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Abstract: Heritability enrichment analysis is an important means of exploring the genetic architecture
of complex traits in human genetics. Heritability enrichment is typically defined as the proportion of
an SNP subset explained heritability, divided by the proportion of SNPs. Heritability enrichment
enables better study of underlying complex traits, such as functional variant/gene subsets, biological
networks and metabolic pathways detected through integrating explosively increased omics data.
This would be beneficial for genomic prediction of disease risk in humans and genetic values
estimation of important economical traits in livestock and plant species. However, in livestock, factors
affecting the heritability enrichment estimation of complex traits have not been examined. Previous
studies on humans reported that the frequencies, effect sizes, and levels of linkage disequilibrium (LD)
of underlying causal variants (CVs) would affect the heritability enrichment estimation. Therefore,
the distribution of heritability across the genome should be fully considered to obtain the unbiased
estimation of heritability enrichment. To explore the performance of different heritability enrichment
models in livestock populations, we used the VanRaden, GCTA and α models, assuming different
α values, and the LDAK model, considering LD weight. We simulated three types of phenotypes,
with CVs from various minor allele frequency (MAF) ranges: genome-wide (0.005 ≤MAF ≤ 0.5),
common (0.05 ≤ MAF ≤ 0.5), and uncommon (0.01 ≤ MAF < 0.05). The performances of the
models with two different subsets (one of which contained known CVs and the other consisting
of randomly selected markers) were compared to verify the accuracy of heritability enrichment
estimation of functional variant sets. Our results showed that models with known CV subsets
provided more robust enrichment estimation. Models with different α values tended to provide
stable and accurate estimates for common and genome-wide CVs (relative deviation 0.5–2.2%), while
tending to underestimate the enrichment of uncommon CVs. As the α value increased, enrichments
from 15.73% higher than true value (i.e., 3.00) to 48.93% lower than true value for uncommon CVs
were observed. In addition, the long-range LD windows (e.g., 5000 kb) led to large bias of the
enrichment estimations for both common and uncommon CVs. Overall, heritability enrichment
estimations were sensitive for the α value assumption and LD weight consideration of different
models. Accuracy would be greatly improved by using a suitable model. This study would be helpful
in understanding the genetic architecture of complex traits and provides a reference for genetic
analysis in the livestock population.

Keywords: heritability enrichment; genetic architecture; LD; livestock; complex trait

1. Introduction

Heritability enrichment analysis is a widely used method to explore the genetic
architecture of human complex traits [1–3], and it is typically defined as the proportion
of variability in heritability of the category subset divided by the proportion of single
nucleotide polymorphism (SNP). Heritability enrichment reflects the relative importance of
a specific category of functional genomic regions or genetic variates in terms of heritability.
Over the past few years, explosively increased omics data have discovered many functional
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variant/gene subsets, biological networks and metabolic pathways which likely affect
complex traits or diseases. For example, in human ENCODE, the DNase I hypersensitive
site (DHS) was found to be 55 bp, and enrichment strongly indicated the potential biological
meaning of DHS in 261 diseases and traits [4].

SNP-based methods have been developed to estimate heritability enrichment using
measured genotypes of SNPs. This method is more likely to reflect the proportion of
phenotypic variation due to causal variants (CVs) tagged by SNPs for nominally unrelated
samples. The unbiased estimation of heritability enrichment relies on accurate modeling
of genetic architectures. Due to heterogeneity in natural selection, artificial selection and
recombination rates across genome regions, heritability enrichment generally varies with
minor allele frequency (MAF) and linkage disequilibrium (LD) of SNPs [5]. Previous
studies in human genetics found that the relationship (represented by α) between MAF
and effect sizes of CVs and the LD heterogeneity in various genome regions affected the
unbiased estimation of heritability enrichment of a category [6]. However, there are great
differences in population genetic architectures, LD and selection between livestock and
humans [7]. The effect of these two factors (i.e., MAF and LD) on heritability enrichment
estimation of functional genomic regions of complex traits have not yet been examined on
livestock, leading to confusion when estimating the heritability enrichment.

