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A B S T R A C T

Cardiac arrest (CA) is a major disease burden worldwide and has a poor prognosis. Early prediction of CA 
outcomes helps optimize the therapeutic regimen and improve patients’ neurological function. As the current 
guidelines recommend, many factors can be used to evaluate the neurological outcomes of CA patients. Machine 
learning (ML) has strong analytical abilities and fast computing speed; thus, it plays an irreplaceable role in 
prediction model development. An increasing number of researchers are using ML algorithms to incorporate 
demographics, arrest characteristics, clinical variables, biomarkers, physical examination findings, electroen
cephalograms, imaging, and other factors with predictive value to construct multi-feature prediction models for 
neurological outcomes of CA survivors. In this review, we explore the current application of ML models using 
multiple features to predict the neurological outcomes of CA patients. Although the outcome prediction model is 
still in development, it has strong potential to become a powerful tool in clinical practice.

Introduction

Cardiac arrest (CA) is a life-threatening condition with high mor
tality. Approximately 380,000 deaths from CA of any cause are reported 
annually in the United States [1]. The prognosis of CA is extremely poor, 
mainly due to post-cardiac arrest brain injury (PCABI) caused by the 
absence of cerebral blood flow (CBF) and the subsequent cerebral 
ischemia–reperfusion injury after the return of spontaneous circulation 
(ROSC).

Early prediction of the neurological outcomes of CA patients helps 
ensure timely intervention and improved prognosis. For instance, 
actively implementing targeted measures such as Percutaneous Coro
nary Intervention (PCI), Coronary Artery Bypass Grafting (CABG), and 
pulmonary thrombectomy can fundamentally correct the etiology of CA, 
or employing advanced life support measures like Extracorporeal 
Membrane Oxygenation (ECMO) [2,3]. It is also crucial to avoid making 
decisions regarding Withdrawal of Life-Sustaining Treatment (WLST) at 
inappropriate times. The timing of prediction is primarily within 72 h of 
Intensive Care Unit (ICU) admission [4]. The selection of this time point 
is based on the likelihood of patients’ recovery of neurological function 
and the risk of prematurely WLST, aligning with guidelines recom
mendations [5]. The latest European Resuscitation Council (ERC) and 

the European Society of Intensive Care Medicine (ESICM) guidelines 
proposed the principle for prognostication, utilizing a multi-modal 
approach that includes clinical examination, biomarkers, electrophysi
ological assessments, and neuroimaging to predict the neurological 
outcomes of CA patients [5]. However, the implementation of this 
method is greatly limited by the availability of diagnostic equipment.

To further explore methods for assessing the neurological prognosis 
of CA patients, researchers have conducted extensive studies. Among 
these studies, the most commonly used neurological function assessment 
scale is the Cerebral Performance Category (CPC), where it is generally 
accepted that CPC of 1–2 correspond to good neurological outcomes, 
and CPC of 3–5 correspond to poor neurological outcomes [6]. 
Numerous clinical scores have emerged for assessing neurological out
comes of CA patients. Traditional scores such as the Sequential Organ 
Failure Assessment (SOFA) and Acute Physiology and Chronic Health 
Evaluation (APACHE) II scores are widely used for assessing the severity 
of illness and have proved to be valuable in predicting neurological 
outcomes of CA patients, but these scores only have moderate discrim
inative ability [7,8]. Some novel scores utilize linear regression 
methods, such as the Out-of-Hospital Cardiac Arrest (OHCA) and Car
diac Arrest Hospital Prognosis (CAHP) scores, which both use logistic 
regression to establish independent prognostic factors, developing 
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scoring systems for predicting poor neurological outcomes of OHCA 
patients and have been validated in multicenter external cohorts [9–11]. 
However, both of these scores involve no-flow time, which introduces 
significant subjective factors in the statistics, thus affecting their accu
racy. The Good Outcome Following Attempted Resuscitation (GO-FAR) 
score stratifies the neurological outcomes of in-hospital cardiac arrest 
(IHCA) patients, but it contains mostly baseline disease states and does 
not contain dynamic physiological and biochemical indicators [12]. In 
recent years, machine learning (ML) has gained a lot of attention in 
various fields. ML is a science of artificial intelligence (AI), which is 
increasingly used in medicine and has substantial advantages in 
analyzing vast quantities of medical data [13]. ML relies on vast 
amounts of data to train models to learn and recognize disease patterns 
and trends. As the amount of data increases and computing power im
proves, ML models can be optimized and expanded to adapt to new 
problems and challenges. Clinical tools based on ML for early warning 
[14,15], subphenotype clustering [16,17], decision-making [18], and 
prognosis assessment [19,20] in CA patients are rapidly developing.

ML contribute to providing objective information regarding the 
neurological outcomes of CA patients and hold promising prospects for 
application. Numerous researchers have employed diverse algorithms to 
construct ML predictive models based on various features. Therefore, in 
this review, we reviewed relevant ML studies of CA and focused on 
valuable predictive features for the neurological outcomes of CA pa
tients, elaborating on the characteristics of these features and their 
current application in ML models. We tried to reveal how current ML 
studies excavate and integrate feature information to optimize feature 
engineering and enhance predictive performance. The novelty of this 
article lies in the fact that, firstly, we mainly focused on neurological 
prognosis of CA by using ML methods, which differ from reviews about 
conventional prognostic assessment methods and have a more precise 
scope. Secondly, we concentrated on the current state of researches in 
ML methods for integrating and excavating valuable predictive features, 
such as the construction of multi-modal ML models, and innovative 
predictive approaches based on ML image processing, with more 
detailed descriptions. Our aim is to assist clinicians in expanding new 
ideas for prognosis assessment, understanding valuable prognostic in
dicators and innovative feature processing methods, and promoting the 
greater role of ML in clinical practice.

Box 1 summary of search strategy and paper selection.
We searched MEDLINE from inception to June 2024 using terms to 

interpret cardiac arrest (cardiac arrest, heart arrest, arrest, out-of- 
hospital cardiac arrest, in-hospital cardiac arrest, cardiopulmonary 
resuscitation, resuscitation), terms of machine learning (machine 
learning, deep learning, supervised learning, unsupervised learning, 
reinforcement learning, logistic regression, random forest, decision 
trees, naive bayes, k-nearest neighbor, support vector machines, neural 
network, boosting, bagging), and terms for neurological outcomes 
(neurological outcomes, neurological prognosis, neuroprognostication, 
outcome, prognosis, neurological function, neurological recovery). We 
included only papers published in English.

Machine learning in CA

As clinical data volume expands and computing power increases, ML 
is becoming increasingly important in medicine [21]. ML can auto
matically complete tasks using computer-based data through various 
algorithms. Table 1 shows some key algorithms. ML can fall into su
pervised, unsupervised, and reinforcement learning; each category is 
applicable to different specific tasks, as shown in Fig. 1.

Supervised learning requires labeled data for model training, and 
aims to label the unidentified data by mapping input and output vari
ables [21]. Supervised learning focuses on building predictive models. 
Supervised learning plays an important role in early warning of IHCA; 
such early identification of high-risk patients can alert clinicians to take 
action in advance. Li et al. screened seven critical variables and 

developed a prediction model to assess the risk of IHCA in patients 
hospitalized for acute coronary syndrome (ACS); this model demon
strated an area under the receiver operating characteristic curve (AUC) 
of 0.844 based on DT [22]. In another study on ACS, researchers 
developed eight models using multivariate clinical features to predict 
IHCA 24 h before its occurrence. Most of these models performed better 
than commonly used risk scoring, such as the National Early Warning 
Score (NEWS) and Modified Early Warning Score (MEWS), with 
XGBoost achieving the best performance (AUC: 0.958) [15]. For sepsis, a 
stacking ensemble model has been developed that can alert for IHCA 
within 6 h before CA occurrence with an accuracy and sensitivity 
exceeding 70 %. Supervised learning is also widely employed in CA 
prognostic models, which are described in detail in the next section.

