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ABSTRACT

Alternative polyadenylation (APA) is emerging as
an important layer of gene regulation because the
majority of mammalian protein-coding genes con-
tain multiple polyadenylation (pA) sites in their 3′
UTR. By alteration of 3′ UTR length, APA can con-
siderably affect post-transcriptional gene regulation.
Yet, our understanding of APA remains rudimentary.
Novel single-cell RNA sequencing (scRNA-seq) tech-
niques allow molecular characterization of different
cell types to an unprecedented degree. Notably, the
most popular scRNA-seq protocols specifically se-
quence the 3′ end of transcripts. Building on this
property, we implemented a method for analysing
patterns of APA regulation from such data. Analyzing
multiple datasets from diverse tissues, we identified
widespread modulation of APA in different cell types
resulting in global 3′ UTR shortening/lengthening
and enhanced cleavage at intronic pA sites. Our re-
sults provide a proof-of-concept demonstration that
the huge volume of scRNA-seq data that accumu-
lates in the public domain offers a unique resource
for the exploration of APA based on a very broad
collection of cell types and biological conditions.

INTRODUCTION

The maturation of mRNA 3′ ends is a two-step process,
termed cleavage and polyadenylation, that involves endonu-
cleolytic cleavage of the nascent RNA followed by synthesis
of a poly(A) tail at the 3′ terminus of the cleaved product (1).
Cleavage and polyadenylation sites (pA sites) are defined by
adjacent RNA sequence cis-elements, with a key role involv-
ing the AAUAAA signal (called the polyadenylation signal
(PAS)), typically located ∼20 nt upstream of the pA site.
There are >10 weaker variants of this canonical PAS, the
main one being AUUAAA (2). Auxiliary elements include
upstream U-rich and UGUA motifs and downstream U-

rich and GU-rich elements. The strength of a pA site is de-
termined by these elements in a combinatorial manner (3).

Over the last decade, several deep-sequencing techniques
were developed for the precise mapping of the 3′ ends
of transcripts (4). Importantly, these transcriptome-wide
methods revealed that the majority of human protein-
coding genes contain more than one 3′ untranslated re-
gion (3′ UTR) pA site, indicating alternative polyadenyla-
tion (APA) as a widespread regulatory layer that generates
transcript isoforms with alternative 3′ ends (1,5,6). APA
in the 3′ UTR typically generates mRNA isoforms with
markedly different 3′ UTR lengths. For example, it was
observed that for mouse, the median 3′ UTR lengths of
shortest and longest APA isoforms differ ∼7-fold, at 250
nt and 1770 nt, respectively (1,6). As 3′ UTRs contain cis-
elements that serve as major docking platforms for microR-
NAs (miRNAs) and RNA binding proteins (RBPs), which
are involved in various aspects of mRNA metabolism, 3′
UTR APA can potentially affect post-transcriptional regu-
lation in multiple ways, including the modulation of mRNA
stability, translation efficiency, nuclear export and cellular
localization (4,7,8). Yet, our current understanding of the
impact of APA on gene regulation is still very rudimentary.
Somewhat unexpectedly, two recent studies failed to detect
a large effect of 3′ UTR shortening on transcript stability or
translation efficiency (9,10).

Transcriptomic studies demonstrated that APA is glob-
ally modulated in response to changes in cell proliferation
and differentiation. Global 3′ UTR shortening was first
documented during the activation of T cells, B cells and
monocytes (11). Further analysis of a large panel of di-
verse human tissues and cell lines revealed a significant anti-
correlation between proliferation and 3′ UTR length in-
dices, establishing the universality of the link between the
proliferative state of cells and APA. This association be-
tween proliferation status and 3′ UTR length extends to
cancer cells, which typically express shorter 3′ UTRs com-
pared with non-transformed cells (12,13). Notably, it was
indicated that switching to shorter 3′ UTRs allows proto-
oncogenes (e.g., CCND1) to avoid inhibition by miRNAs,
thereby enhancing their tumorigenic activity (12). Addi-
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tionally, analysis of various cellular models showed that dif-
ferentiation is accompanied by 3′ UTR lengthening; in con-
trast, the generation of induced pluripotent stem cells (iP-
SCs) from differentiated cells was accompanied by global 3′
UTR shortening (14,15). We previously showed that the ex-
pression of many factors of the polyadenylation machinery
is elevated in proliferative cells (16), providing one poten-
tial mechanism for the enhanced usage of proximal pA sites
in proliferation. Yet, depletion of factors of the polyadeny-
lation machinery does not always result in global 3′ UTR
lengthening, arguing for more complex effects for individ-
ual factors, where some promote the use of proximal pA
sites while others enhance the usage of distal ones (17). Fur-
thermore, we observed that in addition to enhanced usage
of proximal 3′ UTR pA sites, highly proliferative cells also
show enhanced premature cleavage and polyadenylation at
intronic pA sites (16). Several factors protect cells against
such premature cleavage at cryptic pA sites within introns,
as the usage of these sites may generate non-functional tran-
scripts (18–20). Recently, pervasive intronic polyadenyla-
tion was detected in immune cells which diversifies their
proteome by C-terminal domain loss (21).

