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Spatial localization of
cathepsins: Implications
in immune activation and
resolution during infections

Elsa Anes*, David Pires, Manoj Mandal
and José Miguel Azevedo-Pereira

Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of
Pharmacy, Universidade de Lisboa, Lisboa, Portugal
Cathepsins were first described, as endolysosomal proteolytic enzymes in

reference to the organelles where they degrade the bulk of endogenous and

exogenous substrates in a slightly acidic environment. These substrates include

pathogens internalized via endocytosis and/or marked for destruction by

autophagy. However, the role of cathepsins during infection far exceeds that

of direct digestion of the pathogen. Cathepsins have been extensively

investigated in the context of tumour associated immune cells and chronic

inflammation. Several cathepsin-dependent immune responses develop in the

endocytic pathway while others take place in the cytosol, the nucleus, or in the

extracellular space. In this review we highlight the spatial localization of

cathepsins and their implications in immune activation and resolution

pathways during infection.
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Introduction

The term cathepsin (CTS) was initially used to refer to eleven human lysosomal

proteases namely CTSs B, C (J), F, H, K, L, O, S, V (L2), X (P,Y,Z), andW (lymphopain)

[reviewed in (1–3)]. They all belong to the group of cysteine cathepsins named after the

presence of a cysteine amino acid residue on their catalytic site responsible for

hydrolysis of peptide bonds (3). In addition to cysteine cathepsins, aspartic

cathepsins D and E and serine cathepsins A and G, were also introduced into the

lysosomal CTS family (4, 5).

CTS are synthesized as procathepsins and are targeted to the lumen of the

endoplasmic reticulum (ER) via a signal peptide. They are later modified in the Golgi,

being tagged for lysosome sorting, usually via mannose-6-phosphate receptors (MPR)
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(6–8). The tagged procathepsins are either directly or indirectly

sorted to endosomes/lysosomes after escaping MPR and being

secreted out of the cell (9–11). Around 5% of all CTSs are

secreted out of the cell by the regular biosynthetic/secretory

pathway (12).

Innate immune cells, such as macrophages, are able to

rescue some of these extracellular CTSs to the lysosomes by

expressing the cation-independent mannose 6-phosphate

scavenger receptor (CI-MPR) (7, 8). There, in the low pH of

the late endocytic vesicles they are processed and activated to

the mature form (13).

Indeed, immune cells such as macrophages, neutrophils,

natural killer cells or cytotoxic CD8+ T-lymphocytes,

can store CTSs either in endocytic lytic granules or in

secretory lysosomes, where exocytosis leads to delivery of

CTS or their processed products to the extracellular

environment (14, 15).

Lysosomal enzymes were also found in less common

locations, such as the cytosol and the nucleus (16–20). The

cytosolic release of mature CTS is observed as a consequence

of controlled lysosomal membrane permeabilization (LMP) or

as a result of a more drastic damage (15, 21). Regarding the

trafficking of CTS to the nucleus, this is mostly a diversion

from the biosynthetic pathway, through mechanisms

involving alternative translation initiation of the nascent

protein lacking a signal peptide targeting the ER (22).

Another described mechanism is exon skipping that

generates truncated CTS with modified signal sequences,

enabling the retention in the cytosol (23) or their nuclear

targeting (24).

In this mini review, we will present recent advances in the

understanding of the spatial localization of CTS and their

implications during immune responses to infections. A

general schematic representation is depicted in Figure 1.
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Cathepsins in the
endocytic pathway

Phagocytosis and autophagy
CTS perform major roles in phagocytosis/endocytosis and

autophagy which are important cell autonomous immune

mechanisms common to all cells (25). These innate

mechanisms are prominent in professional phagocytes such as

macrophages, and neutrophils, which constitute the first line of

defense against pathogens. CTS mediate the destruction of theses

pathogens due to their proteolytic activity at low pH, within the

reducing environment of endolysosomes (26). It is not

surprising that intracellular pathogens evolved virulence

determinants to subvert the microbicidal mechanisms

mediated by endolysosomal CTS as is the case for

Mycobacterium tuberculosis (27–29), as well as for Salmonella,

Brucella, Legionella or Chlamydia (30–33) or Francisella

novicida (34). Autophagy intercepts the endolysosomal

pathway (34–36) and may drive free cytosolic pathogens for

destruction in lysosomes (37) or pathogens contained in vesicles

(25, 38); both processes involving their entrapment in septin

cages (39).