Unsupervised learning uses unlabeled data to discover underlying 
clusters or groups in the feature space [21]. Different subphenotypes are 
associated with specific risk factors, clinical symptoms, and responses to 
treatment, which contribute to further precise therapy. Okada et al. 
performed a cluster analysis of OHCA with shockable rhythm and non- 
shockable rhythm using latent class analysis [16,17]. Subphenotype 
differentiation enables new hypotheses regarding the pathogenesis and 
manifestations of CA, which is valuable for developing heterogeneous 
interventions. Different outcomes across subphenotypes have also been 
observed following extracorporeal cardiopulmonary resuscitation 
(ECPR), suggesting that the indications for ECPR should be carefully 
considered [17]. For further precise treatment, Elmer et al. developed an 

Table 1 
Definition of common ML algorithm terms.

Terms Definition

Logistic Regression (LR) A generalized linear regression analysis model based 
on a particular function outputs a value between 0 and 
1, which is better suited to solving binary problems 
than simple linear regression.

Naive Bayes（NB） A classification algorithm based on Bayesian decision 
theory, naive means to assume individual features are 
independent of each other.

k-Nearest Neighbor (kNN) A model directly use training sets for classification or 
regression, finding k numbers of labeled datapoints 
closest to the new input.

Support Vector Machines 
(SVM)

A supervised learning binary classifier depending on 
decision boundary which maximises the distance from 
hyperplane to learning samples in feature space.

Random Forest (RF) A type of decision trees that is essentially the 
collection of a large number of classification trees or 
regression trees, with higher accuracy and 
generalization ability.

eXtreme Gradient Boosting 
(XGBoost)

An end-to-end boosting tree system, which is the 
optimized gradient boosting decision tree (GBDT), 
capable of faster and more efficient training models.

Artificial Neural Networks 
(ANN)

A complex network of a vast number of processing 
units (neurons) with connected layers of nodes, which 
is a simplification and simulation of the human brain, 
having great advantages in processing complex data.

Convolutional Neural 
Networks (CNN)

A deep learning algorithm based on feedforward 
neural networks with convolutional computation, 
which can directly extract high-level features from 
structured data.

Fig. 1. Categories and tasks of ML.
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unsupervised learning model to identify five subphenotypes of brain 
injury after CA based on the multimodal features of neurological ex
aminations, brain CT and EEG [23]. Researchers have explored the as
sociations between outcomes and target temperature management 
(TTM), hemodynamic strategies, and cardiac interventions among 
different subphenotypes, demonstrating that cluster analysis can reveal 
the mechanisms underlying acute brain hypoxia injury, in turn 
increasing treatment efficacy.

In reinforcement learning, the computer agent operates in an inter
active environment, performing specific actions and obtaining rewards 
or penalties as learning feedback [21]. Agents learn by repeated trials to 
maximize rewards and can then be applied in clinical decision making, 
for example, determining the adjustment of mechanical ventilation pa
rameters or the dose of fluid therapy [24,25].

Deep learning (DL) is a promising subfield of ML that uses algorithms 
that mainly rely on neural networks [26,27]. DL is more technically 
demanding than traditional ML and can manage more complex tasks. 
For example, one study used Embedded Full Convolutional Networks 
(EFCN) to model decision-making and survival outcomes in OHCA pa
tients to support the decision to perform coronary angiography on sur
vivors [18]. Korean researchers published an early warning score 

(DEWS) trained on a recurrent neural network (RNN). This score showed 
high sensitivity in predicting IHCA and performed better than MEWS 
and other warning models [14,28]. Notably, DL has shown strong po
tential in helping identify, classify, and quantify medical images and 
physiological signals for better analysis and interpretation. Conven
tional ML algorithms process image data following artificially set fea
tures, while DL mainly benefits from its ability to extract task-related 
features autonomously and diversely [26]. Substantial advancements in 
computer vision stimulate its application in medical image analysis, 
such as image segmentation [29], image annotation [30] and diagnosis 
[31,32]. We discuss the application of DL in brain imaging and EEG to 
excavate features related to the neurological function of CA patients in 
the next section.

Multi-feature models for neuro-prognostication

ML-based prediction of neurological outcomes in CA survivors is 
attracting considerable interest among medical researchers. Multiple 
features have been incorporated into ML models based on the different 
algorithms (Fig. 2), which are described in detail below.

Fig. 2. Flowchart of prediction models for CA neurological outcomes.
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Demography

Researchers generally include demographic information as the 
baseline characteristics for modeling, such as age, sex, and race. Some 
researchers have included body mass index (BMI) and demonstrated a U- 
shaped relationship between BMI and survival [33,34]. Recently, a 
model conducted using EFCN was reported, which creatively developed 
on community variables, including economic factors, basic health status, 
and crime conditions, to assess the neurological outcomes of OHCA 
patients at discharge [35]. Compared with clinical data alone, the final 
integrated model increased the AUC from 84.5 % to 88.1 %. Demog
raphy as the most basic feature contains a little prognostic information 
and is generally used as a cofactor to marginally increase model 
performance.

Arrest characteristics

CA-associated characteristics, such as the presumed etiology of ar
rest, initial heart rhythm, arrest location, and duration of resuscitation, 
are usually valuable for early outcome prediction. In addition, pre
hospital factors specific to OHCA are worth studying, such as witnessed 
status, bystander CPR, defibrillation, the presence of ROSC, and the EMS 
response time [36,37].

The Survival After ROSC in Cardiac Arrest (SARICA) scoring system 
was developed based on RF for predicting survival rate of OHCA patients 
at discharge [38]. This simplest model built on prehospital ROSC, age, 
and initial heart rhythm as the three most relevant features reached an 
AUC of 0.87. Two other RF-based models explored the relative impor
tance of features; one listed initial rhythm and age as the top two pre
dictors of outcome and the other prehospital ROSC and age [37,39]. In 
addition, bystander CPR may not increase predictive performance 
because of the overall quick EMS response in developed countries [38]. 
On the other hand, two researcher groups using XGBoost to predict 
neurological outcomes of OHCA patients at discharge achieved excellent 
capabilities and showed superior performance in comparison with other 
algorithms in discrimination and calibration [40,41]. They highlighted 
the importance of critical temporal variables, such as no flow time (from 
arrest until the start of CPR) and low flow time (from the start of CPR 
until the end of resuscitation) [42]. Others argued that these data may 
show large inaccuracies due to memory biases, and their model based on 
multi-layer perceptron (MLP) to predict neurological recovery (CPC 1 or 
2) and survival to discharge reached an AUC of 0.953 without relevant 
time variables [43].

Regarding IHCA, two studies proposed by Mayampurath et al. 
showed XGBoost to be the optimal algorithm, significantly superior to 
traditional statistical methods and other ML models in predicting good 
neurological function at discharge [44,45]. This finding might be the 
fact that the large number of categorical variables make the inputs 
highly structured, and XGBoost is more flexible in considering non- 
linear relationships and interactions between features [46]. There are 
relatively few characteristics available for IHCA, and initial rhythm re
mains the most crucial predictor [44,45]. Consequently, arrest charac
teristics, including prehospital factors, are essential for the development 
of predictive models for the early assessment of CA patients’ neurolog
ical function after admission. However, the accuracy of the relevant data 
may hinder its further application in the model.

Clinical variables

Clinical variables are mainly structured data containing substantial 
prognostic information in electronic health records (EHRs), including 
vital signs, laboratory results, medications, operations, and comorbid 
condition. Although excluded in current guidelines [5], clinical data are 
routinely selected by ML algorithms since these data are accessible and 
of high-capacity. One study screened key features from clinical variables 
alone with XGBoost achieving the best predictive power to assess 

favorable neurological outcomes at hospital discharge (AUC 0.956) 
[47]. Another study also demonstrated XGBoost to be the optimal model 
for predicting survival and neurological function of OHCA patients at 
discharge (AUC 0.87), indicating that physiological signals represent 
valuable prognostic information; in particular, features presenting in the 
first 24 h after arrest were associated with early recovery trajectories 
[48]. Our as-yet-unpublished model study identified 11 key features and 
visualized their significance using recursive feature elimination (RFE) 
and SHapley Additive exPlanations (SHAP). The CatBoost model we 
finally obtained reached an AUC of 0.86 for predicting neurological 
outcomes at discharge, which is especially suitable for the processing of 
categorical variables. Concluding the above three sections, relatively 
simple models for predicting the neurological outcomes of CA patients 
mainly include demographic information, arrest characteristics and 
clinical variables. In particular, improved ML algorithms, such as 
XGBoost, show better performance when processing low-dimension 
data.