Novel single-cell RNA sequencing (scRNA-seq) tech-
nologies allow the definition and molecular characteriza-
tion of different cell types to an unprecedented degree, and
their usage is growing at an exponential pace (22,23). No-
tably, some of the most popular scRNA-seq protocols, of-
ten called 3′ tag-based methods, generate sequence reads
that are enriched at the 3′ ends of transcripts (e.g. InDrop
(24), CEL-seq2 (25), Drop-seq (26), MARS-seq (27) and
SCRB-seq (28)). scRNA-seq analyses have already led to
profound discoveries of novel cell types and lineage differen-
tiation trajectories (23,29,30). scRNA-seq was recently used
to study patterns of stochastic gene expression (31) and cell-
to-cell variability in pA site selection within homogeneous
cell populations (32). We reasoned that scRNA-seq data
generated by 3′ tag-based methods could also be utilized for
systematic examination of APA modulation between differ-
ent cell types. Analysing diverse scRNA-seq datasets that
profiled very different tissues and biological processes, we
demonstrate here that this rich resource allows global ex-
ploration of cell-type-specific APA regulation.

MATERIALS AND METHODS

A detailed description of the bioinformatics pipeline that we
implemented for APA analysis based on 3′ tag scRNA-seq
data is provided in Supplementary Methods.

The code and sample input files for this pipeline are avail-
able at https://github.com/ElkonLab/scAPA.

Definition of 3′ UTR regions

We used GENCODE (33) annotations to define sets of dis-
joint 3′ UTR regions for human and mouse genes (GEN-
CODE releases v27 and M18, respectively). As a gene can
have transcripts with different 3′ UTRs and different anno-
tated transcripts often have the same 3′ UTR, we defined,
per gene, a set of non-overlapping 3′ UTRs (Supplemen-
tary Figure S1A). This processing defined a set of 27 151
3′ UTR regions of 23 204 human protein-coding genes and

a set of 25 780 3′ UTRs of 19 940 mouse protein-coding
genes. In those cases where a 3′ UTR region spans two ex-
ons (1183 and 8351 such cases in human and mouse genes,
respectively), we considered only the region of the last exon
as the 3′ UTR.

Processing raw scRNA-seq data

Summary statistics for the four scRNA-seq datasets anal-
ysed in our study are provided in Supplementary Table
S1. For the brain dataset (SRA accession: SRP135960), we
downloaded the publicly available aligned BAM files. In
the other datasets, for which aligned files were not available
(mouse T cells (GSE106264), sperm cells (GSE104556) and
lung tumour (ArrayExpress, accession E-MTAB-6149)), we
downloaded the fastq files and aligned the reads using Cell
Ranger 2.1.0 cellranger count with default parameters (24),
using hg19 and mm10 references. PCR duplicates were re-
moved using the UMI-tools dedup procedure (34). As the
UMI-tool dedup requires that each line in the BAM file has
a molecular barcode tag, we first filtered the BAMs, leaving
only reads with a corrected molecular barcode tag, using
Drop-seq tools version 1.13 FilterBAM (TAG RETAIN =
UB) (26). We next merged all reads that originated from
cells assigned to the same cell cluster into a single BAM
file, based on cell assignments to clusters as provided by the
original publications of the datasets and using the Drop-seq
tool FilterBAMByTag and the SAMtools merge utility (35).
In each dataset, this processing generated one BAM file for
each cell cluster.

Peak identification and quantification

Peaks were identified using Homer findPeaks (36) (using size
= 50, minDist = 1) and using bedtools merge (37) to merge
overlapping peaks. Only uniquely mapped reads were used
for peak identification. Peaks within 3′ UTRs were identi-
fied using intersection (bedtools intersect) with the 3′ UTR
annotation files described above. A peak that intersected a 3′
UTR got an ID composed of the 3′ UTR’s ID and a sequen-
tial peak index, starting with the most proximal peak (5′-
most location) (Supplementary Figure S1B). Adjacent pA
sites may result in a single peak. We used mclust Gaussian
finite mixture models (38) to identify such events and split
them into two peaks (Supplementary Figure S1C). Specif-
ically, for each peak, we fit a bimodal model and sought
those that showed clear separation between the two com-
ponents. Empirically, we observed that requiring that the
two modes be separated by more than three standard devi-
ations of the fitted Gaussians and by at least 75 nt worked
well for this task (Supplementary Figure S1C). On a train-
ing set that we built based on visual inspection of the peaks
and which included 158 unimodal and 42 bimodal cases, the
above criterion showed a sensitivity of 81% (34 out of 42
cases) with no false positive splits (specificity of 100%). In
the four datasets, we analysed in this study, the proportion
of peaks that were split by this step was 8–11%.