Indirectly, CTS regulate autophagy and may compromise

intracellular pathogen clearance with direct implications on

inflammation resolution and cell homeostasis (40–42). CTS

S is required for autophagolysosome fusion events

and its depletion results in accumulation of defective

autophagosomes (43). CTS B suppresses the activity of a

transcription factor required for expression of autophagy-

related proteins (Atgs) by digestion of a calcium channel in

the lysosomes (34). Also, the stimulation of the autophagy

protein microtubule associated protein 1A/1B light chain 3
A B C

FIGURE 1

Schematic representation of the spatial localization of cathepsins and their roles in endocytic pathway (A) (blue numbers from 1 to 4),
(B) cytosol and nucleus (pink numbers from 5 to 7), and (C) extracellular environment (green numbers 8 and 9). (1) Phagocytosis/endocytosis/
autophagy. (2) Pattern recognition/cytokine activation. (3) Activation of proteases. (4) T-cell priming and polarization. (5) Programmed cell dead.
(6) Inflammation. (7) Regulation of transcription. (8) ECM remodeling. (9) ECM inflammation during infection.
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(LC3) is compromised by CTS K downregulation of

endosomal TLR9 (44).
Pattern recognition receptors and
cytokine activation

Innate immune receptors, such as Toll-like receptors

(TLRs), detect pathogen-associated or cell damage associated

signatures (PAMPS or DAMPS) leading to secretion of

inflammatory cytokines such as IL-1b and TNFa. CTS

interfere with both mechanisms. CTSs B, L, F or S, by

cleaving and processing the ectodomains of endosomal TLRs

such as 3 and 9, allow recognition of nucleic acids from

endocytosed pathogens (44–48).The ectodomain cleavage

represents a strategy to restrict receptor activation to

endolysosomal compartments and prevent TLRs from

responding to self nucleic acids (48).

CTS activity was demonstrated to either directly activate or

inhibit inflammatory cytokines. While spatial localization in

endosomes was not clarified, CTS B has been shown to be

required for posttranslational processing and trafficking of

TNFa (49) containing vesicles, and their secretion in response

to TLRs 2, 4 and 9 stimulation (50). IL-1b is a potent

inflammatory cytokine that needs to be tightly controlled

(51, 52). Several CTS are involved in IL-1b processing in the

cytosol. However, in monocytes, which are professional IL-1b
producers, caspase-1 and pro- IL-1b coexists with CTS within

special secretory endolysosomes (53, 54). This colocalization in

vesicles located in the periphery of the cell suggests a less acidic

and degradative environment (55) and seems to provide a

regulatory mechanism of CTS over the amount of caspase-1

and IL-1b that are secreted by monocytes. In conventional

endolysosomes, IL-1b and their precursors are normally

degraded. Thus, the lysosomal pathway mediates IL-1b
secretion but also provides a shutdown mechanism when IL-1b
secretion is no longer needed (53, 54). Moreover, the autophagic

removal of IL-1b cell activators, such as intracellular DAMPs,

NLRP3 inflammasome components, and cytokines, in lysosomes

contributes for deactivating the inflammatory responses (56).

Cathepsins as degrading proteases in lysosomes are major

players in this inflammation resolution.
Activation of other proteases

During innate immune responses, neutrophils are cells

involved in extracellular and intracellular pathogen clearance.

Their effector functions depend on the activation of azurophil

granules, serine proteases such as CTS G, granzymes, and

elastase, all synthesised as inactive zymogens and activated by

CTS C (57). Regulation of these neutrophil serine proteases
Frontiers in Immunology 03
activation is tightly controlled by sustained inhibition of CTS C

through its natural inhibitor, cystatins (57).