Biomarkers

Biomarkers have been widely studied due to the easy accessibility 
and detection of samples. NSE, the product of neuronal insult, is the only 
biomarker recommended for prognostic assessment [5]. Although an 
NSE concentration exceeding 60 μg/L at 48–72 h after resuscitation is 
currently recommended as the valid predictor of poor outcome, its 
threshold with a 0 % False Positive Rate (FPR) remains controversial 
regarding the influence of mixed factors, such as extracerebral sources 
and measurement techniques [49,50]. S100 calcium-binding protein β 
(S-100β), the marker of astrocyte injury in prognostic assessment, is 
similarly controversial [49,50]. More large multicenter prospective 
validation studies are required to assess the threshold. In model devel
opment, researchers focused on whether biomarkers can improve the 
neurological prognostic ability of multi-feature models, for example, 
NSE can increased the AUC from 0.88 to 0.96 when involved in pre
dicting unfavorable neurological outcomes at 3 months, with specificity 
up to 100 %[51].

Several research-grade novel biomarkers are promising for neuro
logical outcome assessment, including neurofilament light chain (NFL) 
[52], glial fibrillary acidic protein (GFAP) [53], tau protein [54], and 
ubiquitin carboxyl hydrolase L1 (UCHL1) [55]. However, these markers 
appeared to be of marginal value when combined with conventional 
markers [56]. How to use valuable biomarker information for combi
natorial modeling to maximize predictive performance and improve 
sensitivity should be investigated in the future.

Physical examination

Since neurological examinations directly reflect alterations in cere
bral function, indicators such as brainstem reflexes, motor response, and 
myoclonus contribute to the prognosis assessment for CA survivors [49]. 
Persistent absence of the bilateral pupillary light reflex (PLR) is the best 
indicator, with satisfactory specificity (FPR 0–1 %) [57,58]. The pre
dictive value of the absence of the corneal reflex (CR) is relatively weak 
and can be affected by neuromuscular blockers [59,60]. Abnormal 
flexion or a heightened response to pain (Glasgow Motor Score (GCS-M) 
≤ 3) should be considered for adverse outcomes [61]. These examina
tions at 72 h or later after resuscitation have greater prognostic value; 
however, negative signs do not necessarily indicate favorable neuro
logical outcomes [62]. Myoclonus with some features is associated with 
a poor outcome, such as that persisting for over 30 min (status myoc
lonus), early occurrence (<48 h), and often with malignant or unreac
tive EEG [63,64]. One study combined peri-arrest variables with GCS 
scores and PLR, establishing a model based on Fast-and-frugal decision 
trees to predict good neurological outcomes at 28 days [65], improving 
the sensitivity to 95–100 %. As indicated in the current guidelines, 
physical examinations play important roles in predictive algorithm; 
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however, more ML studies are multimodal since the combination of 
physical examinations and other features can often improve the conse
quence of prognostic assessment.

Electroencephalogram (EEG)

CA survivors are often comatose due to hypoxic ischemic encepha
lopathy (HIE). Continuous EEG monitoring allows the capture of sub
stantial valid information that reflects the neurological function 
prognosis [50,66]. Previous studies have demonstrated that some EEG 
patterns are associated with neurological function changes, such as 
generalized EEG background suppression (amplitude < 10 μV), espe
cially that persisting 24 h after arrest, which is indicative of poor out
comes [67–69]. Other malignant patterns, including burst suppression 
with identical bursts and some epileptiform activities, are valid in
dicators of severe cerebral ischemic injury [67–69]. Conversely, 
continuous and normal-amplitude EEG background patterns in recovery 
within 12 h after CA [68] and preserved EEG reactivity often correspond 
to favorable outcomes [70].

Despite the above, the high volume of EEG data and the subjectivity 
and variability of manual visual interpretation remain substantial 
challenges to the utilization of EEG information [71]. To solve this 
problem, Tjepkema et al. first introduced a concept combining five qEEG 
features called Cerebral Recovery Index (CRI) to assess neurological 
outcomes within 6 months. This index was validated to achieve a 
maximum AUC of 0.94 at 18 h after CA. Researchers have also 
demonstrated that the magnitude of CRI corresponds to adverse or 
favorable neurological outcomes in postanoxic patients within 24 h after 
CA. However, this index was developed from a handcrafted parametric 
model. Therefore, this research group optimized it in a subsequent 
study, and the number of qEEG features was increased to 9 with RF 
classifiers [72]. Unlike previous approaches that equally weighted all 
features, RF presented features with variable weights and, therefore, 
achieved the optimal feature combination. The improved index reached 
an AUC of 0.92 at 12 h. In Tjepkema’s latest study for predicting 6- 
month neurological outcomes of CA patients, the revised Cerebral Re
covery Index (rCRI) was introduced, which is based on 44 qEEG features 
[73]. The AUC of this advanced index developed from RF reached 0.94 
at 12 h.

DL is equipped with an automated “feature extraction” pipeline, 
without depending on explicit input feature definition [26]. Therefore, 
DL is especially skilled at processing raw biological signals, which can 
make the utmost of the integral EEG spectrum, and even explore new 
features that cannot be identified by human reviewers. Convolutional 
neural network (CNN) shows the best performance and can also mini
mize the influence of artifacts and noise [74]. The association between 
some EEG patterns and the neurological outcomes is time-dependent; 
thus, the significance of EEG dynamics has recently been explored to 
improve the prognostic value outside of confinement to a definite time 
window [68,75]. Zheng et al. developed a multiscale CNN-LSTM model 
based on the temporal evolution of EEG [76]. The internal framework 
consisted of a CNN model that automatically extracts EEG features and a 
bidirectional long short-term memory (Bi-LSTM) model, a type of 
recurrent neural network, that incorporates the evolution of longitudi
nal EEG waveforms from multiple time scales in both forward and 
backward directions. Among all models developed from the same 
dataset, the proposed time-sensitive CNN-LSTM model showed the best 
performance in predicting neurological outcomes at 3–6 months after 
CA, which improved with EEG duration from an AUC of 0.83 at 12 h to 
an AUC of 0.91 at 66 h. Various studies have indicated that deep neural 
networks could analyze longitudinal EEG time trends to improve the 
model performance and possibly realize real-time neurological out
comes prediction for comatose patients after CA [76–78].

Electrophysiology

Short-latency somatosensory evoked potentials (SSEPs) are elicited 
by repetitive electrical stimulation of the median nerve, and the po
tentials are recorded from the cerebral sensory cortex. The negative 
waves of ~ 20 ms are referred to as N20 and reflect the activation of the 
primitive sensory cortex [79]. A bilateral absence of N20 or decreased 
amplitudes in comatose patients often indicates severe hypoxic ischemic 
brain injury [50,80,81], with 100 % specificity in predicting 6-month 
neurological outcomes at 12 h post-CA [82]. However, compared with 
EEG, the sensitivity of SSEPs is relatively low (only 20–40 %), and it only 
makes sense to use it to evaluate poor outcomes [83,84]. SSEPs are 
rarely included as the input features of prediction models alone. Some 
researchers discovered that the combined feature set showed better 
predictive performance than using EEG alone or clinical features 
(including corneal and pupil reflex, SSEPs, and imaging manifestations 
of hypoxia) [85]. Thus, the complementary predictive value of the 
combination of various features has been demonstrated.

Imaging

Brain imaging can help identify cerebral edema caused by anoxic- 
ischemic insult. For example, brain CT shows obvious structural alter
nations of reduced sulci and ventricle size [86]. Neuronal edema results 
in reduced gray matter density, further complicating the discrimination 
between gray and white matter as the interface becomes obscured. Thus, 
gray–white matter density ratio (GWR) can be used to define the degree 
of cerebral swelling [86]. A decreased GWR indicates a poor neurolog
ical outcome after resuscitation, with threshold variability due to 
different sampling areas and testing devices, achieving satisfactory 
specificity (93–99 %) and moderate sensitivity (29–60 %) overall [87]. 
This association is time-dependent, and the prognostic value of GWR at 
12 h after ROSC may be limited. Two groups have developed algorithms 
to automatically decompose images and calculate GWR [88,89], which 
can eliminate the artificial error caused by manually placing regions of 
interest (ROIs). It was verified that such automated GWR determination 
accurately conducted the prediction of poor outcomes after CA.