Once the genomic intervals of the peaks were determined,
the number of reads that mapped to each peak in each cell-
cluster BAM file was counted using the featureCounts func-
tion from the Rsubread package (39).

https://github.com/ElkonLab/scAPA
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Peak filtering and benchmarking

First, in each dataset, after normalizing peak counts to
units of counts per million (CPMs), we considered only
peaks that had more than a total sum of 10 CPMs over
all the cell clusters. Next, as the usage of oligo-dT primers
by scRNA-seq protocols can yield reads that originate from
priming internal A-rich regions within the transcript (rather
than from the transcript’s 3′ end poly(A) tail), to avoid false
calls of pA sites we filtered out peaks with downstream
A-rich sequences. Specifically, peaks having a genomic se-
quence of at least eight consecutive As in the region between
10 nt to 140 nt downstream of their 3′ edge were suspected
to result from internal priming and were excluded from the
analysis.

Peaks were analysed for enriched motifs using DREME
(40). The 3′ UTR peaks were benchmarked against anno-
tated human and mouse pA sites from PolyA DB (release
3.1) (41). (We used UCSC liftOver (42) to convert the co-
ordinates of the mouse annotated pA sites from mm9 to
mm10 assembly.) The distance between each peak’s 3′ edge
and its nearest annotated pA site was calculated using bed-
tools closest, requiring the same strand (-s).

Tests for differential APA patterns between cell clusters

3′ UTRs that showed differential usage of pA sites between
different cell types were detected using chi-squared tests,
performed on peak counts and corrected for multiple com-
parisons using BH FDR correction. 3′ UTRs with a q-value
below 0.05 were considered significant. To quantify the rel-
ative usage of the most proximal pA site within a 3′ UTR
(with two or more peaks), we defined the proximal pA site
usage index (proximal PUI). For a given 3′ UTR, the prox-
imal PUI is defined by:

proximal PUI = log2

(
C1 + 1
〈C + 1〉

)
,

where C1 is the read count of the proximal peak, and 〈C〉is
the geometric mean of the counts of all the peaks associated
with the 3′ UTR. To avoid zeroes in the denominator and
in the log function, we added a pseudo count of 1 to all be-
fore calculating the PUI. We compared proximal PUI distri-
butions of different cell clusters using either Wilcoxon’s or
Kruskal–Wallis tests, when two or more than two cell types
were compared, respectively.

We considered 3′ UTRs with exactly two peaks to identify
events of 3′ UTR shortening (or lengthening). (In all anal-
ysed datasets, typically 80% of the 3′ UTRs that showed a
dynamic change in APA had exactly two peaks.) For such 3′
UTRs, an increase in the value of the proximal PUI in cell
type 1 relative to cell type 2 indicates 3′ UTR shortening in
cell type 1. The global tendency for 3′ UTR shortening or
lengthening in one cell cluster relative to another was tested
using a one-tailed binomial test.

For 3′ UTRs with more than two peaks that showed a
significant differential usage of pA sites, the usage of each
peak was tested separately (using chi-squared tests).

All tests were performed in R-3.4.4 and plots were made
using ggplot2 R package.

Analysis of intronic pA sites

Analysis of pA sites in introns was performed in a similar
manner to 3′ UTR analysis. We used the bedtools intersect
procedure to intersect the peaks’ bed file with a bed file of
intronic regions downloaded from the UCSC table browser
(43), using the track of GENCODE release v27 (as used for
the 3′ UTR analysis). We filtered out intronic regions that
intersected 3′ UTRs. We then used featureCounts to create
an intron count matrix, similar to the matrix created for 3′
UTRs. We filtered out intronic peaks with less than a to-
tal of 50 counts and 10 CPMs over all the cell clusters. We
further filtered out intronic peaks with a genomic sequence
of seven consecutive As in the region from 1 nt to 200 nt
downstream of the peak’s 3′ edge.

To identify changes in the relative usage of intronic versus
3′ UTR pA sites, we compared the counts of each intronic
peak to the sum of the counts of the 3′ UTRs that are of
the same gene and are downstream of the intronic peak.
Per intronic pA site, differential relative usage was identi-
fied using chi-squared tests (with FDR of 5%). Per intronic
pA site and cell cluster, we calculated the intronic pA site
usage index:

intronic PUI = log2

(
Ci + 1
CU + 1

)
,

where Ci is the count of reads mapped to the intronic peak,
and CU is the sum of the counts of the reads mapped to all
the 3′ UTRs of that gene in that cell cluster. Comparing dif-
ferent cell types, higher intronic PUI indicates elevated us-
age of the intronic pA site.

Expression analysis

Starting with the filtered 3′ UTR peaks count matrix, we
summed the count of all peaks in each 3′ UTR to obtain
a count matrix with UTR IDs as rows and cell clusters as
columns. We then normalized this matrix by transforming
counts to CPMs followed by quantile normalization.

