
Achromatopsia (ACHM, OMIM 216900) is a rare 
congenital autosomal recessive cone disorder with a preva-
lence of less than 1 in 30,000 [1]. However, the prevalence of 
ACHM could be as high as 4–10% in certain regions where 
consanguinity is common [2]. The clinical features of ACHM 
include congenital nystagmus, photophobia, reduced visual 
acuity (VA), color blindness, and severely reduced to nonre-
cordable cone response but with a normal rod response [1]. 
Some patients also develop macular dystrophy. ACHM was 
previously considered a stationary disorder, but follow-up 
studies have shown that ACHM is characterized by progres-
sive loss of photoreceptor cells [3-5].

Potential pathogenic variants (PPVs) in six genes have 
been identified in patients with ACHM, including CNGA3 
(OMIM 600053), CNGB3 (OMIM 605080), GNAT2 (OMIM 
139340), ATF6 (OMIM 605537), PDE6C (OMIM 600827), and 
PDE6H (OMIM 601190). ATF6 encodes a widely expressed 
endoplasmic reticulum stress response element-binding 
protein. The five other genes encode cone-specific expression 
and function in the G-protein cascade of phototransduction. 

CNGA3 and CNGB3 encode the α- and β-subunits of the 
cGMP-gated channel, respectively [6]. GNAT2 encodes the 
α2-subunit for the G-protein transduction [7]. PDE6C and 
PDE6H encode the catalytic subunit and the γ-subunit of 
cGMP phosphodiesterase, respectively [8,9]. PPVs in these 
five cone-specific genes (CNGA3, CNGB3, GNAT2, PDE6C, 
and PDE6H) have been identified in patients with various 
retinal dystrophies, including ACHM, cone-rod dystrophy 
(CORD), and Leber congenital amaurosis (LCA) [10-16]. 
Studies have also identified PPVs in CNGA3 in patients with 
retinitis pigmentosa (RP) [10,14] and congenital stationary 
night blindness (CSNB) [17]. However, there are several 
concerns regarding these PPVs in CNGA3. First, several of 
these PPVs have been identified in only a few cases with RP 
or CSNB, leading to the following question: What are the 
characteristics of these PPVs and of the rare phenotypes in 
these few cases? Second, most PPVs in the genes above were 
identified based on a cohort of patients with a single disease 
(especially ACHM). Thus, the following questions arise: Are 
there additional PPVs in the other five genes in patients with 
rod-dominant degeneration? What is the contribution of the 
PPVs in these six genes in all inherited retinal dystrophies 
(IRDs) as well as in different groups? Third, the potential 
genotype–phenotype correlation has yet to be investigated.
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With the use of whole-exome sequencing and targeted 
exome sequencing for genetic analysis, variants in a panel 
of genes can be obtained from individuals with different 
diseases. These tools are useful in genotype-guided organi-
zation of the phenotypic spectrum and in the pathogenicity 
evaluation of the variants of a single gene. In this study, we 
systematically analyzed the frequencies, spectra, and pheno-
types associated with the PPVs in six genes (ATF6, CNGA3, 
CNGB3, GNAT2, PDE6C, and PDE6H) based on exome 
sequencing data from 7,195 probands with different eye 
conditions. We performed a systematic genotype–phenotype 
analysis of the six genes based on the present data, along with 
the data reported in the literature. The results will be useful 
in establishing guidelines for genetic diagnostic application 
of the investigated genes.

METHODS

Subjects: As part of an ongoing study of the genetic basis of 
inherited eye diseases, this research involved 7,195 families 
with different eye conditions recruited at the Pediatric and 
Genetic Eye Clinic of the Zhongshan Ophthalmic Center. Of 
the 7,195 families, 5,063 were new participants, and 2,132 
families had been previously investigated [11,18-25]. The 
peripheral blood and clinical data of these families were 
collected after written informed consent was obtained from 
the participants or from their guardians in accordance with 
the tenets of the Declaration of Helsinki. Genomic DNA was 
prepared from leukocytes of the peripheral blood. Diagnoses 
were made based on their symptoms and ophthalmic exami-
nations, including a VA test, a slit-lamp examination, and 
ophthalmoscopy, along with other required examinations, 
such as electroretinogram (ERG), optical coherence tomog-
raphy (OCT), and fundus fluorescein angiography [26]. This 
study was approved by the institutional review board of the 
Zhongshan Ophthalmic Center.