Compared with CT scanning, brain MRI has a higher resolution and 
relatively higher sensitivity (69–87 %) [86]. In the acute stage after 
resuscitation, restricted diffusion caused by cytotoxic edema appears on 
the diffusion-weighted imaging (DWI) sequence as hyperintensity in the 
corresponding damaged areas, while apparent diffusion coefficient 
(ADC) values of the quantitative index show low attenuation [50,86]. In 
addition, fluid-attenuated inversion-recovery (FLAIR), T1-weighted 
(T1WI), and T2-weighted (T2WI) sequences display high signal areas 
as the disease progresses [86].

ML algorithms are generally applied in more advanced image pro
cessing and analysis. For example, cortical thickness and subcortical 
gray matter volume have been measured to accurately assess the effect 
of anoxic–ischemic injury on long-term outcomes after CA. The multi
variate supervised learning model based on morphological data sug
gested that atrophy of the hippocampus and other anatomic sites was 
associated with remaining disability and death, with an AUC of 0.96 for 
predicting neurological outcomes at 1 year after CA [90]. Several other 
studies have been conducted on resting-state functional MRI (rs-fMRI), 
which has been applied successfully to assess the state of consciousness 
in patients with brain injury [91,92]. Researchers compared the pre
dictability based on rs-fMRI with that based on DWI, and the former 
achieved significantly better performance at predicting coma outcomes 
during hospitalization in CA patients (AUC of 0.94 vs. 0.63) [93]. DL can 
extract features independently from information; thus, it is widely used 
in image analysis [94]. One recent study designed a CNN framework to 
automatically capture and analyze raw structural and functional MRI 
data, and the findings suggested that fMRI data was more effective for 
identifying patients 3-month neurological outcomes than sMRI (accu
racy 96 % vs. 82 %) [95]. In addition, the influence of each index on the 
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output is visually interpreted by a voxel-based visualization tool 
developed from CNN filters, avoiding the potential black box effect of 
CNN [95].

Limitations and prospections

ML is increasingly integrated with multi-feature predictors in pre
dictive models for neurological outcomes of CA survivors; however, 
some limitations remain. Firstly, as a classifier model, AUC is the pri
mary performance metric, and both specificity and sensitivity are 
crucial. High specificity helps avoid misdiagnoses and unnecessary 
treatments, while high sensitivity helps prevent missed diagnoses. ML 
can integrate features and continuously optimize parameters, but often 
falls short in balancing sensitivity and specificity. For instance, So et al. 
constructed a tree model that included features such as age, gender, 
initial rhythm, no-flow time, low-flow time, pupillary light reflex, and 
GCS score, achieving 100 % sensitivity but only 64 % specificity [65]. 
Peluso et al. reported a multimodal approach that integrated neuro
logical pupillary index, NSE, EEG, and SSEP, with specificity and 
sensitivity of 100 % and 70 %, respectively [51]. Therefore, further 
studies are required to optimize feature organization to better balance 
sensitivity and specificity. Additionally, calibration is also a very 
important concept, which indicating the consistency between the pre
dicted probabilities and the actual occurrence; only well-calibrated 
models can exhibit strong robustness in clinical settings. Second, 
different ML algorithms have their own strengths, but there is still no 
optimum model. The potential difficulty in selection lies in the differ
ences in the intrinsic data characteristics and research design, compli
cating comparisons across models. In addition, there are bound to be 
differences in the integrity of neurological function of CA patients at 
different study endpoints, and we still cannot determine a single algo
rithm. Researchers have attempted to construct predictive models based 
on ensemble algorithms, which may be a promising direction for 
designing more robust and practical models in the future. Third, most 
ML models extracted training samples from regional datasets and were 
limited to single-center internal validation. Some studies used two in
dependent open-access databases to train and externally validate 
neurological prognostic models [48,96]. Few studies used unique co
horts for external validation on the basis of previous studies [97]. 
Therefore, more multicenter, prospective studies are needed to validate 
model generalizability. Besides, multicenter validation may not produce 
desirable results due to inherent different patient spectrum. Considering 
the above limitations, no single ML model for predicting neurological 
outcomes after CA has been widely applied in clinical practice.

With the increasing volume of medical data and the gradual maturity 
of ML technology, the effective combination of medicine and informatics 
is an inevitable trend. ML, with its high speed and precision, saves a lot 
of labor costs and time waste and helps clinicians obtain more accurate 
neurological outcome assessments in the early stages, make WLST de
cisions, and optimize the allocation of medical resources. ML ap
proaches can also guide clinical treatment and improve patients’ quality 
of life after discharge. In addition, although the latest guidelines 
recommend multimodal prognostic assessment with clinical neurolog
ical examinations as the main components, these guidelines exclude 
demographics, prehospital information, and arrest characteristics [5]. 
ML can integrate various features to improve the overall performance of 
the prediction models. The guidelines indicate that manifestations of 
anoxic injury on CT or MRI are associated with poor outcomes. How
ever, current imaging research based on DL focused on neural network 
connectivity has generated novel directions for image-related prognostic 
analysis. Moreover, an increasing number of ML-related clinical studies 
have been conducted, and researchers worldwide have engaged in in
dependent model development and validation. These researchers are 
striving to widely apply ML-based neurological outcome prediction 
tools. Further research on predictors, such as more advanced bio
markers, EEG, and rs-fMRI, will likely enhance their clinical 

accessibility, leading these approaches to become common clinical 
detection methods in the future.

Conclusion

Early assessment of the outcomes of CA survivors contributes to 
clinical decision-making and further intervention. Numerous features 
have been found to be valuable in predicting the neurological outcomes 
of CA patients, such as arrest characteristics, biomarkers, SSEPs, and 
EEG. ML has unique advantages in processing and analyzing high- 
capacity data and constructing predictive models. In particular, much 
research has been conducted on supervised learning and DL algorithms. 
Although ML models have not been widely applied in clinical practice, 
this approach has broad prospects for future explorations and will likely 
become a powerful tool to evaluate CA survivor outcomes.

Author contributions

PN planned the manuscript. PN and SZ conducted the literature 
search and drafted the manuscript. MD and WH revised the manuscript. 
All authors contributed to manuscript revision and approved the sub
mitted version.

CRediT authorship contribution statement

Peifeng Ni: Writing – original draft, Methodology, Investigation, 
Conceptualization. Sheng Zhang: Writing – review & editing, Meth
odology, Conceptualization. Wei Hu: Writing – review & editing, Su
pervision, Funding acquisition. Mengyuan Diao: Writing – review & 
editing, Supervision, Methodology, Conceptualization.

Funding

This work was supported by Construction Fund of Medical Key Dis
ciplines of Hangzhou (grant. OO20200485) and Key Program Cospon
sored by Zhejiang Province and National Health Commission of China 
(grant. WKJ-ZJ-2315).

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance 
during the preparation of this manuscript.

References

[1]. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 
Update: A Report From the American Heart Association. Circulation. 2020;141(9): 
E139–E596. https://doi.org/10.1161/cir.0000000000000757. PubMed PMID: 
WOS:000529485300005.

[2]. Fu HY, Chen YS, Yu HY, Chi NH, Wei LY, Chen KP, et al. Emergent coronary 
revascularization with percutaneous coronary intervention and coronary artery 
bypass grafting in patients receiving extracorporeal cardiopulmonary 
resuscitation. Eur J Cardiothorac Surg. 2024;66(2). doi: 10.1093/ejcts/ezae290. 
PubMed PMID: 39073911; PubMed Central PMCID: PMCPMC11315652.

[3]. Benfor B, Haddad P, Bohle K, Atkins MD, Lumsden AB, Peden EK. Cardiovascular 
collapse during mechanical thrombectomy for acute pulmonary embolism and the 
role of extracorporeal membrane oxygenation in patient rescue. J Vasc Surg 
Venous Lymphat Disord. 2023;11(5):978-85.eEpub 20230406. doi: 10.1016/j. 
jvsv.2023.03.016. PubMed PMID: 37030443.