RESULTS

Analysis of APA modulation in activated T cells

The 3′ tag-based scRNA-seq methods use oligo-dT primers,
which anneal to the poly(A) tail of transcripts for ligating
the cell barcode to the RNA molecules. Library prepara-
tion of these protocols generates short cDNA fragments
(typically ∼200–300 bp) that contain the cell barcodes and
the start of the poly(A) tail at one of their ends. Sequenced
reads (of the typical length of ∼100 nt) are generated from
the opposite end of the fragment (Figure 1A) in addition
to their paired-end shorter mates that sequence the bar-
codes. Because the fragmentation processes implemented in
these protocols are stochastic, different RNA molecules of
the same transcript isoform result in fragments of different
lengths. Reads derived from shorter fragments end closer
to the pA site, while reads from longer fragments end fur-
ther from the pA site. Therefore, such scRNA-seq protocols
generate aligned reads that pile up to form peaks at genomic
intervals adjacent to pA sites (Figure 1B). Considering col-
lectively all the individual cells that belong to a certain cell
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Figure 1. Utilizing 3′ tag scRNA-seq data for the study of APA. (A) Key steps in library preparation of 3′ tag-based scRNA-seq methods. Oligo-dT
primers anneal to the poly(A) tail and ligate the cell barcode and unique molecular identifier (UMI) to the RNA molecules. After various preparation
steps including fragmentation and amplification, short cDNA fragments that contain the poly(A) tail are selected for sequencing. Sequenced reads are
generated from the opposite end of the fragment (Read1) in addition to their paired-end shorter mates that sequence the barcodes (Read2). (B) Reads
originating from different RNA molecules of the same transcript isoform pile up to a peak whose edge is at or near the pA site. Shorter fragments, such as
the one with orange barcode, yield reads closer to the pA site. Fragments of medium size (such as the fragment with the yellow barcode) are more common,
and thus the centre of the peak has a higher density of reads. (C) scRNA-seq data from different cell types allow identification of changes in the relative
usage of alternative pA sites.

type, accumulation of the reads that originate from a com-
mon pA site forms a peak that allows the quantification of
the usage of the pA site in that cell type. Comparisons be-
tween different cell types enable exploration of APA mod-
ulation and identification of events of significant change in
the relative usage of alternative pA sites within a 3′ UTR
(Figure 1C).

Global elevation of usage of proximal pA sites, which re-
sults in widespread 3′ UTR shortening, was first observed
in activated T cells (11), and therefore as a first test case, we
analysed a scRNA-seq dataset that profiled in vivo murine

T cells (44). Standard scRNA-seq analysis of this dataset
defined the main T cell subpopulations (Figure 2A). Here,
we focused on the naı̈ve and activated T cell populations
(containing 1958 and 970 cells, respectively). Merging all
uniquely mapped 3′ UTR reads in the dataset, we identi-
fied 3′ UTR peaks and quantified their usage in each cell-
type cluster (see Materials and Methods and Supplemen-
tary Figure S1). After filtering out peaks with overall low
usage and those suspected to stem from internal priming
(Materials and Methods and Supplementary Figure S2A),
a total of 9611 3′ UTR peaks were detected in this dataset.
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Figure 2. Analysis of APA modulation in activated T cells. (A) t-SNE plot of all the T cells from wild type mice identified by Pace et al. (44). We analysed
the clusters of proliferating T cells (970 cells; purple) and naı̈ve T cells (1,978 cells; pink), defined in the original publication. (B) The top-scoring signal
detected by de novo motif analysis of the 9611 3′ UTR peaks corresponds to the canonical PAS motif and its main variant. (Sequences used for this analysis
spanned the region from 30 nt upstream to 120 nt downstream of the peaks 3′ edge.) (C) An example of a gene that shows significant 3′ UTR shortening
in activated T cells (top track) compared with naı̈ve T cells (bottom track). (D) A pie chart for the distribution of 3′ UTRs with exactly two peaks that
showed a significant change in pA site usage in the comparison between proliferating and naı̈ve T cells. (P-value calculated using single-tailed binomial
test.)

Reassuringly, de novo motif analysis demonstrated that the
genomic sequences around these peaks were significantly
enriched for the canonical PAS motif (AAUAAA) and its
main variant (AUUAAA), which together were detected in
79% of the peaks (Figure 2B and Supplementary Figure
S2B). As expected, the PAS signal was located close to the
3′ end of the peaks (Supplementary Figure S2C) and peaks
with higher reads coverage had a greater chance to span
the PAS signal (Supplementary Figure S2D). This result is
corroborated by benchmarking the 3′ edge of these peaks
against their closest annotated pA sites from the PolyA DB
(41) (Supplementary Figure S2E).

Next, we searched for dynamic APA events, that is, cases
that showed a significant change in the relative usage of al-
ternative 3′ UTR pA sites between naı̈ve and activated T
cells (Figure 2C). In total, 868 such events were identified

in this dataset (FDR = 5%). Notably, in line with previous
reports, these events were strongly inclined towards 3′ UTR
shortening in the proliferating cells compared with the rest-
ing ones (Figure 2D and Supplementary Figure S2F). Thus,
these results provided a proof-of-principle finding for the
ability to mine 3′ tag scRNA-seq data for exploration of
APA regulation.