The variance of the allelic effect is proportional to (p i(1− pi))
1+α, where pi is the

MAF. The value α can be used to indicate the selection direction of a trait, in that a positive
value indicates positive selection and a negative value indicates negative selection [8]. The
Classic Genome-wide Complex Trait Analysis(GCTA) model assumes that each SNP is
expected to contribute equal genetic variance, thus it considers the α as −1 [9]. Animal
and plant genome prediction usually assume α is 0, that is, there is no correlation between
MAF and effect size of marker [10]. Speed et al. [5] examined a range of α values and
found a negative correlation between MAF and effect size of marker for most traits (mean
about −0.25). The α value was not fixed for each phenotype or even different functional
regions of the genome [11]. A value of α = 0 or−1 is usually used to estimate the functional
enrichment in livestock population [12], but the consequences of different α values on
heritability enrichment have not been systematically compared and studied.

Numerous works have also emphasized the importance of considering LD-dependent
genetic architectures in the analyses of heritability [13,14]. LD is unevenly distributed across
the genome [15]. Classical analysis models for complex traits seldom consider the uneven
distribution of LD across the genome [9,10], resulting in overestimation of heritability in
high-LD regions and underestimation of heritability in low-LD regions. Recently, some
models integrating LD-dependent weights have been applied for the analyses of functional
enrichment [16,17]. Thereinto, the LD-adjusted kinships (LDAK) model assumes heritability
enrichment varies with the SNP LD, and eliminates the adverse influence of uneven LD
distribution by giving a larger weight for SNP in the lower-LD region and a smaller
weight for SNP in the higher-LD region [18]. At present, few studies have investigated the
performance of the heritability enrichment model considering LD structure in livestock, so
it is necessary to investigate how different LD window partitions affect the estimation of
heritability enrichment in livestock population.

The quality of sequencing technology and imputation for common SNPs are higher
than for uncommon or rare SNPs, so a majority of studies have mainly focused on her-
itability research for common SNPs. Recently, the effects of uncommon CVs have been
studied to gain insight into the genetic architecture of traits and examine genetic networks
and annotation categories using imputed SNPs [19–21]. With the increase of imputation
accuracy of SNP chip data, it is possible to explore the performance of uncommon CVs
in heritability enrichment, thus, gaining a more complete understanding of the genetic
architecture of complex traits.

Most traits of interest to the livestock industry are complex traits and many CVs are
likely to be of small effect and difficult to find [22]. Heritability enrichment is helpful to gain
insight into the CVs of complex traits. However, the various assumptions of α value and
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the existence of an LD-dependent calculation would confuse the result when estimating
heritability enrichment in livestock population. We conducted this study with the following
aims (1) evaluating the performance of different heritability enrichment models under a
variety of scenarios in livestock population and (2) exploring the key factors affecting the
performance of heritability enrichment models.

2. Materials and Methods
2.1. Population and Genotypic Data

The German Holstein population provided by Vereinigte Informationssysteme Tier-
haltung Wirtschaftlicher Verein was used in this study [23], which contained 2000 bulls
genotyped with the Illumina Bovine SNP50 Beadchip [24]. Taking the 770 k high-density
SNP data obtained from the 1000 Bull Genome Project as reference [25], the 54 k SNP
data were imputed to 770 k via Beagle software (version 4.0; Browning and Browning;
Washington, USA). The mean accuracy of genotype imputation was 0.98 (Figure S1), and
the process is explained in detail in [26]. Data quality control were performed by excluding
SNPs with MAF < 0.5%, call rates < 90% and significant deviations from Hardy-Weinberg
equilibrium (HWE) (p-value < 0.000001) using PLINK. Finally, 340,720 SNPs were retained
for continued study.

2.2. Simulation of Phenotypes

To assess the performance of different models on a range of genetic architectures, we
first defined a “Functional subset”, including SNPs mapped from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway. Briefly, we downloaded 150 KEGG pathways of
dairy cattle using KEGGREST package in R (version 4.0.2; Ihaka and Gentleman; Auckland,
New Zealand) and extracted the genes involved in each pathway. According to the physical
location of the genes, we mapped 33,544 SNPs located on genic region for these 150 KEGG
pathways and defined these as a “Functional subset”. We also set up a “Non-functional
subset”, including randomly selected SNPs with the same number of SNPs as in the
“Functional subset”.