In natural killer cells (NK cells) or in cytotoxic T

lymphocytes (CTL), CTS C is responsible for the activation of

progranzymes, generating granzymes A and B in secretory

lysosomes (58). After immune activation they are processed

and delivered out of the cell, where they induce apoptotic death

of infected cells (58). CTS B is particularly relevant for protecting

CTLs from their cytotoxic cargo (59). In addition, granzyme B is

involved in regulating the function and maintenance of T helper

cell populations (60). In regulatory T lymphocytes, activated

granzymes can eliminate autologous effector cells by apoptosis,

indicating an important role accomplished by Treg cells in

exerting their anti-proliferative effects leading to immune

resolution (61).
T lymphocytes priming and
polarization

During adaptive immune responses, T lymphocyte priming

by antigen-presenting cells (APCs) requires the recognition of

processed antigenic peptides bound to major histocompatibility

complex (MHC). CTS are crucial for the generation of these

antigenic peptides from exogenous antigens in the endocytic

pathway, and thus for CD4+ T lymphocytes priming.

Furthermore, MHC class II requires CTS mediated proteolysis

for degradation of the invariant chain (Ii) that blocks MHC class

II molecule peptide binding site (62, 63). CTSs S, F, and L are

cysteine proteases particularly implicated in these processes,

with Cts S and F major players in in APCs and the last in

thymocytes (29, 42, 64–67). CTS have also been shown to

generate antigenic peptide motifs that favor particular T

lymphocyte polarization, such as Th2 to Th1, in a mouse

model of leishmaniasis (68).

CTS also impact MHC class I-mediated antigen

presentation. While MHC class I molecules usually present

cytosolic peptide antigens, exogenous pathogen antigens can be

presented by this complex via cross-presentation. Exogenous

antigens captured by dendritic cells are initially processed in

the endocytic pathway by CTS S followed by their final

processing in the cytosol before being presented to CD8+ T

lymphocytes (69).

In addition to T cell priming, CTS were found to regulate T

lymphocyte polarization independent of APCs (70). The

complement system integrates innate and adaptive responses

and could influence the magnitude of T cell activation (70).

Naive CD4+ T lymphocytes store C3 in endosomes that can be

cleaved by CTS L generating C3a and C3b. The C3aR-

mediated intracellular signaling induces low levels of

mechanistic target of rapamycin (mTOR) activation that

regulate T cell survival (70). During infection, downstream
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signaling pathways of mTOR facilitates Th1 cell polarization

from naive T cells (70, 71).
Cathepsins in the cytosol and in the
nucleus

Programmed cell death

CTS, as stated before, may be released into the cytosol by

controlled or uncontrolled lysosomal membrane permeabilization

(LMP), leading to lysosomal dependent cell death (reviewed in

(16, 21)). Extensive permeabilization leads to necrosis (72) while a

less drastic release induces apoptosis (16, 73–77). Stringent

controlled release of CTS will allow the cells to survive and

physiologic responses to CTS either in the cytosol or in the

nucleus (16, 78–80). In the case of Salmonella infection a

control of necrotic cell death was found associated with

accumulation of active cathepsins in the nucleus (20). The

additional control of cathepsin activity in these compartments

depends on the balance and expression of natural inhibitors

(78–80). For instance, it was demonstrated that the cytosolic

inhibitor Spi2A protected memory CD8+ T lymphocytes from

lysosomal breakdown and cell death by inhibiting CTS B activity

(81). Spi2A is a serine protease inhibitor with an unusual role

inhibiting cysteine cathepsins after lysosomal permeabilization

(81). Consequently, this extends the lifespan of memory T cells.

The B-cell lymphoma-2 (Bcl-2) family proteins regulate the

mitochondrial pathway of apoptosis. Interestingly, this family

includes proteins with anti-apoptotic (e.g., Bcl-2 and Bcl-xL) and

pro-apoptotic (e.g., Bax, Bak and Bid) activities and CTSs have

direct roles in regulating several members of Bcl-2 proteins. For

example, CTSs B, D, and L induce the activation of Bid, resulting

in its translocation to mitochondria resulting in cytochrome C

release and caspase activation. Moreover, CTS degrade anti-

apoptotic proteins Bcl-2, Bcl-xL, Mcl-1, and XIAP (X-linked

inhibitor of apoptosis), promoting apoptosis (82, 83).). In T

lymphocytes, CTS D degrades Bax, triggering apoptosis via

release of cystatin C and AIF (apoptosis-inducing factor)

which directly activates caspase-8 (84–86). Finally, additional

CTS (e.g. C, F, H, K, L, O, S, V, W, and X) also function as

mediators of lysosomal cell death either in immune and non-

immune cells ls (10).

