-4) with sickle red blood cells (SSRBCs) to block blood
vessels of the tumor (Sun et al., 2019). By combining SSRBCs, the
intrinsic oxygen-sensing function of which allowed them to enter
the hypoxic niche of the tumor, the agent induced tumor form
micro-aggregates attracted platelet aggregation, and induced local
blood vessel closure. In vivo test, the tumor volume of the
combined treatment was smaller than that of the control
group, because thrombosis formed in the tumor. However, the
sickle-shaped red blood cells were large, and led to a high viscosity
of blood flow (Byrnes and Wolberg, 2017; Sun et al., 2019). This
problem cannot be ignored in patients with other vascular
diseases (Bergan et al., 2006; Michel et al., 2012). In addition,
the SSRBCs were able to activate the immune response, and were
easily cleared by macrophages circulating in the blood (Rees et al.,
2010; Gravitz and Pincock, 2014).

Studies have shown that platelet-coated nanoparticles can avoid
rapid blood clearance and the activation of the immune system, and
have better biological properties than liposomes. Li et al. designed a
platelet membrane (PM) coated with mesoporous silica
nanoparticles (MSN), co-loaded with cobrestatin A4 (CA4) and
the antiangiogenic drug apatinib (Apa), for combination therapy (Di
Paolo et al., 2013). Nanoparticles coatedwith the plateletmembranes
bound to the endothelial cells of the tumor by targeting proteins of
receptors on the surface of the membrane to destroy the blood
vessels. The damaged blood vessels attracted new nanoparticles to
gather, thus realizing the self-amplification and aggregation of
nanoparticles at the tumor site (Figure 3A). Thus, active tumor
targeting and intra-tumor vascular disruption can be rendered
interdependent and mutually reinforcing to yield significant anti-
tumor effects. In addition, the two antiangiogenic agents acted on the
tumor vessels in different directions to enhance these effects. The
results also proved that a combination of the two drugs is more
effective than monotherapy. However, this strategy is simply an
enhanced version of the starvation therapy, in which tumors were
killed without nutrients and oxygen. And it could not prevent the
remaining tumor cells from acquiringmaterial from the surrounding
normal tissue, allowing the tumor to be inadequately cleared. When
combined with conventional therapies that mostly target peripheral
tumor cells, the tumor can be better suppressed (Figure 1B,C).

Drzyzga et al. combined DMXAA (5,6-dimethylxanthenone-
4-acetic acid) with radiotherapy to suppress tumor cells and the
effect of the treatment (Drzyzga et al., 2021) (Anselmo et al.,
2014). DMXAA was used to destroy vascular endothelial cells of
the tumor to expose collagen and activate platelets, which
aggregated into clumps to form thrombus through positive
feedback. The infarction agent caused necrosis at the center of
the tumor and attracted the immune cells to gather there, but
could not suppress the surrounding tumor cells as well (Liu et al.,
2017). Radiotherapy was able to compensate for this defect so well
that the combination of the two treatments destroyed 50% more
of the tumor than when either one of them was used.

Patients often suffer from blood abnormalities, platelet
dysfunction, and other diseases, such as abnormal liver
function and anemia, that change the number and state of
their platelets (Newsome et al., 2018; Bellelli and Tame, 2022).

An insufficient number of platelets or dysfunction in them might
lead to thrombosis-related disorders (Zhou et al., 2021). Yang
et al. designed platelet-like nanoparticles (pNPs) based on self-
assembling peptides to stimulate the initiation of blood clotting
and the formation of clots in tumorous blood vessels (Yang et al.,
2020). pNPs first specifically bound to membrane glycoproteins
(e.g., CD105) that were overexpressed on the vascular endothelial
cells of the tumor (Nair et al., 2020). They were then activated into
platelet-like nanofibers (apNFs) through ligand–receptor
interactions. Following this, the apNFs acted as activated
platelets to expose more binding sites, and recruited and
activated additional pNPs in a similar manner to that in
platelet aggregation to form clots (Jurasz et al., 2004). The
targeting sequence and self-assembling sequence in the
molecule enabled the bionic coagulation to efficiently form a
precise fiber network. In-vivo and in-vitro experiments have
shown that drugs can intelligently and accurately construct
artificial clots to significantly hinder the growth of tumors.
pNP-induced artificial coagulation offers more promise than
natural coagulation for treating diseases caused by the
dysfunction of the blood vessels related to platelets.