We then simulated three types of phenotypes, affected by 2000 CVs but having different
levels of MAF for CVs (i.e., genome-wide, common, and uncommon variants). Of these
2000 CVs, 500 CVs were selected randomly from the “Functional subset” and 1500 CVs
were selected from the rest of the SNPs. The MAF of genome-wide variants ranged from
0.005 to 0.5. We defined “common” as variants with 0.05 ≤MAF ≤ 0.5, and “uncommon”
as variants with 0.01 ≤MAF < 0.05.

We simulated phenotypes using the following model:

y = g + e

where y is the vector of phenotypic values; g is the vector of true breeding values; e is the
vector of residual errors with distribution of N (0, var(g)(1/h2− 1)) for h2 = 0.8. The value
g could be calculated as gk = ∑2000

1 wkiuki, in which wki= xki − 2pki with xki coded as 0, 1,
or 2 of individual k at the i-th SNP and pki being the frequency of the the i-th SNP; uki was

the i-th allelic effect size, drawn from

√
h2×(2p i(1−pi))

−1

2000 . For each CV MAF range scenario,
a total of 100 replicated phenotypes were simulated.

2.3. Heritability Enrichment Estimation Models

We partitioned the heritability explained by all the SNPs into the “Functional/Non-
functional subset” and the rest of the SNPs (h2

F/Nf and h2
−F/−Nf). We estimated h2

F/Nf and
h2
−F/−Nf by fitting the two different SNP subsets (“Functional/Non-functional subset” and

the rest SNP subset) in the genome-based restricted maximum likelihood (GREML) model
via LDAK software (version 5.1; Speed; London, UK):

y = Xβ+ ZF/NfgF/Nf+Z−F/−Nfg−F/−Nf+e
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where y was the vector of phenotypic values, β was a vector of fixed effects (the first
ten principal components) with its corresponding coefficient matrix X, gF/Nf and g−F/−Nf
were respectively the vector of additive genetic effect of the selected SNPs and of the rest
SNP subset, ZF/Nf and Z−F/−Nf were, respectively, the design matrices that allocated
observations to genetic values, and e was the vector of residual errors. The additive
genetic and residual values were assumed to be independent normally distributed values:
g~N (0, σ2

gG) and e~N (0, σ2
eI), where σ2

g and σ2
e were the additive genetic variance and

residual variance, respectively. G was a genomic relationship matrix (GRM) constructed
from SNP genotypes. G was changed in different heritability enrichment models, as
detailed below.

There were four models used for estimating heritability enrichment: the VanRaden
model, the GCTA model, the α-model and LDAK model. The differences among these four
models were the variance of SNP effect sizes and the existence of LD weight calculation.
The four models are summarized in Table S1.

2.3.1. VanRaden Model

The VanRaden model was first proposed by VanRaden, and set the α value as zero,
indicating that the variance of the allelic effect (represented as var(βi)) was in proportion to
pi(1− pi). The GRM is constructed as follows:

G =
MMT

2∑m
1 pi(1 − pi)

where M is the centered genotype matrix, m is the number of SNPs and pi is MAF of SNPi.

2.3.2. GCTA Model

For the GCTA model, the standardized genetic variance of SNPi is constant: var(βi)∝1.
The GRM is calculated as:

G =
MMT

m

2.3.3. The α-Model

The α-model uses an α parameter to model MAF-dependent architectures, which could
be considered as: var(βi) ∝ (p i(1− pi))

1+α. According to [5], we also set seven values
of α (−1.25, −1, −0.75, −0.5, −0.25, 0 and 0.25), exploring which led to the best model fit.
Negative α value meant negative selection, positive α value meant positive selection, and 0
meant no selection was made for the traits. Therefore, we explored the performance of the
α-model representing different selection directions and selection intensities. The GRM can
be written as:

G =
MMT

∑m
1 [2p i(1 − pi)]

1+α

2.3.4. LDAK Model

Speed et al. introduced a new model that considers both LD-dependent and MAF-
dependent architectures, named the “LDAK model” [5]. Genetic variance could be written
as var(βi) ∝ (p i(1− pi))

1+αw∗i , where w∗i denotes LD weights reflecting smaller per-SNP
heritability for high-LD SNPs. The weight w∗i is fixed, based on LD patterns, but not
estimated using trait data. The GRM of this model is:

G =
MWMT

∑m
1 [2p i(1 − pi)]

0.75
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where W is the diagonal matrix with elements of w∗i , w∗i = wi
m′

∑i wi
and wi = 1/

m′

∑
1

c
(
i, i′
)2

with c
(
i, i′
)2 represents the correlation squared between variant i and i’ and m’ means the

SNP number in each LD window.