Modulation of the 3′ UTR length of transcripts during sperm
cell differentiation

Bulk experiments found that sperm cell differentiation is
among the biological processes that show the most drastic
alterations in APA patterns and widespread 3′ UTR short-
ening (45–47). Therefore, we next analysed a scRNA-seq
dataset that examined this process (48). While bulk anal-
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ysis of the testis inevitably merges sperm cells from dif-
ferent maturation stages into one pool, analysis based on
scRNA-seq allows refined separation of the cells into dis-
tinct sets according to developmental stage. In the analy-
sis of the mouse sperm cell scRNA-seq dataset, we focused
on three stages along this differentiation process: (i) early-
stage––spermatocytes; (ii) intermediate-stage––round sper-
matids and (iii) late-stage––elongating spermatids (Figure
3A). Applying the same method for identifying and filter-
ing peaks that we used above for the T cell dataset, 10 506
3′ UTR peaks were detected in this dataset. These peaks too
were significantly enriched for the PAS signals (Supplemen-
tary Figure S3A–C). Tests for differential usage of alterna-
tive 3′ UTR pA sites revealed a very sharp and progressive
increase in the relative usage of proximal 3′ UTR sites, de-
tected for 900 transcripts in the comparison between round
spermatids and spermatocytes and for >880 transcripts in
the comparison between elongating spermatids and round
spermatids (Figure 3B and C; Supplementary Figure S3D).
In addition, comparison of the distribution of the proxi-
mal PUI indexes (which quantify the relative usage of the
proximal 3′ UTR pA sites (Methods)) over the three stages
demonstrated the gradual evolvement of the immense 3′
UTR shortening during the progression through the sperm
cell maturation trajectory (Figure 3D).

Analysis of APA patterns of the brain

APA analyses of bulk tissues demonstrated that APA pat-
terns are tissue-specific (5,49), suggesting that APA con-
tributes to tissue-specific gene regulation (50). In this con-
text, the brain has been shown to preferentially use distal pA
sites to a large degree (51). To dissect cell-type-specific APA
patterns within a complex tissue, we analysed a scRNA-
seq dataset from mouse cortex and dorsal midbrain (52).
Five main cell types were delineated in this dataset: neu-
rons, astrocytes, immune cells, oligodendrocytes and vascu-
lar cells (Figure 4A). In total, we detected in this dataset
16 942 3′ UTR peaks, which showed enrichment for the ex-
pected PAS signal at the expected location upstream of the
putative pA sites (Supplementary Figure S4A–C). Interest-
ingly, 2506 transcripts showed a significant change in pA
site usage across these cell types, and the most pronounced
difference was between neuronal cells and brain immune
cells, which manifested the strongest preference for longer
and shorter transcripts, respectively (Figure 4B–D). While
most brain cells have their embryological origin in the ec-
toderm, brain immune cells originate from the mesoderm.
Our results are in line with the finding that in Drosophila
melanogaster, the preference for long isoforms in the brain
begins in the ectoderm (53).

APA modulation in lung cancer

Studies in cell lines and tumour tissues indicate that ma-
lignant transformation is accompanied by global 3′ UTR
shortening (12,54). Furthermore, these studies suggest that
identification of shortened transcripts may improve the pre-
diction of patients’ prognoses (55,56). These previous APA
analyses were carried out on bulk tumour tissues. The

single-cell analysis allows a much finer view of programmes
of APA modulation that occur in the transformed cells, by
enabling direct comparison between cancer cells within a
solid tumour and their normal counterpart cells. To this
end, we next analysed scRNA-seq data from a sample taken
from a non-small cell lung cancer patient (57). scRNA-
seq dissected this heterogeneous sample into its main con-
stituent cell types and indicated that in this tumour, the
cancer cells originated from alveolar epithelial cells (Figure
5A). Analysing 1453 cancer cells and 475 alveolar cells, we
detected overall 9542 3′ UTR peaks in this dataset that were
also enriched for the PAS signals (Supplementary Figure
S5A–C). In line with previous reports, cancer cells showed
a significant 3′ UTR shortening that occurred in dozens of
transcripts (Figure 5B–D). We next examined if 3′ UTR
shortening in cancer cells correlates with their prolifera-
tive state. Interestingly, using the expression of PCNA and
CCND1, two hallmark cell-cycle genes, as a proxy for prolif-
eration status, we did not observe a significant difference be-
tween high- and low-proliferating cancer cells (Supplemen-
tary Figure S5D).