CONCLUSION

Novel approaches to treating tumors are driving a growing
number of researchers to attend to the treatment of tumor
vascular infarction. This article summarized three methods of
drug activation that inhibit the growth of the tumor by causing
vascular infarction, blocking substances from entering the tumor,
and causing its necrosis. However, border cells can absorb
nutrients and oxygen from normal tissues, which leads to the
recurrence and metastasis of the tumor. This has prompted
researchers to use vascular infarction therapy in conjunction
with other treatments.

Drzyzga et al. combined vascular infarction therapy and
radiotherapy to explore the best delivery conditions to improve
treatment (Drzyzga et al., 2021). Thrombin and chemotherapy
drug doxorubicin (Dox) have also been integrated into a single
nanocarrier to enable chemotherapy and blood coagulation to
work together. This is a feasible and reasonable means of
attacking the tumor from different directions, and the two
treatments complement each other’s advantages to minimize the
number of residual tumor cells (Li et al., 2020).

However, the following problems still need to be solved in
future work in the area:

(1) High cost: Regardless of whether peptides or nanorobots are
used, it is important to ensure that the cost of treatment is
acceptably low.

(2) Rapid metabolism of biomaterials: In addition to not
producing immune resistance to the human body,
biological materials can be degraded in the body without
producing harmful substances. However, they are quickly
metabolized. Extending their duration of circulation in the
body by slowing down their metabolism requires more
research.
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(3) Inefficient drug delivery: Most current TIBs are based on the
EPR effect for tumor targeting and accumulation, and disorder
of the blood vessels in the tumor leads to high intravascular
pressure such that many drugs cannot be delivered to the
tumor.We thus need to develop intelligent biological materials
that are responsive to the pH, have redox potential, and are
sensitive to overexpressed enzymes in the TME to increase the
likelihood of the drugs acting on the tumor.

(4) Biological safety: The number of platelets in tumor patients is
higher than in normal people. If the biological material
cannot accurately release the blood coagulation drug,
thrombus can occur in normal blood circulation and cause
organ damage. Therefore, doctors often reduce the amount of
medication for patients during treatment, but this limits the
use of large doses of drugs and leads to incomplete tumor
elimination. Residual tumor cells can then rely on the
remaining blood vessels to grow and metastasize.

We have summarized recent progress in research on the
vascular obstruction of the tumor from three perspectives:
activating the thrombin pathway, activating fibrin, and
activating platelets. We concluded that the problems of poor
water solubility and non-specific targeting can be solved with the
help of biological materials. Coagulation drugs with a short half-
life in the body (such as thrombin, coagulase, tissue factor, and

DMSSA) can reach the vascular site of the tumor, and can even
use biological materials as carriers to combine coagulation
therapy with other, complementary treatments (radiotherapy,
chemotherapy and neovascularization suppression therapy).
This significantly improves the ability to kill tumors and
lowers the tumor’s resistance to drugs. Coagulation therapy
does not affect cell survival by changing the intra-cellular
mechanism, and starves the tumorous cells by blocking the
blood vessels so that they cannot alter their mechanism to
escape, as they do in response to chemotherapy. In particular,
infarction drugs supported by biological materials, whether
activated by the thrombin pathway, platelet pathway, or fibrin
pathway, are safer for the patient and more accurate at targeting
the tumor than single drugs. Tumor vascular infarction therapy
thus offers a wide range of options for tumor treatment. The
emergence of biological materials has accelerated the emergence
of such treatments, although daunting challenges persist to their
use in clinical applications.
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