Whole-exome sequencing: Whole-exome sequencing (WES) 
was performed on genomic DNA obtained from 5,280 unre-
lated individuals. Of these individuals, 3,735 were newly 
enrolled, whereas 1,545 had been previously subjected to a 
systematic variant analysis of a panel of genes, including the 
ACHM-associated genes above [18-23]. We described the 
WES process in a previous study [27].

Targeted exome sequencing: Targeted exome sequencing 
(TES) was performed on genomic DNA obtained from 
1,896 probands exhibiting different eye diseases. Of these 
probands, 1,328 were newly enrolled, and 568 probands had 
been previously analyzed [24]. The TES was performed as 
described previously [24].

Evaluation and verification of the variants obtained through 
WES and TES: The variants of the six ACHM-associated 
genes were selected from the exome sequencing data of 
7,176 probands; the data included the WES data from 5,280 
probands and the TES data from 1,896 probands. After the 
low-certainty variants with coverage of fewer than ten were 
excluded, the variants detected in the investigated genes 
were filtered through multistep bioinformatics analyses, as 
follows: 1) exclusion of variants with minor allelic frequen-
cies (MAFs) of less than 0.01 according to the 1000 Genomes 
and the Exome Aggregation Consortium (ExAC), 2) exclu-
sion of variants at the noncoding region and of synonymous 
variants that did not affect the splice sites, 3) exclusion of 
missense variants that were predicted to be benign by SIFT 
and PolyPhen-2, and 4) exclusion of single heterozygous 
variants. The remaining candidate variants were verified in 
the probands and in the available family members through 
Sanger sequencing. A variant was excluded if it did not 
segregate with the disease in the family. In addition, PPVs in 
CNGA3, CNGB3, and PDE6C were identified in 19 additional 
probands by using Sanger sequencing as we described in a 
previous study [11].

Systematic review of the genotypes and phenotypes of the 
six genes based on the present data combined with the data 
reported in the literature: The present data and the data on 
the available PPVs and clinical diagnoses obtained from 
the Human Gene Mutation Database and through a search 
in PubMed were combined. A total of 169 CNGA3 PPVs in 
409 families [2,4-6,10,11,13-18,28-70], 119 CNGB3 PPVs 
in 829 families [5,6,12,15,16,18,30-32,34,38,39,43,45,49-
52,57,62,63,67,71-89], 61 PDE6C PPVs in 53 families 
[8,14,15,18,58,62,79,86,89-94], 17 GNAT2 PPVs in 17 fami-
lies [7,12,15,31,50,63,95-99], 16 ATF6 PPVs in 17 families 
[15,100-105], and one PDE6H PPV in three families [106-
108] were identified. The genotypes (including the frequen-
cies, types, and locations) and the phenotypes (including 
congenital nystagmus, photophobia, impaired color vision, 
VA, refractive error, and ERG) of the PPVs in the six genes 
were summarized and serve as a reference in the application 
of clinical genetic testing.