[4]. Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: 
pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47(12): 
1393–1414. https://doi.org/10.1007/s00134-021-06548-2. PubMed PMID: WOS: 
000712480100002.

P. Ni et al.                                                                                                                                                                                                                                        Resuscitation Plus 20 (2024) 100829 

6 

https://doi.org/10.1161/cir.0000000000000757. PubMed PMID: WOS:000529485300005
https://doi.org/10.1161/cir.0000000000000757. PubMed PMID: WOS:000529485300005
https://doi.org/10.1007/s00134-021-06548-2. PubMed PMID: WOS:000712480100002
https://doi.org/10.1007/s00134-021-06548-2. PubMed PMID: WOS:000712480100002


[5]. Nolan JP, Sandroni C, Bottiger BW, et al. European Resuscitation Council and 
European Society of Intensive Care Medicine guidelines 2021: post-resuscitation 
care. Intensive Care Med. 2021;47(4):369–421. https://doi.org/10.1007/s00134- 
021-06368-4. PubMed PMID: WOS:000632805600001.

[6]. Kelsey SF. A RANDOMIZED CLINICAL-STUDY OF CARDIOPULMONARY 
CEREBRAL RESUSCITATION - DESIGN, METHODS, AND PATIENT 
CHARACTERISTICS. Am J Emerg Med. 1986;4(1):72-88. PubMed PMID: WOS: 
A1986AYD4100017.

[7]. Matsuda J, Kato S, Yano H, Nitta G, Kono T, Ikenouchi T, et al. The Sequential 
Organ Failure Assessment (SOFA) score predicts mortality and neurological 
outcome in patients with post-cardiac arrest syndrome. J Cardiol. 2020;76(3):295- 
302. Epub 20200416. doi: 10.1016/j.jjcc.2020.03.00PubMed PMID: 32305260.

[8]. Choi JY, Jang JH, Lim YS, et al. Performance on the APACHE II, SAPS II, SOFA and 
the OHCA score of post-cardiac arrest patients treated with therapeutic 
hypothermia. PLoS One. 2018;13(5):12. https://doi.org/10.1371/journal. 
pone.0196197. PubMed PMID: WOS:000431305100016.

[9]. Adrie C, Cariou A, Mourvillier B, et al. Predicting survival with good neurological 
recovery at hospital admission after successful resuscitation of out-of-hospital 
cardiac arrest: the OHCA score. Eur Heart J. 2006;27(23):2840–2845. https://doi. 
org/10.1093/eurheartj/ehl335. PubMed PMID: WOS:000242472100017.

[10]. Maupain C, Bougouin W, Lamhaut L, et al. The CAHP (Cardiac Arrest Hospital 
Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. 
Eur Heart J. 2016;37(42):3222–3228. https://doi.org/10.1093/eurheartj/ehv556. 
PubMed PMID: WOS:000390303800014.

[11]. Chelly J, Mpela AG, Jochmans S, Brunet J, Legriel S, Guerin L, et al. OHCA (Out- 
of-Hospital Cardiac Arrest) and CAHP (Cardiac Arrest Hospital Prognosis) scores 
to predict outcome after in-hospital cardiac arrest: Insight from a multicentric 
registry. Resuscitation. 2020;156:167-73. Epub 20200922. doi: 10.1016/j. 
resuscitation.2020.09.021. PubMed PMID: 32976962.

[12]. Ebell MH, Jang W, Shen Y, Geocadin RG, Get G-R. Development and Validation of 
the Good Outcome Following Attempted Resuscitation (GO-FAR) Score to Predict 
Neurologically Intact Survival After In-Hospital Cardiopulmonary Resuscitation. 
JAMA Intern Med. 2013;173(20):1872–U24. https://doi.org/10.1001/ 
jamainternmed.2013.10037. PubMed PMID: WOS:000330586600005.

[13]. Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applications and 
performance of machine learning techniques and algorithms in clinical practice: A 
systematic review. Int J Med Inform. 2022;159:11. https://doi.org/10.1016/j. 
ijmedinf.2021.104679. PubMed PMID: WOS:000788794900002.

[14]. Lee YJ, Cho KJ, Kwon O, et al. A multicentre validation study of the deep earning- 
based early warning score for predicting in-hospital cardiac arrest in patients 
admitted to general wards. Resuscitation. 2021;163:78–85. https://doi.org/ 
10.1016/j.resuscitation.2021.04.013. PubMed PMID: WOS:000653444500004.

[15]. Wu TT, Lin XQ, Mu Y, Li H, Guo YS. Machine learning for early prediction of in- 
hospital cardiac arrest in patients with acute coronary syndromes. Clin Cardiol. 
2021;44(3):349–356. https://doi.org/10.1002/clc.23541. PubMed PMID: WOS: 
000617797200001.

[16]. Okada Y, Komukai S, Kitamura T, et al. Clustering out-of-hospital cardiac arrest 
patients with non-shockable rhythm by machine learning latent class analysis. 
Acute Med Surg. 2022;9(1):11. https://doi.org/10.1002/ams2.760. PubMed PMID: 
WOS:000800550700001.

[17]. Okada Y, Komukai S, Kitamura T, Kiguchi T, Irisawa T, Yamada T, et al. Clinical 
Phenotyping of Out-of-Hospital Cardiac Arrest Patients With Shockable Rhythm - 
Machine Learning-Based Unsupervised Cluster Analysis. Circ J. 2022;86(4):668-+. 
doi: 10.1253/circj.CJ-21-0675. PubMed PMID: WOS:000775636700017.

[18]. Harford S, Del Rios M, Heinert S, et al. A machine learning approach for modeling 
decisions in the out of hospital cardiac arrest care workflow. BMC Med Inform Decis 
Mak. 2022;22(1):9. https://doi.org/10.1186/s12911-021-01730-4. PubMed 
PMID: WOS:000746994300001.

[19]. Johnsson J, Bjornsson O, Andersson P, et al. Artificial neural networks improve 
early outcome prediction and risk classification in out-of-hospital cardiac arrest 
patients admitted to intensive care. Crit Care. 2020;24(1):12. https://doi.org/ 
10.1186/s13054-020-03103-1. PubMed PMID: WOS:000557450000001.

[20]. Seki T, Tamura T, Suzuki M, Grp S-KS. Outcome prediction of out-of-hospital 
cardiac arrest with presumed cardiac aetiology using an advanced machine 
learning technique. Resuscitation. 2019;141:128-35. doi: 10.1016/j. 
resuscitation.2019.06.006. PubMed PMID: WOS:000476617900016.

[21]. Mueller B, Kinoshita T, Peebles A, Graber MA, Lee S. Artificial intelligence and 
machine learning in emergency medicine: a narrative review. Acute Med Surg. 
2022;9(1):10. https://doi.org/10.1002/ams2.740. PubMed PMID: WOS: 
000762430500001.

[22]. Li H, Wu TT, Yang DL, et al. Decision tree model for predicting in-hospital cardiac 
arrest among patients admitted with acute coronary syndrome. Clin Cardiol. 2019; 
42(11):1087–1093. https://doi.org/10.1002/clc.23255. PubMed PMID: WOS: 
000486271100001.

[23]. Elmer J, Coppler PJ, May TL, et al. Unsupervised learning of early post-arrest brain 
injury phenotypes. Resuscitation. 2020;153:154–160. https://doi.org/10.1016/j. 
resuscitation.2020.05.051. PubMed PMID: WOS:000552386600029.

[24]. Peine A, Hallawa A, Bickenbach J, Dartmann G, Fazlic LB, Schmeink A, et al. 
Development and validation of a reinforcement learning algorithm to dynamically 
optimize mechanical ventilation in critical care. npj Digit Med. 2021;4(1):12. doi: 
10.1038/s41746-021-00388-6. PubMed PMID: WOS:000621196200003.

[25]. Su LX, Li YS, Liu SJ, et al. Establishment and Implementation of Potential Fluid 
Therapy Balance Strategies for ICU Sepsis Patients Based on Reinforcement 
Learning. Front Med. 2022;9:14. https://doi.org/10.3389/fmed.2022.766447. 
PubMed PMID: WOS:000796239300001.