Other forms of programmed cell death lead to inflammation

through cell lysis as is the case of necroptosis and pyroptosis.

Necroptosis requires the kinase activity of receptor-interacting

serine/threonine kinase1 (Rip1), a protein that is cleaved by CTS

B and S thus controlling inflammatory cell death (17). Pyroptosis

is mediated by gasdermin, a pore forming protein dependent on

inflammasome activation (87, 88). After LMP, CTS B and L are

major inflammasome inducers that may lead to this form of cell

death therefore enhancing the inflammatory responses (89).
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Cytosolic driven inflammation

As stated, CTS released to the cytosol following LMP are

relevant activators of inflammasomes, structures involved in

innate immune responses (18, 90). Among inflammasomes the

NLRP3 inflammasome is a major complex of assembled proteins

in response to LMP, DAMPS or PAMPS (91–94). It is required

for caspase-1 activation in the cytosol that in turn cleaves pro-

IL-1b to their inflammatory mature form (90). Although CTS B

and L have been associated with NLRP3 inflammasome

activation, several siRNA experiments implicated CTS S and X

(Z), particularly in contexts were they may compensate the lake

of activity of CTS B and L (18, 95).

Inflammation is concomitant with migration of immune cells

into tissues, such as lymphocytes and macrophages. CTS X is

highly expressed in immune cells namely macrophages, dendritic

cells and T lymphocytes (79). Its function has been associated to

inflammatory responses such as cell adhesion, cell migration and

phagocytosis. Some of these processes are the result of CTS X

activation of transmembrane surface proteins, b2 integrins. (96–

98). To do so CTS X cleaves the last four amino-acids contained in

the cytosolic part of C-terminal region of b2 integrins, either Mac-

1 receptor in macrophages and dendritic cells, or LFA-1 in T

lymphocytes. Activation of Mac-1 enhances adhesion of

macrophages and dendritic cells to extracellular matrix (ECM),

improving phagocytosis and subsequent maturation of dendritic

cells, a process essential for antigen processing and presentation

(96). Activation of LFA-1 causes proliferation and tissue homing

of T lymphocytes characteristic of acute and chronic

inflammations (98).
Regulation of transcription

CTS traffic to the nucleus has been associated to activation of

transcription factors that control cell proliferation and

differentiation (19, 22). Among transcription factors, CDP/

Cux/Cut is activated by CTS L enabling accelerated cell cycle

progression and carcinogenesis (19). Nuclear activity of CTS L

was associated to an abnormal nuclear trafficking of the full

length protein when stefinB, a CTS L inhibitor, is absent (19).

CTSs K and S were shown to interfere with nuclear

membrane transport and control TGF-b signaling, leading to

ECM synthesis required for cell growth and tissue fibrosis that

often occurs during infections (99). They modulate the nuclear

import of Smad proteins transcription factors that in turn

regulate the expression of profibrotic genes such as collagen

and fibronectin. In opposition, CTS B and L in nuclear

membrane inhibit the effects of CTS K and S leading to

decreased TGF-b signaling (99). This fibrotic pathological

response may indeed be mitigated by extracellular CTS while

promoting ECM degradation and helping tissue repair (100).
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Cathepsins in the extracellular
space

CTS emerge therefore as relevant players in the extracellular

space as full degrading enzymes of ECM components, but the

paradigm is now changing to enzymes that can specifically

modify other extracellular proteins. Their secretion and

activity are often dysregulated during inflammatory responses

including infection [recently reviewed in (28)].
ECM remodeling

The structure of the ECM is dynamic and depends on the

equilibrium between synthesis and degradation of a multitude

of proteins (collagens, fibronectin, elastins), growth factors,

proteoglycans, among others (11). ECM is vital to cell support

and tissue integrity and has a series of regulatory functions.

CTSs K, S, and V possess strong collagenolytic and elastolytic

activities suggesting their involvement in ECM remodeling

(2, 11). The best studied is CTS K that degrades type I

collagens being essential for normal bone resorption (101).