RESULTS

Mutational frequencies in the six genes in 7,195 Chinese 
probands with various genetic eye diseases: In total, 92 PPVs 
in five of the six genes were identified in 119 of the 7,195 
probands; these 92 PPVs comprise 33 novel and 59 reported 
PPVs (Appendix 1) [18]. Moreover, the 92 PPVs comprise 
63 variants in CNGA3, 16 in PDE6C, eight in CNGB3, three 
in ATF6, and two in GNAT2. For the PPVs in CNGA3, the 
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missense and truncation variants accounted for 65.1% (41/63) 
and 31.7% (20/63), respectively, while the remaining two 
PPVs were non-frameshift variants. For CNGB3 and PDE6C, 
the missense and truncation variants accounted for about half 
of the total, respectively. The three ATF6 PPVs included one 
splicing and two missense variants, whereas the two GNAT2 
PPVs were missense variants. Of the 119 probands with PPVs 
in the five genes, 51 were newly recruited (Appendix 2), and 
the remaining 68 probands were included in our previous 
studies (Appendix 3) [11,18,21,24]. Segregation analysis in 
available family members of 38 families suggested that the 
PPVs cosegregated with disease in these families (Appendix 
4). The clinical data of the 51 new probands are described in 
Appendix 2. The PPVs in CNGA3 were the most common and 
were identified in 81.5% (97/119) of the probands, whereas the 
PPVs in GNAT2, ATF6, CNGB3, and PDE6C were detected in 
one, two, 7, and 12 probands, respectively. No biallelic PPVs 
were identified in PDE6H in the 7,195 probands (Appendix 
2, Appendix 3).

Phenotypic spectrum of the 119 Chinese probands with PPVs 
in five of the investigated ACHM-associated genes: Of the 
119 probands with PPVs in five of the investigated genes, 
74 were diagnosed with CORD, 30 with ACHM, one with 
LCA, one with early-onset high myopia (eoHM), three with 
macular dystrophy (MD), and ten with unclassified IRD 
(Appendix 2, Appendix 3). ERG recordings were avail-
able for 40 of the 51 newly recruited probands, and all had 
severely reduced or even extinguished cone responses with 
different rod responses (Appendix 2, Figure 1). The avail-
able OCT results from ten newly recruited probands showed 
different patterns, including normal, irregular or disruption 
ellipsoid zone, foveal hypoplasia, macular atrophy, and thin-
ning retina (Appendix 2, Appendix 5). No biallelic PPVs in 
the six genes were identified in patients with rod-dominant 
retinopathy, such as RP and CSNB. Biallelic PPVs in CNGA3 
had the highest frequency; it was found in 81.1% (60/74) of 
the probands with CORD and in 86.7% (26/30) of those with 
ACHM.

Genotypes of the investigated genes: Currently, 321 PPVs in 
the six genes have been reported in previous literature except 
the 62 PPVs from the present cohort (Appendix 6). The total 
383 PPVs included 169 CNGA3 PPVs from 409 families, 119 
CNGB3 PPVs from 829 families, 61 PDE6C PPVs from 53 
families, 17 GNAT2 PPVs from 17 families, 16 ATF PPVs 
from 17 families, and one PDE6H PPV from three families. 
Regarding the variant types of the six investigated genes, the 
PPVs in CNGA3 were predominately missense, accounting for 
69.8% (118/169), whereas the PPVs in CNGB3, GNAT2, and 
ATF6 were predominately truncation variants (frameshift, 

nonsense, splicing change, start loss, and gross deletion/
insertion; Figure 2). Missense and truncation PPVs accounted 
for half of the variants in PDE6C (Figure 2), and the lone PPV 
in PDE6H was a truncation variant. The PPVs in the six genes 
were identified in 1,328 families. In these families, the bial-
lelic PPVs in CNGB3 were the most common, and they were 
found in 62.4% (829/1,328) of the families, while the PPVs in 
CNGA3 were found in 30.8% (409/1,328) of the families. The 
PPVs in PDE6C, GNAT2, ATF6, and PDE6H were detected 
in 4.0% (53/1,328), 1.3% (17/1,328), 1.3% (17/1,328), and 0.2% 
(3/1,328) of the investigated families, respectively.