2.4. Model Assessment

The heritability enrichment of the “Functional/Non-functional subset” is defined as
the proportion of the explained SNP heritability divided by the proportion of SNPs [27],
which could be written as:

Enrichment =
h2

subset

h2 /
Nsubset
Ntotal

where h2
subset was the heritability of the “Functional/Non-functional subset”, h2 was the

heritability of all the SNPs, Nsubset was the SNP number of the “Functional/Non-functional
subset”, which was 33,544; Ntotal was the SNP number of the total SNPs, which was 340,720.

The true heritability enrichment of three CV MAF ranges scenarios could be calculated,
based on the known real effect size and MAF of markers. The true subset heritability

was: h2
subset =

∑i
1 var(β i)

var(pheno) . The value ∑i
1 var(βi) was the total genetic variance of i CVs in

“Functional/Non-functional subset”, var(pheno) was the total phenotypic variance. The
true total SNP heritability was 0.8.

For easy comparison, we corrected all the true heritability enrichments of the “Func-
tional subset” to 3.000 and of the “Non-functional subset” to 1.000. The study assessed
the performance of models by comparing the differences between true enrichment and
estimated enrichment.

3. Results
3.1. Genetic Architectures for Simulated Traits

Using real genotypic data, this study simulated phenotypes with different genetic
architectures to explore the performance of heritability enrichment in livestock population.
The simulated phenotypes were controlled by 2000 CVs, with the heritability of 0.8. By
varying simulation parameters, we obtained three types of phenotypes with different MAF
CVs. Table 1 shows the attributes for the simulated phenotypes estimated from the whole
data set. T1 phenotype was controlled by markers with MAF ranging from 0.05 to 0.5. T2
and T3 were controlled by common (MAF range: (0.01, 0.05)) and uncommon (MAF range:
(0.005, 0.01)) markers, respectively. All phenotypes were determined by 0.59% (n = 2000)
of markers.

Table 1. The attributes for each type of simulated phenotype.

Type of Phenotype MAF of Causal Variants a Number of Causal Variants b
True Enrichment Fold c

Functional Subset Non-Functional Subset

T1 (genome-wide) (0.005, 0.5)
2000

3.000 1.000
T2 (common) (0.05, 0.5) 3.000 1.000

T3 (uncommon) (0.01, 0.05) 3.000 1.000

a The minor allele frequency range of causal variants; b The number of markers that control the phenotype; c True
enrichment values for different subsets.

3.2. Comparison of Heritability Enrichment Models

We first compared the heritability enrichment results of four models with the default
parameters. For comparison purposes, we used the default parameters in the LDAK model
(i.e., α = −0.25, LD-window = 100 kb) and α value of −0.25 for the α-model. When the
estimated models applied “Functional subset” as the component, there was little difference
between all the four models for T1 and T2 phenotypes, and only resulted in a difference
of 0.015 to 0.067 from the true values (i.e., 3.000). In particular, the α-model generated the
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most accurate result. However, for the T3 phenotype, all the four models, except for the
GCTA model, generated values that were almost two-thirds of the real results. The GCTA
model, combining “Functional subset”, performed the best, overestimating the 3.000 by
0.471 (Figure 1A). The subset with known causal genes, i.e., “Functional subset”, gained
more accurate enrichment values than “Non-functional subset”. The enrichment values
of models which used “Non-functional subset” as a component were generally unstable,
even overestimating by more than six times (Figure 1B). In addition, Table S2 shows the
heritability estimation for “Functional subset” and the whole SNP. The LDAK model, with
5000 kb window, performed the best for T1 phenotype. For the T3 phenotype, with the LD
windows increased, the h2