We and others previously observed that 3′ UTR short-
ening that results from enhanced cleavage at proximal pA
sites is often accompanied by augmented cleavage at cryptic
pA sites within introns (16,19). Therefore, we expanded the
analysis of this lung cancer dataset and examined patterns
of aberrant intronic polyadenylation in the cancer cells com-
pared with those of their normal counterparts. We initially
detected 8249 intronic peaks with a total of >50 reads and
10 CPMs. However, examination of the genomic sequences
downstream of these peaks revealed a very significant en-
richment for the A-rich motif (Supplementary Figure S6A),
which was much stronger here compared with the preva-
lence of this motif in peaks detected in 3′ UTRs (a preva-
lence of ∼55% in intronic peaks compared with <15% in 3′
UTR ones; compare Supplementary Figure S6A with Sup-
plementary Figures S2A, S3A, S4A and S5A). This result
indicates that a large portion of the peaks identified within
introns originated from internal priming to A-rich regions
within primary RNA molecules rather than from genuine
polyadenylation sites. To reduce this noise of false calls, we
thus applied a stricter filtering criterion and excluded any
intronic peak with a sequence of seven or more consecutive
As in the genomic region from 1 nt to 200 nt downstream
of their 3′ end. Reassuringly, the top-scoring enriched motif
in the remaining 3057 intronic peaks was the canonical PAS
motif (Figure 6A–B and Supplementary Figure S6B).

We next searched for differences in the relative usage of
intronic and 3′ UTR pA sites between cancer and alveolar
cells. Overall, we detected 547 significant changes. To de-
termine the direction of each change, we defined per gene
the intronic pA site usage index (Intronic PUI) in analogy to
the proximal PUI defined above (Methods), where a higher
value of this index reflects higher usage of the intronic site
relative to the 3′ UTR sites. Cancer cells showed a signifi-
cant increase in this index compared with the normal alve-
olar cells (Figure 6C). Remarkably, 82% of the differential
events showed elevated usage of the intronic pA site in the
cancer cells (Figure 6D).
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Figure 3. Analysis of APA modulation during spermatogenesis. (A) scRNA-seq defines different cell types during spermatogenesis in mice (48). Clustering
analysis separated cells in different developmental stages (t-SNE coordinates and cell assignment to clusters are from the original publication). (B) An
example of a gene that shows gradual 3′ UTR shortening in the transition from spermatocytes (top blue track) to elongating spermatids (bottom golden
track). (C) APA analysis detected significant 3′ UTR shortening in 900 genes in the comparison between RS and SC cells (P-value calculated using single-
tailed binomial test). (Similarly strong results were obtained for the comparison between ES and RS cells (Supplementary Figure S3D)). (D) Distribution
of the proximal PUI index of transcripts showing significant change in pA site usage in SC, RS and ES cells (p-value calculated using Kruskal–Wallis test).
The gradual shift to the right reflects the dynamics of this phenomenon.

Robustness of APA analysis using 3′ tag scRNA-seq data

To examine the robustness of APA analysis based on
scRNA-seq data generated by 3′ tag methods, we tested the
effect of reads coverage on the number of identified 3′ UTR
pA sites. Random downsampling analysis showed that typi-
cal sequencing depth used in current datasets allows robust
detection of 3′ UTR pA sites which is nearing saturation.
For example, reducing the number of reads to as low as 20%
of the original amount still detected 95% (∼10 150 out of
10 500 and ∼16 600 out of 17 000 in the full spermatoge-
nesis and brain cells datasets, respectively) of the 3′ UTR
peaks identified (Supplementary Figure S7A–B). Detection
of events of differential usage of pA sites between cell types
(dynamic APA events) was more sensitive to reads coverage,
but still showed good robustness: for example, reducing the
number of reads to as low as 20% of the original amount de-
creased the number of detected APA events to ∼67% (∼800
out of 1200 events) of the number of events detected in the
full spermatogenesis dataset (Supplementary Figure S7C)
and to ∼50% (∼1200 out of 2500 events) in the brain cells
dataset (Supplementary Figure S7D).

In recent years, several bioinformatics tools were de-
veloped to infer APA modulation from bulk RNA-seq
datasets, including DaPars (Dynamic analyses of Alterna-
tive PolyAdenylation from RNA-Seq) (13) and Change-
Point (58). Similar to the pipeline, we implemented in this
study, both DaPars and Change-Point aim to identify 3′
UTR APA switching events without relying on prior anno-
tations of pA sites. We next examined how these tools per-
form on 3′ tag scRNA-seq data, using the T-cells dataset as
a test case. On this dataset, our peak-detection-based ap-
proach identified 868 events of 3′ UTR APA modulation,
with a strong preference for 3′ UTR shortening in activated
cells (Figure 2). While DaPars detected only a small num-
ber of APA switching events (<40 events), Change-Point
called >1100 dynamic events, which also showed global 3′
UTR shortening in activated T cells (Supplementary Fig-
ure S8A). While the overlap between the dynamic events
detected by the peak approach and Change-Point is sig-
nificant (369 events), the majority of events were detected
by only one of the methods (Supplementary Figure S8B).
The peaks approach showed a clear advantage in delineat-
ing the location of the pA sites (Supplementary Figure S8C)
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Figure 4. Analysis of APA modulation in brain cells. (A) scRNA-seq dataset defined different cell types in the mouse cortex and dorsal midbrain (52).
Shown is gt-SNE (a modification of t-SNE). Coordinates and cell assignment into clusters are as provided by the original publication. (B) An example of
a gene whose 3′ UTR is markedly longer in neuronal cells compared with immune cells in the brain. (C) Global APA analysis showed significant 3′ UTR
lengthening in neurons compared with immune cells in the brain (P-value calculated using single-tailed binomial test). (D) Cumulative distributions of the
proximal PUI index of all the cell types identified in the brain sample. Note that the curves of the neurons and immune cells are, respectively, the most
left and right ones, reflecting the most pronounced enhancement and attenuation of 3′ UTR proximal pA site usage in these cell types (P-value calculated
using Kruskal–Wallis test).