The functional domains in the investigated genes, 
except in GNAT2, were studied. CNGA3 and CNGB3 have 
six similar transmembrane domains, four loops, one pore 
region, and one cGMP-binding domain (Figure 3A,D). Most 
of the missense PPVs in CNGA3 are located at the regions 
that encode functional domains, and the four hotspots are 
as follows: p.Arg277, p.Arg283, p.Val529, and p.Phe547. 
Among them, p.Arg277 and p.Arg283 are located at the S4 
transmembrane domain, whereas p.Val529 and p.Phe547 are 
located at the cGMP-binding domain. None of the PPVs are 
located at exon 4 of CNGA3 that is exclusively present in 
transcript isoform 1 (NM_001298.2) and is absent in isoform 
2 (NM_001079878.1), whereas one splicing variant is located 
in the upstream region of exon 4. In addition, all but one of 
the nine PPVs in the first four coding exons and their adjacent 
intronic regions in CNGA3 are truncation variants (Figure 
3A). The remaining missense variant c.284C>T (p.Pro95Leu) 
was predicted to be tolerated by SIFT and PolyPhen-2 
(Appendix 6). The CNGB3 gene has five mutation hotspots: 
p.Arg274Valfs*, c.991–3T>G, p.Glu336*, p.Thr383Ilefs*, and 
c.1578+1G>A. These five hotspots, as well as most truncation 
variants in CNGA3 and CNGB3, are located before the regions 
that encode the last functional domain (cGMP-binding 
domain). This pattern indicates that these truncation PPVs 
could affect at least one functional domain (Figure 3A,D). In 
addition, the PPVs in the three other genes (PDE6C, ATF6, 
and PDE6H) have similar locations, and all their truncation 
variants affect at least one functional domain (Appendix 7).

The combined number of PPVs in the literature and 
identified in the present data is 383, and four of these PPVs 
showed an MAF higher than 0.1% according to the ExAC 
database. These PPVs are as follows: c.682G>A (p.Glu228Lys) 
and c.1618G>A (p.Val540Ile) in CNGA3 and c.1148del 
(p.Thr383Ilefs*) and c.1208G>A (p.Arg403Gln) in CNGB3. 
The MAFs of the other PPVs were all lower than 0.1%. The 
allele frequencies of the reported PPVs in the general popula-
tion based on ExAC are shown in Appendix 6. Two of the 
four PPVs, namely, c.1148del (p.Thr383Ilefs*) and c.1208G>A 
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(p.Arg403Gln) in CNGB3, showed an allele frequency of 
224/120,952 and 618/120,874 in ExAC, respectively. However, 
these allele frequencies were statistically significantly higher 
than the controls based on ExAC (p<0.01), whereas the allele 
frequencies for the other two variants did not differ statisti-
cally significantly from the controls (Appendix 8). Addition-
ally, all three missense PPVs were predicted by SIFT and 
PolyPhen-2 to be damaging (Appendix 6).

Diseases associated with PPVs in the investigated genes: 
Of the 1,328 families with PPVs in the investigated genes 
(Appendix 9), 85.8% (1139/1,328) had ACHM, and 9.3% 
(124/1,328) had CORD (Figure 4A). The highest percentage 
of ACHM in all cases with PPVs in the six genes was caused 
by biallelic PPVs in CNGB3 (Figure 4B). The PPVs in CNGA3 

were most common in Asian patients with ACHM and CORD, 
whereas the PPVs in CNGB3 were mostly identified in Cauca-
sian patients with ACHM. Thus, the phenotypic spectrum 
and the distribution of the CNGA3 and CNGB3 PPVs differed 
between Asian and Caucasian patients (Figure 5).

The patients carrying the PPVs in the six genes displayed 
the ACHM-associated phenotypes, including congenital 
nystagmus, photophobia, color blindness, and extinguished 
or severely reduced cone response but with normal rod 
response by ERG. Moreover, some cases showed refractive 
error, abnormal OCT results, and fundus changes in MD [52].