[26]. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. 
https://doi.org/10.1038/nature14539. PubMed PMID: WOS:000355286600030.

[27]. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 
2015;61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003. PubMed PMID: 
WOS:000347595400010.

[28]. Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for 
Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc. 2018;7(13):11. https:// 
doi.org/10.1161/jaha.118.008678. PubMed PMID: WOS:000452700100018.

[29]. Zheng T, Lin F, Li X, et al. Deep learning-enabled fully automated pipeline system 
for segmentation and classification of single-mass breast lesions using contrast- 
enhanced mammography: a prospective, multicentre study. EClinicalMedicine. 
2023;58, 101913. https://doi.org/10.1016/j.eclinm.2023.101913. PubMed 
PMID: MEDLINE:36969336.

[30]. Niu YL, Lu ZW, Wen JR, Xiang T, Chang SF. Multi-Modal Multi-Scale Deep 
Learning for Large-Scale Image Annotation. IEEE Trans Image Process. 2019;28(4): 
1720–1731. https://doi.org/10.1109/tip.2018.2881928. PubMed PMID: WOS: 
000451941600012.

[31]. Obayya M, Maashi MS, Nemri N, et al. Hyperparameter Optimizer with Deep 
Learning-Based Decision-Support Systems for Histopathological Breast Cancer 
Diagnosis. Cancers. 2023;15(3):19. https://doi.org/10.3390/cancers15030885. 
PubMed PMID: WOS:000933786400001.

[32]. Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques 
for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature 
Review. Bioengineering-Basel. 2022;9(12):35. https://doi.org/10.3390/ 
bioengineering9120781. PubMed PMID: WOS:000902138800001.

[33]. Jain R, Nallamothu BK, Chan PS, Amer HA. Body Mass Index and Survival After In- 
Hospital Cardiac Arrest. Circ-Cardiovasc Qual Outcomes. 2010;3(5):490–U82. 
https://doi.org/10.1161/circoutcomes.109.912501. PubMed PMID: WOS: 
000284262100010.

[34]. Bang HJ, Park KN, Youn CS, et al. The relationship between body mass index and 
neurologic outcomes in survivors of out-of-hospital cardiac arrest treated with 
targeted temperature management. PLoS One. 2022;17(3):11. https://doi.org/ 
10.1371/journal.pone.0265656. PubMed PMID: WOS:000783906500008.

[35]. Harford S, Darabi H, Heinert S, et al. Utilizing community level factors to improve 
prediction of out of hospital cardiac arrest outcome using machine learning. 
Resuscitation. 2022;178:78–84. https://doi.org/10.1016/j. 
resuscitation.2022.07.006. PubMed PMID: WOS:000863501900006.

[36]. Gue YX, Adatia K, Kanji R, Potpara T, Lip GYH, Gorog DA. Out-of-hospital cardiac 
arrest: A systematic review of current risk scores to predict survival. Am Heart J. 
2021;234:31–41. https://doi.org/10.1016/j.ahj.2020.12.011. PubMed PMID: 
WOS:000631894800004.

[37]. Al-Dury N, Ravn-Fischer A, Hollenberg J, et al. Identifying the relative importance 
of predictors of survival in out of hospital cardiac arrest: a machine learning study. 
Scand J Trauma Resusc Emerg Med. 2020;28(1):8. https://doi.org/10.1186/ 
s13049-020-00742-9. PubMed PMID: WOS:000545747800002.

[38]. Wong XY, Ang YK, Li KQ, et al. Clinical paper Development and validation of the 
SARICA score to predict survival after return of spontaneous circulation in out of 
hospital cardiac arrest using an interpretable machine learning framework. 
Resuscitation. 2022;170:126–133. https://doi.org/10.1016/j. 
resuscitation.2021.11.029. PubMed PMID: WOS:000767338600012.

[39]. Lin WC, Huang CH, Chien LT, et al. Tree-Based Algorithms and Association Rule 
Mining for Predicting Patients’ Neurological Outcomes After First-Aid Treatment 
for an Out-of-Hospital Cardiac Arrest During COVID-19 Pandemic Application of 
Data Mining. Int J Gen Med. 2022;15:7395–7405. https://doi.org/10.2147/ijgm. 
S384959. PubMed PMID: WOS:000862427900001.

[40]. Park JH, Do Shin S, Song KJ, et al. Prediction of good neurological recovery after 
out-of-hospital cardiac arrest: A machine learning analysis. Resuscitation. 2019; 
142:127–135. https://doi.org/10.1016/j.resuscitation.2019.07.020. PubMed 
PMID: WOS:000482624100023.

[41]. Hessulf F, Bhatt DL, Engdahl J, et al. Predicting survival and neurological outcome 
in out-of-hospital cardiac arrest using machine learning: the SCARS model. 
EBioMedicine. 2023;89:11. https://doi.org/10.1016/j.ebiom.2023. 104464. 
PubMed PMID: WOS:000946508500001.

[42]. Adnet F, Triba MN, Borron SW, et al. Cardiopulmonary resuscitation duration and 
survival in out-of-hospital cardiac arrest patients. Resuscitation. 2017;111:74–81. 
https://doi.org/10.1016/j.resuscitation.2016.11.024. PubMed PMID: WOS: 
000397164200018.

[43]. Kwon JM, Jeon KH, Kim HM, et al. Deep-learning-based out-of-hospital cardiac 
arrest prognostic system to predict clinical outcomes. Resuscitation. 2019;139: 
84–91. https://doi.org/10.1016/j.resuscitation.2019.04.007. PubMed PMID: 
WOS:000470076000011.

[44]. Mayampurath A, Hagopian R, Venable L, et al. Comparison of Machine Learning 
Methods for Predicting Outcomes After In-Hospital Cardiac Arrest. Crit Care Med. 
2022;50(2):E162–E172. https://doi.org/10.1097/ccm.0000000000005286. 
PubMed PMID: WOS:000748940400007.

[45]. Mayampurath A, Bashiri F, Hagopian R, et al. Predicting neurological outcomes 
after in-hospital cardiac arrests for patients with Coronavirus Disease 2019. 
Resuscitation. 2022;178:55–62. https://doi.org/10.1016/j. 
resuscitation.2022.07.018. PubMed PMID: WOS:000863501900003.

[46]. Geocadin RG, Callaway CW, Fink EL, et al. Standards for Studies of Neurological 
Prognostication in Comatose Survivors of Cardiac Arrest: A Scientific Statement 
From the American Heart Association. Circulation. 2019;140(9):E517–E542. 
https://doi.org/10.1161/cir.0000000000000702. PubMed PMID: WOS: 
000483552900005.

[47]. Cheng CY, Chiu IM, Zeng WH, Tsai CM, Lin CHR. Machine Learning Models for 
Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest 

P. Ni et al.                                                                                                                                                                                                                                        Resuscitation Plus 20 (2024) 100829 