F fell, while the h2 increased (Table S2).
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3.3. Effect of α Value Assumption on the Heritability Enrichment Estimation

For different traits, optimal α may differ, we therefore explored the effect of differ-
ent α value assumptions on heritability enrichment estimation, which was defined as
α-model. For ease of comparison, we did not consider the LD weights. For T1 and T2
phenotypes. The model using “Functional subset” with different α values showed no
significant difference, which was consistent with previous research [8]. Moreover, models
estimating the enrichment of T2 phenotype showed higher accuracy, only 0.006–0.089 off
the true enrichment, while estimating the enrichment of T1 phenotype showed a slight
downward trend with an increase of α values. However, for the phenotypes controlled by
the uncommon CVs and estimation using the “Functional subset”, with the increase of α
values, the estimated enrichment values decreased from 3.467 to 1.541 (Figure 2A), while
using “Non-functional subset” showed the opposite trend. When α = −0.75, the model
incorporating “Functional subset” showed the most accurate heritability enrichment value
of 3.202. Using the “Non-functional subset” as a component, it was observed that different
α values influenced and ruled heritability enrichment. Compared with “Functional subset”,
their estimates showed great bias (Figure 2B).
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3.4. Effect of LD on the Heritability Enrichment Estimation

We then investigated the potential ramifications of LD-dependent architectures on
heritability enrichment. As Figure S2 shows, LD decayed with distance. When the SNP
distance enlarged to about 150 kb, the r2 between SNPs decayed to 0.2. LD decay distance
was approximately 40 kb in this population, with the criterion of 0.5 r2. When establishing
the GRM, we set six different LD windows (1 kb, 5 kb, 50 kb, 100 kb, 500 kb and 5000 kb)
which indicated different SNPs weights. For example, setting 1 kb window meant that the
genome was divided into some 1 kb windows, and the software would accord the average
r2 of all SNP pairs to weight each SNP for each window. SNP weight tended to be higher
for the SNP in a region of low LD, and, thus, the model assumed that this SNP contributed
more than those in high-LD region. In this way, the model assigned a different weight to
each SNP and excluded SNPs with a weight of zero. In addition, we applied the default α
parameter (−0.25) of the LDAK model to explore the effect of LD.

For T2 phenotype, enrichment values were widely overestimated by the LDAK model.
As the LD window increased, the enrichment of the model using “Functional subset” slowly
raised to 3.926. What was more, the results of the T1 phenotype showed the same trend. As
for the T3 phenotype, with the LD windows enlarged, the estimated enrichment reduced
(Figure 3). Compared to the α-model, which assumed the α = −0.25, considering the effect
of LD did not increase the accuracy of enrichment estimation except for uncommon CVs.
For the T3 phenotype, models considering the LD-dependent genetic architecture acquired
more accurate estimation (Figure 4).
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4. Discussion

As more and more heritability enrichment models are proposed, there is a need to
assess the performance of different models for the livestock industry. In this study, we used
simulated phenotypes with a variety of underlying genetic architectures to evaluate four
heritability enrichment models with different parameters. According to the results of this
study, the estimates of heritability enrichment showed bias and depended on the model
and trait genetic architecture.

In this study, we explored how different models and trait genetic architectures effected
the estimates. Previous livestock studies often used VanRaden and GCTA models for
heritability analysis [28,29]. This study showed that different models with different pa-
rameters would influence the performance of heritability enrichment. Otherwise, different
trait genetic architectures also led to different enrichments. For T1 and T2 phenotypes,
the estimated enrichments were more precise and robust, while for the T3 phenotypes,
the enrichments were always underestimated. For the T1 phenotype, the α-model, with
α = −1.25, performed the best, being only 0.002 off 3.000. The α-model with α = −0.5
produced the most accurate result for the T2 phenotype. For the T3 phenotype, considering
the LD weights could get more accurate enrichment data. Therefore, we assumed that by
considering both the α value and LD weight the uncommon CVs would obtain the best re-
sult. When SNP subset explained a relatively large amount of genetic variance (greater than
the mean value), it could be seen that the SNP subset was the region associated with the
corresponding phenotype. Therefore, the overestimation or underestimation of heritability
would lead to the bias of the estimated enrichment value. Additional factors that we did
not investigate might also influence heritability enrichment estimation, such as type of
SNP data, degree of sample stratification, shared environmental effects, technical artifacts,
environmental factors that co-vary with ancestry, CVs with MAF < 0.005, or non-SNP
CVs [30–32].