The VA of patients with PPVs in CNGA3, CNGB3, 
GNAT2, PDE6C, and ATF6 mostly ranged from 0.05 to 0.20 
(Figure 6) and did not show progression with age, whereas 

Figure 1. The available ERG data of newly recruited probands. The proband IDs and their genotypes are indicated to the left. The electroret-
inogram (ERG) recordings from the probands all show severely reduced or even extinguished cone responses with different rod responses.

http://www.molvis.org/molvis/v26/588


Molecular Vision 2020; 26:588-602 <http://www.molvis.org/molvis/v26/588> © 2020 Molecular Vision 

592

the VA of the five patients with PPVs in PDE6H ranged from 
0.1 to 0.4. The presence of nystagmus, photophobia, impaired 
color vision, and cone response by ERG in patients with PPVs 
in the six genes are summarized in Table 1. A distinguished 
or severely reduced cone response by ERG was seen in 98.1% 
(205/209) of the patients with PPVs in CNGA3 and in all of 
the patients with PPVs in the five other genes (Table 1). A 
mild to moderate reduced cone response by ERG was seen in 
four of the 209 patients with PPVs in CNGA3. Furthermore, 
a mild to moderate reduced rod response by ERG was seen 
in nine of the 42 patients with PPVs in CNGA3 whose rod 
response descriptions were available; the other 33 patients 
showed a normal rod response. Additionally, refractive error 
was observed in patients carrying the PPVs in the six genes. 
Hyperopia and myopia were present in patients with PPVs in 
CNGA3, CNGB3, PDE6C, and ATF6, whereas myopia alone 
was present in patients age 5 years and older with PPVs in 
GNAT2 and PDE6H (Appendix 10).

Genotype–phenotype correlations: The various biallelic 
variant types of the six genes in patients exhibiting different 
diseases are summarized in Appendix 11. The biallelic variant 
types of CNGA3 differed between families with ACHM and 
families with CORD (Appendix 12), and the PPVs in CNGA3 
were rare in patients with other diseases. For families with 
PPVs in CNGB3, the biallelic truncation PPVs were the most 
common in families with all diseases and did not show 
differences among different diseases. Therefore, the geno-
type–phenotype correlation of the six genes remains unclear.

DISCUSSION

In this study, a systematic analysis of the variants and 
the phenotypes of the six ACHM-associated genes was 
performed based on variants identified from 7,195 probands 
with different eye conditions. A total of 92 PPVs were identi-
fied in 119 probands exhibiting different genetic eye diseases, 
including CORD, ACHM, LCA, MD, eoHM, and unclassified 
IRD, whereas no biallelic PPVs were identified in patients 
with rod-dominant diseases.

The review of genotypes and phenotypes of the six genes 
based on previous literature and the present data revealed 
several characteristics of variants in the investigated genes. 
First, the truncation variants and the missense variants that 
could affect the functional domains are evidence of the 
pathogenicity of these variants. Therefore, a missense variant 
might be tolerated when it is located outside the functional 
domains of the genes; examples include any of the first four 
exons of CNGA3 or any of the five exons of CNGB3 (e.g., 
c.284C>T, p.Pro95Leu in CNGA3) [43]. Second, different 
mutation hot spots were identified in Asian and Caucasian 
patients. The missense variants affecting p.Arg277, p.Arg283, 
and p.Phe547 were common among Caucasians, whereas 
those affecting p.Val529 were common among Asians. Five 
mutational hot spots in CNGB3 were found in Caucasians, 
and the hot spots were all truncations; none were identified in 
Asians. All of the reported PPVs in the six genes were rare in 
the general population with an MAF of less than 1%, mostly 
less than 0.1%. Thus, it is difficult to set a cut-off allele 
frequency in control populations to evaluate the pathogenicity 

Figure 2. Spectrum of PPV types of the six investigated genes. Only the potential pathogenic variants (PPVs) in CNGA3 were predominately 
missense, whereas those in the other five genes were predominately truncation variants.
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Figure 3. Variant locations in CNGA3 and CNGB3. The blue bar above and the green bar below represent the missense and truncation variants, 
respectively. B and E represent the functional domains of CNGA3 and CNGB3, respectively. C represents the two alternative transcripts of 
CNGA3. The NM_001298.2 transcript above is longer than the NM_001079878.1 transcript, which lacks exon 4. S1–6, six transmembrane 
helix domains; E, exon. The vertical axis represents the number of families.