and accordingly showed much more significant enrichment
of the PAS motif (Supplementary Figure S8D). Inspection
of dynamic events called by only one of these methods,
showed that peaks called only by Change-Point often in-
volved weak pA sites (that did not have enough reads cover-
age to be called by the peak detection procedure) (Supple-
mentary Figure S8E), while those called only by the peak
approach often involved 3′ UTR peaks that spanned into
the gene coding region (Supplementary Figure S8F). To en-
hance the identification of APA dynamic events, the pipeline
we implemented for APA analysis using scRNA-seq data,
allows the user to choose either the peak detection method
or the Change-Point method.

Last, while our analysis builds on single-cell data, given
the limited coverage of individual cells (in the analysed
datasets, the average number of reads in 3′ UTR peaks per

cell is 8000–14 000), we did not perform single-cell-level
analysis but rather pooled reads across all the cells that
were assigned to the same cluster (that is, those that be-
long to the same ‘cell type’). Nevertheless, we sought to
examine whether, despite limited coverage, current single-
cell data can discern single-cell-level APA modulation. For
this task, we calculated, per cell, the mean proximal PUI,
where higher levels reflect elevated pA activity resulting in
enhanced cleavage at proximal pA sites (and thus 3′ UTR
shortening). Interestingly, in all the datasets, this analysis
delineated the main APA patterns at the level of individual
cells (Figure 7).

DISCUSSION

In this study, we provide a strong demonstration for the util-
ity of scRNA-seq data generated by 3′ tag-based methods
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Figure 5. Analysis of 3′ UTR APA in lung tumour sample. (A) t-SNE plot of the cells detected in a lung tumour sample (57). t-SNE coordinates and
cell assignment into clusters are as provided in the original publication. (B) An example of a gene, the proto-oncogene CCND1, that shows significant
3′ UTR shortening in the cancer cells compared with their normal counterparts. (Similar effect was observed for hundreds of genes.) Of note, previous
reports demonstrated that enhanced usage of the proximal pA site of CCND1 augments its oncogenic activity by generating shorter and more stable
transcripts (12). (C) A pie chart of the distribution of transcripts that show a significant change in pA site usage between cancer and normal alveolar cells
within the lung sample. In pink and blue are the proportions of transcripts with shortened or lengthened 3′ UTRs in the cancer cells, respectively (P-value
calculated using single-tailed binomial test). (D) Cumulative distribution of the proximal PUI index in alveolar cells (red) and cancer cells (dark grey)
(P-value calculated using single-tailed Wilcoxon test).

for the analysis of APA, despite it not being intentionally de-
veloped for the study of this regulatory layer. By analysing
single-cell (SC) data, from T cells we detected the global
3′ UTR shortening that is associated with the proliferative
state, and by analyzing SC data from spermatogenesis we
delineated the drastic 3′ UTR shortening that accompanies
this developmental trajectory. The analysis of SC data from
the brain pinpointed neurons as the cell type that is charac-
terized as having the greatest incidence of longer isoforms,
whereas the analysis of a lung tumour showed global aber-
ration of APA in cancer cells, manifested by enhanced cleav-
age at both proximal 3′ UTR and intronic pA sites.

By comparison of different cell types or different bio-
logical conditions, analysis of 3′ tag-based transcriptomic
data globally delineates changes in the relative expression

of short versus long gene isoforms. Such changes can stem
in principle from either differential activity of the APA ma-
chinery that alters the balance between usage of proximal
and distal pA sites or from the differential activity of fac-
tors that regulate mRNA stability (e.g., miRNAs, RBPs).
Only experimental analysis can reveal the underlying causal
mechanism (that is, differential APA or stability). Further-
more, the observed changes probably reflect the combined
effect of these two regulation modes. Accordingly, it was
shown that in spermatogenesis, during the differentiation of
spermatocytes into spermatids, the relative expression of the
isoforms with shorter 3′ UTRs is drastically elevated com-
pared with the longer ones due to both increased cleavage
at proximal 3′ UTR pA sites and enhanced mRNA degra-