Other targets of CTS are cell adhesion contacts, influencing

epithelial barriers, and cell adhesion to ECM, leading to

changes in cell growth, cell migration, angiogenesis (102)

and tissue repair (11, 103, 104). CTSs B and L have been

shown to be released by lysosomal exocytosis playing a role in

repair of the plasma membrane (105). CTS B, released from

keratinocytes, attaches to cell surface where it is known to be

involved in keratinocyte migration by degrading components

of ECM during wound healing (106).
Extracellular driven inflammation
during infection

CTS secretion to ECM is usually high during infection.

Microorganisms are sensed by innate immune receptors in

mucosal cells that respond with an increased secretion of a

myriad of proteases including antimicrobial peptides and

CTS all having antimicrobial effects (28, 104, 107). This is

the case of CTS K, highly expressed in intestinal Goblet cells,

or CTS G, secreted from Paneth cells, that contributes to

pathogen and microbiota control, and epithelial barrier repair

(104, 107). In bronchial mucosa a protective effect was

attributed to CTSs B and L (28) while CTS S, expressed

mainly in macrophages, may favor the motility of cilia by

preventing unspecific binding with airway circulating

proteins (6).

However, the proteolytic activity of CTS may also aid

infections by cleaving viral envelope proteins activating their

receptor-binding or fusogenic activities, thus favoring viral
Frontiers in Immunology 05
infection (108–111). In chronic inflammatory conditions

high concentrations of CTSs B, L, and S have been shown

to cleave and inactivate several proteases, impairing their

antimicrobial properties (2, 112, 113). The extensive

destruction of lung parenchyma in tuberculosis is related

with high levels of CTSs K, S, and V (114). CTSs G and D

favor autolysis inside tuberculosis granulomas contributing

to their liquefaction and disruption thus facilitating pathogen

dissemination (28, 115).

The ECM breakdown products produced by extracellular

proteases, including cathepsins, may act themselves as DAMPS,

leading to the activation of NLRP3 inflammasomes exacerbating

tissue inflammatory responses (116).

Extracellular CTS are also able to process cytokines and

chemokines. CTSs L, S, and K, were shown to activate the

glutamate-leucin-arginine motif (ELR) CXC ELR and

inactivate non-ELR (CXCL9–12) chemokines thereby

contributing to leukocyte recruitment during protective or

pathological inflammation (117). CTS L secreted from

fibroblasts and CTS G secreted from macrophages,

neutrophils, and epithelial cells are activators of IL-8

(CXCL8) . IL -8 ac t s bo th as a s t rong neut roph i l

chemoattractant, and as a proinflammatory cytokine (118,

119). In addition, CTS G activates IL-1b and TNFa as well

as various signaling receptors (120). In contrast, CTS G can

reduce dramatically the activity of IL-6 in fluids from

inflammatory sites (121).

In the extracellular space CTS are able to cleave

ectodomains of receptors and cell adhesion molecules at the

cell surface, influencing by this mechanism several signaling

pathways (122, 123). CTSs L and S secreted from macrophages

were shown to shed CAM adhesion proteins and receptor

tyrosine kinases (123). Dysbiosis-induced disruption of the

epithelial barrier was found to be related with ectodomain

activation of protease-activated receptor 4 (PAR 4) by

neutrophil CTS G (124).
Discussion

Cathepsins spatial localization is associated with distinct key

roles of immune responses, with strong implications for

infection control and inflammation resolution. Thus, CTS

manipulations within these spatial contexts constitute potential

targets for the development of new therapeutic strategies to fight

infections, particular for those pathogens that developed drug

resistance mechanisms to conventional treatments. The

enhancement of their activity in situations where pathogen

survival relies on their inhibition (e.g., drugs targeting

autophagy) may help pathogen eradication from infected cells.

Conversely, when infection results in poor antigen presentation,

manipulation of CTS activity may improve the adaptive

response and vaccine efficacy. Pathological inflammation is
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often a consequence of an infection. Targeting the control of

inflammatory pathways may help to prevent or resolve tissue

destruction and fibrotic events. There is still plenty to be

investigated in this very promising area of research to fight the

increasing threat of infections.
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