7 

https://doi.org/10.1007/s00134-021-06368-4. PubMed PMID: WOS:000632805600001
https://doi.org/10.1007/s00134-021-06368-4. PubMed PMID: WOS:000632805600001
https://doi.org/10.1371/journal.pone.0196197. PubMed PMID: WOS:000431305100016
https://doi.org/10.1371/journal.pone.0196197. PubMed PMID: WOS:000431305100016
https://doi.org/10.1093/eurheartj/ehl335. PubMed PMID: WOS:000242472100017
https://doi.org/10.1093/eurheartj/ehl335. PubMed PMID: WOS:000242472100017
https://doi.org/10.1093/eurheartj/ehv556. PubMed PMID: WOS:000390303800014
https://doi.org/10.1093/eurheartj/ehv556. PubMed PMID: WOS:000390303800014
https://doi.org/10.1001/jamainternmed.2013.10037. PubMed PMID: WOS:000330586600005
https://doi.org/10.1001/jamainternmed.2013.10037. PubMed PMID: WOS:000330586600005
https://doi.org/10.1016/j.ijmedinf.2021.104679. PubMed PMID: WOS:000788794900002
https://doi.org/10.1016/j.ijmedinf.2021.104679. PubMed PMID: WOS:000788794900002
https://doi.org/10.1016/j.resuscitation.2021.04.013. PubMed PMID: WOS:000653444500004
https://doi.org/10.1016/j.resuscitation.2021.04.013. PubMed PMID: WOS:000653444500004
https://doi.org/10.1002/clc.23541. PubMed PMID: WOS:000617797200001
https://doi.org/10.1002/clc.23541. PubMed PMID: WOS:000617797200001
https://doi.org/10.1002/ams2.760. PubMed PMID: WOS:000800550700001
https://doi.org/10.1002/ams2.760. PubMed PMID: WOS:000800550700001
https://doi.org/10.1186/s12911-021-01730-4. PubMed PMID: WOS:000746994300001
https://doi.org/10.1186/s12911-021-01730-4. PubMed PMID: WOS:000746994300001
https://doi.org/10.1186/s13054-020-03103-1. PubMed PMID: WOS:000557450000001
https://doi.org/10.1186/s13054-020-03103-1. PubMed PMID: WOS:000557450000001
https://doi.org/10.1002/ams2.740. PubMed PMID: WOS:000762430500001
https://doi.org/10.1002/ams2.740. PubMed PMID: WOS:000762430500001
https://doi.org/10.1002/clc.23255. PubMed PMID: WOS:000486271100001
https://doi.org/10.1002/clc.23255. PubMed PMID: WOS:000486271100001
https://doi.org/10.1016/j.resuscitation.2020.05.051. PubMed PMID: WOS:000552386600029
https://doi.org/10.1016/j.resuscitation.2020.05.051. PubMed PMID: WOS:000552386600029
https://doi.org/10.3389/fmed.2022.766447. PubMed PMID: WOS:000796239300001
https://doi.org/10.3389/fmed.2022.766447. PubMed PMID: WOS:000796239300001
https://doi.org/10.1038/nature14539. PubMed PMID: WOS:000355286600030
https://doi.org/10.1016/j.neunet.2014.09.003. PubMed PMID: WOS:000347595400010
https://doi.org/10.1016/j.neunet.2014.09.003. PubMed PMID: WOS:000347595400010
https://doi.org/10.1161/jaha.118.008678. PubMed PMID: WOS:000452700100018
https://doi.org/10.1161/jaha.118.008678. PubMed PMID: WOS:000452700100018
https://doi.org/10.1016/j.eclinm.2023.101913. PubMed PMID: MEDLINE:36969336
https://doi.org/10.1016/j.eclinm.2023.101913. PubMed PMID: MEDLINE:36969336
https://doi.org/10.1109/tip.2018.2881928. PubMed PMID: WOS:000451941600012
https://doi.org/10.1109/tip.2018.2881928. PubMed PMID: WOS:000451941600012
https://doi.org/10.3390/cancers15030885. PubMed PMID: WOS:000933786400001
https://doi.org/10.3390/cancers15030885. PubMed PMID: WOS:000933786400001
https://doi.org/10.3390/bioengineering9120781. PubMed PMID: WOS:000902138800001
https://doi.org/10.3390/bioengineering9120781. PubMed PMID: WOS:000902138800001
https://doi.org/10.1161/circoutcomes.109.912501. PubMed PMID: WOS:000284262100010
https://doi.org/10.1161/circoutcomes.109.912501. PubMed PMID: WOS:000284262100010
https://doi.org/10.1371/journal.pone.0265656. PubMed PMID: WOS:000783906500008
https://doi.org/10.1371/journal.pone.0265656. PubMed PMID: WOS:000783906500008
https://doi.org/10.1016/j.resuscitation.2022.07.006. PubMed PMID: WOS:000863501900006
https://doi.org/10.1016/j.resuscitation.2022.07.006. PubMed PMID: WOS:000863501900006
https://doi.org/10.1016/j.ahj.2020.12.011. PubMed PMID: WOS:000631894800004
https://doi.org/10.1016/j.ahj.2020.12.011. PubMed PMID: WOS:000631894800004
https://doi.org/10.1186/s13049-020-00742-9. PubMed PMID: WOS:000545747800002
https://doi.org/10.1186/s13049-020-00742-9. PubMed PMID: WOS:000545747800002
https://doi.org/10.1016/j.resuscitation.2021.11.029. PubMed PMID: WOS:000767338600012
https://doi.org/10.1016/j.resuscitation.2021.11.029. PubMed PMID: WOS:000767338600012
https://doi.org/10.2147/ijgm.S384959. PubMed PMID: WOS:000862427900001
https://doi.org/10.2147/ijgm.S384959. PubMed PMID: WOS:000862427900001
https://doi.org/10.1016/j.resuscitation.2019.07.020. PubMed PMID: WOS:000482624100023
https://doi.org/10.1016/j.resuscitation.2019.07.020. PubMed PMID: WOS:000482624100023
https://doi.org/10.1016/j.ebiom.2023. 104464. PubMed PMID: WOS:000946508500001
https://doi.org/10.1016/j.ebiom.2023. 104464. PubMed PMID: WOS:000946508500001
https://doi.org/10.1016/j.resuscitation.2016.11.024. PubMed PMID: WOS:000397164200018
https://doi.org/10.1016/j.resuscitation.2016.11.024. PubMed PMID: WOS:000397164200018
https://doi.org/10.1016/j.resuscitation.2019.04.007. PubMed PMID: WOS:000470076000011
https://doi.org/10.1016/j.resuscitation.2019.04.007. PubMed PMID: WOS:000470076000011
https://doi.org/10.1097/ccm.0000000000005286. PubMed PMID: WOS:000748940400007
https://doi.org/10.1097/ccm.0000000000005286. PubMed PMID: WOS:000748940400007
https://doi.org/10.1016/j.resuscitation.2022.07.018. PubMed PMID: WOS:000863501900003
https://doi.org/10.1016/j.resuscitation.2022.07.018. PubMed PMID: WOS:000863501900003
https://doi.org/10.1161/cir.0000000000000702. PubMed PMID: WOS:000483552900005
https://doi.org/10.1161/cir.0000000000000702. PubMed PMID: WOS:000483552900005


Patients. Biomed Res Int. 2021;2021:8. https://doi.org/10.1155/2021/9590131. 
PubMed PMID: WOS:000703315400001.

[48]. Kim HB, Nguyen HT, Jin QC, et al. Computational signatures for post-cardiac 
arrest trajectory prediction: Importance of early physiological time series. Anaesth 
Crit Care Pain Med. 2022;41(1):11. https://doi.org/10.1016/j. 
accpm.2021.101015. PubMed PMID: WOS:000800038400018.

[49]. Sandroni C, Cavallaro F, Callaway CW, D’Arrigo S, Sanna T, Kuiper MA, et al. 
Predictors of poor neurological outcome in adult comatose survivors of cardiac 
arrest: A systematic review and meta-analysis. Part 2: Patients treated with 
therapeutic hypothermia. Resuscitation. 2013;84(10):1324-38. doi: 10.1016/j. 
resuscitation.2013.06.020. PubMed PMID: WOS:000327099600014.

[50]. Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in 
patients in coma after cardiac arrest. Lancet Neurol. 2016;15(6):597–609. https:// 
doi.org/10.1016/s1474-4422(16)00015-6. PubMed PMID: WOS: 
000373835900018.

[51]. Peluso L, Boisdenghien T, Attanasio L, et al. Multimodal Approach to Predict 
Neurological Outcome after Cardiac Arrest: A Single-Center Experience. Brain Sci. 
2021;11(7):10. https://doi.org/10.3390/brainsci11070888. PubMed PMID: WOS: 
000678174400001.

[52]. Hoiland RL, Rikhraj KJK, Thiara S, et al. Neurologic Prognostication After Cardiac 
Arrest Using Brain Biomarkers A Systematic Review and Meta-analysis. JAMA 
Neurol. 2022;79(4):390–398. https://doi.org/10.1001/jamaneurol.2021.5598. 
PubMed PMID: WOS:000764268100002.

[53]. Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. 
Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting 
neurological outcome. Resuscitation. 2014;85(12):1654–1661. https://doi.org/ 
10.1016/j.resuscitation.2014.09.007. PubMed PMID: WOS:000346603700010.