10036 Nucleic Acids Research, 2019, Vol. 47, No. 19

A B

C D

Figure 6. Analysis of intronic APA in lung tumour sample. (A) An example of a gene that shows, in the comparison between cancer and normal cells, a
significant increase in the usage of an intronic pA site. This intronic site harbours the canonical AAUAAA signal at the expected location. (Note that in
addition to the enhanced cleavage at the intronic pA site, this gene also shows the typical increased usage of the 3′ UTR proximal pA site in cancer cells
compared with the normal ones.) (B) The PAS signal was the top-scoring motif detected by de novo motif analysis applied to the 3057 intronic peaks that
were left in the analysis after the removal of putative internal priming peaks. (C) Cumulative distribution of the Intronic PUI index in alveolar cells (red),
and cancer cells (dark grey) (P-value calculated using single-tailed Wilcoxon test). The shift to the right of the cancer cells’ curve reflects enhanced cleavage
at intronic pA sites. (D) A pie chart illustrating the distribution of intronic pA sites that showed a significant change in their usage in the comparison
between cancer and alveolar cells. In blue and pink, respectively, are the proportions of intronic pA sites with enhanced or attenuated usage in cancer cells
(P-value calculated using single-tailed binomial test).

dation of the longer isoforms that contain destabilizing ele-
ments (46,47,59–61).

The functional impact of APA on gene expression is
largely unknown. Since miRNAs mainly have a repressive
effect on target genes, 3′ UTR shortening is expected to
be generally associated with increased stability. In contrast
to this expectation, recent studies observed that global 3′
UTR shortening in mouse fibroblasts and T cells is not ac-
companied by significant changes in mRNA or protein lev-
els (9,10). In other biological conditions, we previously did
observe a link between enhanced cleavage at proximal pA
sites that led to 3′ UTR shortening and elevated expression
levels (19). In three of the four scRNA-seq datasets anal-
ysed here, we too observed a significant association between
3′ UTR shortening and increased expression (Supplemen-
tary Figure S9), supporting mainly destabilizing roles for 3′

UTR regulatory elements. Yet, it emerges that the impact
of 3′ UTR APA on miRNA-mediated regulation of mR-
NAs is more complicated than mere inclusion/exclusion of
miRNA target sites in/from the 3′ UTR, as the efficiency
of mRNA targeting is also affected by the location of the
miRNA target site––sites located at the start or end of the
3′ UTRs are more efficient than those located in the middle
(62). Thus, APA can modulate the activity of a miRNA tar-
get site by changing its location relative to the transcript’s
3′ end (63). Taking this effect into account, a recent study
estimated that APA influences ∼10% of miRNA targeting
between any two cell types compared (62).

In the analysis of the lung cancer dataset, we observed
that the cancer cells showed increased cleavage at both prox-
imal 3′ UTR and intronic pA sites. These results are in line
with a recent study that implicated premature cleavage and
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Figure 7. Single-cell-level exploration of APA. For each cell, we calculated the mean proximal PUI index over all the 3′ UTRs with more than one peak
covered by at least one read. Despite limited coverage, APA status strongly correlated with cell type also at the level of individual cells.

polyadenylation at intronic pA sites, indicating it as yet an-
other process that is harnessed by cancer cells for selec-
tive proliferative advantage (64). It emerges, therefore, that
aberrant APA can enhance cancer transformation either by
the stabilization of proto-oncogenes through shortening of
their 3′ UTRs or by the inactivation of tumour suppres-
sor genes (TSGs) through premature cleavage at cryptic pA
sites within their introns. However, in the dataset we anal-
ysed, while many cancer genes (based on COSMIC gene an-
notations (65)) were affected by APA modulation in can-
cer cells (20 oncogenes and 10 TSGs; Supplementary Ta-
ble S2), we did not observe an enrichment for oncogenes
among those showing 3′ UTR shortening and nor did we
see enrichment for TSGs among those showing enhanced
intronic cleavage. The rapid accumulation of scRNA-seq
data from various cancer types will allow wide-scale evalu-
ation of how general these functional APA events are in the
process of tumorigenesis. In line with our observations, very
recently Ye et al. analysed 3′ tag scRNA-seq data to explore
the dynamics of APA in acute myeloid leukaemia (AML)
and observed elevated APA modulation in AML patients
compared with healthy controls (66).

An inherent limitation of APA analysis using 3′ tag
scRNA-seq data is the resolution of pA site detection. The
characteristic width of the peaks hampers the separation be-
tween very close pA sites. Using pA site annotations from
PolyA DB, we found that in the analysed datasets, while we
robustly separated adjacent pA sites with distances above
300–400 nt, we were able to separate ∼30% of successive
sites whose distance is 200–300 nt and only ∼5% of the sites
whose distance is <200 nt (Supplementary Figure S10).

APA is still a largely unexplored layer of gene regulation.
The study of APA was hampered for years by the lack of
widely adopted transcriptomic techniques for quantifica-
tion of pA usage that allowed systematic analysis of APA
modulation. Our analyses demonstrate that the huge vol-
ume of 3′-tag scRNA-seq data that accumulates in the pub-
lic domain fills this gap, and provides a unique resource for
exploration of APA under a very broad collection of cell
types and biological conditions. It thus holds great promise
for improving our understanding of the roles of APA in nor-
mal physiological processes and the development of patho-
logical conditions.
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