Varying the value of α in the α-model would change the assumed relationship between
the MAF and effect size of CVs, and, then, the heritability estimation and the heritability
enrichment value would be affected. The value of α is applied to measure selection [8,11]
for which larger α indicates that common SNPs tend to have larger effect sizes than less
common SNPs, and vice versa. Therefore, uncommon CVs with positive α would obtain
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smaller effect sizes, resulting in lower heritability enrichment (Figure 2). The GCTA and
VanRaden models are the widely used models in the livestock industry. The GCTA model
assumes the effect size of each SNP to be consistent, and the VanRaden model is a neutral
model, assuming that no selection is made for the traits. Zhang et al. showed the existence
of negative selection in the dairy cattle population [33], so we took α = −1 to simulate the
phenotype which meant negative selection in the population and equal variance of breeding
value for 2000 causal variants. Our result showed the enrichment was more accurate when
the simulation parameters were consistent with the calculated model parameters. Indeed,
α value is not fixed for different phenotypes, being affected by many factors (such as
selection direction and strength and so on). Ideally, the α-model should be employed
for each trait; however, introducing a multiparameter heritability model would require
substantial algorithmic changes and would dramatically increase computational demands.
With this in mind, we recommend using the GCTA or VanRaden model for the T1 and T2
phenotypes. Nevertheless, for the T3 phenotype, too high or too low an α value leads to
the underestimation or overestimation of CV effect sizes. Therefore, we recommend testing
the α parameter to obtain more accurate heritability enrichment.

Unlike humans, livestock have mostly undergone natural and artificial selection.
Hence, there is extensive positive and negative selection in genetic variant associated with
complex traits, so the α value of a trait (i.e., the direction of selection) is the result of the
many signals of positive and negative selection on trait-associated variants cancelling each
other out [34]. In addition, the estimation of the α value may also be affected by the genetic
correlation and selection strength among traits, as well as the SNP data type [35,36].

Common CVs are widely distributed in the genome that are greatly affected by LD. As
the LD window size increases, the LD between SNPs in each window weakens. Therefore,
the LDAK model allocates higher weights to CVs among the whole genome, so then
the heritability enrichment increases. Enlarging the LD window strengthens the LD of
uncommon CVs and low-frequency SNPs, thus decreasing the heritability enrichment of
uncommon CVs (Figure 3). Nevertheless, the estimations of heritability enrichment of
uncommon CVs are often underestimated, so considering the effect of LD would reduce
the bias (Figure 4). Here we only considered the LDAK model to explore the effect of
LD on heritability enrichment. Other models with different LD structure assumptions
from the LDAK model, such as baseline-LD model [21], stratified LD-score regression [37],
GCTA-LDMS [16] and LD score regression (LDSC) model [38], are also worth exploring in
the future.

We used raw genotype files and chip SNP data to explore the performance of different
heritability enrichment models. In reality, as more and more Genome-wide association
analysis (GWAS) data from public databases are used, heritability enrichment models using
summary statistics estimation have come into being [11,27,36]. Therefore, there is a need to
explore the performance of heritability enrichment models using summary statistics for
livestock in the future. Recently, Hou et al. [39] proposed GRE, a method for estimating SNP
heritability without specifying a heritability model, and the performance of heritability
enrichment of this method is also worth exploring. What is more, with the increasing
availability of whole-genome sequence (WGS) SNPs, more genetic effects are likely to be
captured and provide the most accurate heritability enrichment, especially for rare CVs.

5. Conclusions

In this study, we investigated the performance of different heritability enrichment
models, with a series of parameters, on three different phenotypes. Models with a subset of
known causal genes acquired the more accurate and stable enrichment values compared
with using the “Non-functional subset”. Heritability enrichments were sensitive for the
α value assumption and LD weight. This is a prospective study on livestock, which can
provide a reference for heritability enrichment analysis of complex traits of livestock.
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