Figure 4. Proportion of diseases associated with the six genes. A: ACHM is the most common disease in families carrying potential 
pathogenic variants (PPVs) in the six genes. B: Frequency of each gene in families with different diseases. PPVs in CNGB3 were the most 
common in families with ACHM. PPVs in CNGA3 were most common in families with CORD. ACHM, achromatopsia; CORD, cone-rod 
dystrophy; UN, unclassified retinopathy; LCA, Leber congenital amaurosis, OT, oligocone trichromacy; MD, macular degeneration; RP, 
retinitis pigmentosa; eoHM, early-onset high myopia; CSNB, congenital stationary night blindness.
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of a variant in the six genes. However, an MAF that is signifi-
cantly higher in patients than in the controls would strongly 
indicate the pathogenicity of a variant, as is the case for the 
most common c.1148del variant in CNGB3.

The PPVs in the six genes were all initially identified in 
patients with ACHM and subsequently identified in patients 
with other autosomal recessive IRDs, most of which were 
related to cone-predominant dystrophy, including ACHM and 
CORD. For phenotypic characteristics, congenital nystagmus 
or photophobia or both were common symptoms among 
patients with PPVs in the six genes. Congenital nystagmus 

or photophobia or both with a normal-like fundus would 
suggest pathogenic mutations in the six genes. The ERG test 
is strongly suggested for the function evaluation of cones 
and rods. Additionally, extinguished or severely reduced 
cone response with or without mild to moderate reduced rod 
response would additionally indicate the pathogenicity of the 
variants in the investigated genes.

Several PPVs in these genes were reported to cause 
LCA or MD, apart from ACHM and CORD, which are 
common diseases; in some rare cases, PPVs even caused 
rod-predominant diseases, including RP and CSNB [17,60]. 

Figure 5. Frequencies of variants in the six genes in Caucasian and Asian patients. A: Potential pathogenic variants (PPVs) in CNGA3 were 
the most common among Asians and involved the common achromatopsia (ACHM) and cone-rod dystrophy (CORD), as well as the rare 
Leber congenital amaurosis (LCA), unclassified retinopathy (UN), and retinitis pigmentosa (RP). B: Among Caucasians, PPVs in CNGB3 
were the most common, and these variants are associated with ACHM, which is the most common disease, as well as with CORD, UN, 
LCA, oligocone trichromacy (OT), and macular dystrophy (MD).

Figure 6. Distribution of available 
visual acuity in patients with PPVs 
in the investigated genes.
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RP and CSNB were identified in several patients with PPVs 
in CNGA3, and LCA was identified in patients with PPVs in 
CNGA3 and CNGB3 [13,15,62]. Seven PPVs in CNGA3 and 
four PPVs in CNGB3 were identified in families with LCA. 
All of the 11 known PPVs in the two genes are pathogenic 
because of truncation variants, at functional domains, or 
with significantly higher frequencies in patients than in the 
controls. Additionally, there were two PPVs identified in 
PDE6C for patients with LCA: One was a truncation variant, 
and the other was a missense, which was located outside 
any functional domains but still predicted to be damaging. 
Five PPVs in CNGA3 were identified in patients with RP. 
Among these PPVs, three were likely pathogenic, whereas 
the other two located outside the functional domains were 
identified only in patients with RP and not in patients with 
ACHM or CORD. However, the pathogenicity of these vari-
ants could not be excluded due to their low frequencies in 
the controls, and because the variants were predicted to be 
damaging. Two PPVs in CNGA3 were identified in patients 
with CSNB: One was a truncation variant, and the other was 
located at the cGMP-binding domain [17]. In the present data, 
one missense variant in PDE6C was identified in a proband 
with eoHM. The proband with eoHM was identified to have 
biallelic missense PPVs in PDE6C and showed a bilateral 
corrected VA of 0.2 at the age of 5 years [21]. Unfortunately, 
the patient’s ERG examination was unavailable. This variant 
was not identified in previous studies and was located at the 
functional domain of PDE6C.

In all the families affected by rare diseases, the clinical 
phenotype of only one patient with LCA was described. 
This patient, with a homozygous c.1579C>A (p.Leu 527Met) 
variant, exhibited congenital nystagmus and no visual 
responses with nonrecordable ERG together which indicated 
LCA [13]. A similar condition was observed in the proband 
with LCA from the present cohort. Unfortunately, the clinical 
descriptions of the five patients with RP or CSNB were not 
mentioned, except the clinical diagnoses. However, none of 

the biallelic PPVs in the six genes were identified in probands 
with RP or CSNB based on the present data from 7,195 
probands with different eye conditions.

In summary, a systematic genotype–phenotype analysis 
of the six genes associated with ACHM was performed based 
on the present data from 7,195 probands with different eye 
conditions, along with data reported in the literature. The 
PPVs in the six genes were identified in various IRDs, most 
of which are cone-dominant diseases. Clear genotype–pheno-
type correlations have yet to be established in these genes 
although the truncation variants of CNGA3 were initially 
found to be considerably more common in patients with 
CORD than in patients with ACHM. These results will be 
valuable for clinical genetic testing involving the investigated 
genes.

APPENDIX 1. RARE VARIANTS IN BIALLELIC 
STATUS IN FIVE OF THE SIX GENES DETECTED 
IN THE 119 PROBANDS WITH GENETIC EYE 
DISEASES.

To access the data, click or select the words “Appendix 
1.” Note: IVS, intron; D, damaging; B, benigh; P, possibly 
damaging; PHH2, Polyphen-2; /, not available. The nomen-
clature of variants were according to the reference sequence 
including NM_007348.3 of ATF6, NM_005272 of GNAT2, 
NM_001298 of CNGA3, NM_019098 of CNGB3, and 
NM_006204 of PDE6C.

APPENDIX 2. CLINICAL INFORMATION OF 
51 NEW PROBANDS WITH PATHOGENIC 
VARIANTS IN ACHM-ASSOCIATED GENES.

To access the data, click or select the words “Appendix 2.” 
ARA= Attenuated retinal arterioles; PFR= Poor foveal reflex; 
EC= Early childhood; FMB= First few months after birth; 
NYS= Nystagmus; PV= Poor vision; PP= Photophobia; 
PFR= Poor foveal reflex; MD= Macular Dtrophy; NA= Not 

Table 1. The available clinical manifestations in patients with PPVs in the six genes.

Gene
Congenital 
nystagmus Photophobia

Impaired color 
vision

SR cone response by 
ERG

CNGA3 92.8% (180/194) 97.8% (175/179) 99.1% (216/218) 98.1% (205/209)
CNGB3 93.8% (60/64) 93.8% (60/64) 96.1% (49/51) 100% (76/76)
GNAT2 83.3% (15/18) 93.8% (15/16) 91.7% (11/12) 100% (14/14)
PDE6C 96.9% (31/32) 94.1% (32/34) 100% (27/27) 100% (28/28)
ATF6 85.7% (18/21) 85.7% (18/21) 100% (19/19) 100% (32/32)
PDE6H 60% (3/5) 40% (2/5) 100% (5/5) 100% (18/18)

Note: SR, severely reduced.
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available; PL=Persuing light; PM= Pigmentation in macular; 
PO= Pursuing object; NFR= No foveal ref lex; TDP= 
Temporal disc pallor; TDC=PIG= Temporal disc coloboma; 
WPD= Waxy pale discs; RA= Retina atrophy; LF= leopard 
fundus; CR, crescent; FH= Foveal hypoplasia; EZ= Ellipsoid 
zone; TR= Thinning retina; MA= Macular atrophy.

APPENDIX 3. THE 68 REPORTED PROBANDS 
WITH POTENTIAL PATHOGENIC VARIANTS IN 
THREE OF THE SIX GENES.

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. PEDIGREES OF 51 NEW FAMILIES 
WITH PPVS IN THE ACHM-ASSOCIATED GENES.

To access the data, click or select the words “Appendix 4.” 
The red asterisk indicates that the genomic DNA sample of 
the individual is available for segregation analysis.

APPENDIX 5. THE TRANSFOVEAL OCT IMAGE 
OF SEVEN NEWLY RECRUITED PROBANDS.

To access the data, click or select the words “Appendix 5.” 
The proband IDs are indicated to the left and the genotypes 
are indicated below.

APPENDIX 6. PATHOGENIC VARIANTS IN THE 
SIX GENES FROM PREVIOUS LITERATURE 
EXCEPT OUR COHORT.

To access the data, click or select the words “Appendix 
6.” Note: D, damaging; B, benigh; P, possibly damaging; 
PHH2, Polyphen-2; /, not available. The nomenclature of 
variants were according to the reference sequence including 
NM_007348.3 of ATF6, NM_005272 of GNAT2, NM_001298 
of CNGA3, NM_019098 of CNGB3, NM_006204 of PDE6C, 
and NM_006205.3 of PDE6H.

APPENDIX 7. VARIANT LOCATIONS IN PDE6C 
AND ATF6.

To access the data, click or select the words “Appendix 7.” 
The blue bar above and the green bar below represent the 
missense variants and the truncation variants, respectively.

APPENDIX 8. COMPARISON OFFREQUENCIES 
BETWEEN PATIENTS AND CONTROLS FROM 
EXAC

To access the data, click or select the words “Appendix 8.” 
Note: † Variants with no significant difference between 
patients and controls.

APPENDIX 9. BIALLELIC PATHOGENIC 
VARIANTS IN THE SIX GENES AND THEIR 
ASSOCIATED PHENOTYPES REPORTED SO 
FAR.

To access the data, click or select the words “Appendix 9.” 
Note: ACHM, achromatopsia; COArgD, cone-rod dystrophy; 
OT, Oligocone trichromacy; LCA, Leber congenital amau-
rosis; MD, macular degeneration; ArgP, retinitis pigmentosa; 
CSNB, congenital stationary night blindness; EoHM, early-
osnet high myopia; UN: phenotype unclassified.

APPENDIX 10. DISTRIBUTION OF THE 
AVAILABLE REFRACTIVE ERROR IN 
RELATION TO AGE IN PATIENTS WITH PPVS IN 
THE INVESTIGATED GENES.

To access the data, click or select the words “Appendix 10.” 
Patients with PPVs in five of the six genes (CNGA3, CNGB3, 
PDE6C, GNAT2, and ATF6) could have both myopia and 
hyperopia, whereas all of the five patients with PPVs in 
PDE6H showed high myopia (< −6.00D).

APPENDIX 11. VARIANT TYPES OF GENES IN 
FAMILIES WITH DIFFERENT DISEASES.

To access the data, click or select the words “Appendix 11.” 
Note: Trun = truncation variants; Mis = missense variants; 
ACHM = achromatopsia; CORD = cone-rod dystrophy; OCT 
= Oligocone trichromacy; LCA = Leber congenital amau-
rosis; IRD = inherited retinal degeneration; RP = retinitis 
pigmentosa; CSNB = congenital stationary night blindness; 
MD = macular dystrophy.

APPENDIX 12. BIALLELIC VARIANT TYPES IN 
CNGA3 IN PATIENTS WITH ACHM AND CORD.

To access the data, click or select the words “Appendix 12.” 
Biallelic missense variants were more common in patients 
with ACHM than in those with CORD, whereas missense 
and truncation variants and biallelic truncation variants were 
more common in patients with CORD than in those with 
ACHM. Trun, truncation variants; Mis, missense variants; 
ACHM, achromatopsia; CORD, cone-rod dystrophy.
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