[54]. Humaloja J, Lahde M, Ashton NJ, et al. GFAp and tau protein as predictors of 
neurological outcome after out-of-hospital cardiac arrest: A post hoc analysis of 
the COMACARE trial. Resuscitation. 2022;170:141–149. https://doi.org/10.1016/ 
j.resuscitation.2021.11.033. PubMed PMID: WOS:000767338600014.

[55]. Song H, Bang HJ, You Y, et al. Novel serum biomarkers for predicting neurological 
outcomes in postcardiac arrest patients treated with targeted temperature 
management. Crit Care. 2023;27(1):113. https://doi.org/10.1186/s13054-023- 
04400-1. PubMed PMID: MEDLINE:36927495.

[56]. Andersson P, Johnsson J, Bjornsson O, et al. Predicting neurological outcome after 
out-of-hospital cardiac arrest with cumulative information; development and 
internal validation of an artificial neural network algorithm. Crit Care. 2021;25(1): 
12. https://doi.org/10.1186/s13054-021-03505-9. PubMed PMID: WOS: 
000624580500002.

[57]. Tamura T, Namiki J, Sugawara Y, et al. Quantitative assessment of pupillary light 
reflex for early prediction of outcomes after out-of-hospital cardiac arrest: A 
multicentre prospective observational study. Resuscitation. 2018;131:108–113. 
https://doi.org/10.1016/j.resuscitation.2018.06.027. PubMed PMID: WOS: 
000443710100025.

[58]. Riker RR, Sawyer ME, Fischman VG, et al. Neurological Pupil Index and Pupillary 
Light Reflex by Pupillometry Predict Outcome Early After Cardiac Arrest. Neurocrit 
Care. 2020;32(1):152–161. https://doi.org/10.1007/s12028-019-00717-4. 
PubMed PMID: WOS:000512861100011.

[59]. Bouwes A, Binnekade JM, Kuiper MA, et al. Prognosis of coma after therapeutic 
hypothermia: A prospective cohort study. Ann Neurol. 2012;71(2):206–212. 
https://doi.org/10.1002/ana.22632. PubMed PMID: WOS:000300715300010.

[60]. Kim JH, Park I, Chung SP, et al. Optimal combination of clinical examinations for 
neurologic prognostication of out-of-hospital cardiac arrest patients. Resuscitation. 
2020;155:91–99. https://doi.org/10.1016/j.resuscitation.2020.07.014. PubMed 
PMID: WOS:000570748100016.

[61]. Moseby-Knappe M, Westhal E, Backman S, et al. Performance of a guideline- 
recommended algorithm for prognostication of poor neurological outcome after 
cardiac arrest. Intensive Care Med. 2020;46(10):1852–1862. https://doi.org/ 
10.1007/s00134-020-06080-9. PubMed PMID: WOS:000537668500003.

[62]. Fugate JE, Wijdicks EFM, Mandrekar J, et al. Predictors of Neurologic Outcome in 
Hypothermia after Cardiac Arrest. Ann Neurol. 2010;68(6):907–914. https://doi. 
org/10.1002/ana.22133. PubMed PMID: WOS:000285953500018.

[63]. Chakraborty T, Braksick S, Rabinstein A, Wijdicks E. Status Myoclonus with Post- 
cardiac-arrest Syndrome: Implications for Prognostication. Neurocrit Care. 2022;36 
(2):387–394. https://doi.org/10.1007/s12028-021-01344-8. PubMed PMID: 
WOS:000702191100001.

[64]. Nutma S, Ruijter BJ, Beishuizen A, Tromp SC, Scholten E, Horn J, et al. Myoclonus 
in comatose patients with electrographic status epilepticus after cardiac arrest: 
Corresponding EEG patterns, effects of treatment and outcomes. Resuscitation. 
2023:109745. doi: 10.1016/j.resuscitation.2023.109745. PubMed PMID: 
MEDLINE:36822459.

[65]. Shin SM, Kim KS, Suh GJ, et al. Prediction of neurological outcomes following the 
return of spontaneous circulation in patients with out-of-hospital cardiac arrest: 
Retrospective fast-and-frugal tree analysis. Resuscitation. 2018;133:65–70. https:// 
doi.org/10.1016/j.resuscitation.2018.10.002. PubMed PMID: WOS: 
000451022200021.

[66]. Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest 
coma: early clinical and electroencephalographic predictors of outcome. Intensive 
Care Med. 2015;41(7):1264–1272. https://doi.org/10.1007/s00134-015-3834-x. 
PubMed PMID: WOS:000356952200008.

[67]. Hofmeijer J, Beernink TMJ, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, 
van Putten M. Early EEG contributes to multimodal outcome prediction of 
postanoxic coma. Neurology. 2015;85(2):137–143. https://doi.org/10.1212/ 
wnl.0000000000001742. PubMed PMID: WOS:000357804900006.

[68]. Ruijter BJ, Tjepkema-Cloostermans MC, Tromp SC, et al. Early 
electroencephalography for outcome prediction of postanoxic coma: A prospective 
cohort study. Ann Neurol. 2019;86(2):203–214. https://doi.org/10.1002/ 
ana.25518. PubMed PMID: WOS:000475670500006.

[69]. Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation 
accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16): 
1482–1490. https://doi.org/10.1212/wnl.0000000000002462. PubMed PMID: 
WOS:000374887700009.

[70]. Amorim E, Van der Stoel M, Nagaraj SB, et al. Quantitative EEG reactivity and 
machine learning for prognostication in hypoxic-ischemic brain injury. Clin 
Neurophysiol. 2019;130(10):1908–1916. https://doi.org/10.1016/j. 
clinph.2019.07.014. PubMed PMID: WOS:000485832400018.

[71]. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit 
Care. 2012;16(2):9. https://doi.org/10.1186/cc11230. PubMed PMID: WOS: 
000313196800056.

[72]. Tjepkema-Cloostermans MC, Hofmeijer J, Beishuizen A, et al. Cerebral Recovery 
Index: Reliable Help for Prediction of Neurologic Outcome After Cardiac Arrest. 
Crit Care Med. 2017;45(8):E789–E797. https://doi.org/10.1097/ 
ccm.0000000000002412. PubMed PMID: WOS:000405469600006.

[73]. Nagaraj SB, Tjepkema-Cloostermans MC, Ruijter BJ, Hofmeijer J, van Putten M. 
The revised Cerebral Recovery Index improves predictions of neurological 
outcome after cardiac arrest. Clin Neurophysiol. 2018;129(12):2557–2566. https:// 
doi.org/10.1016/j.clinph.2018.10.004. PubMed PMID: WOS:000451761000008.

[74]. Pham SDT, Keijzer HM, Ruijter BJ, et al. Outcome Prediction of Postanoxic Coma: 
A Comparison of Automated Electroencephalography Analysis Methods. Neurocrit 
Care. 2022;37(SUPPL 2):248–258. https://doi.org/10.1007/s12028-022-01449-8. 
PubMed PMID: WOS:000762917800001.

[75]. Admiraal MM, van Rootselaar AF, Hofmeijer J, et al. Electroencephalographic 
reactivity as predictor of neurological outcome in postanoxic coma: A multicenter 
prospective cohort study. Ann Neurol. 2019;86(1):17–27. https://doi.org/ 
10.1002/ana.25507. PubMed PMID: WOS:000471671600003.

[76]. Zheng W-L, Amorim E, Jing J, et al. Predicting neurological outcome in comatose 
patients after cardiac arrest with multiscale deep neural networks. Resuscitation. 
2021;169:86–94. https://doi.org/10.1016/j.resuscitation.2021.10.034. PubMed 
PMID: MEDLINE:34699925.

[77]. Zheng WL, Amorim E, Jing J, et al. Predicting Neurological Outcome From 
Electroencephalogram Dynamics in Comatose Patients After Cardiac Arrest With 
Deep Learning. IEEE Trans Biomed Eng. 2022;69(5):1813–1825. https://doi.org/ 
10.1109/tbme.2021.3139007. PubMed PMID: WOS:000803112800030.

[78]. Ghassemi MM, Amorim E, Alhanai T, et al. Quantitative Electroencephalogram 
Trends Predict Recovery in Hypoxic-Ischemic Encephalopathy*. Crit Care Med. 
2019;47(10):1416–1423. https://doi.org/10.1097/ccm.0000000000003840. 
PubMed PMID: WOS:000509227100027.

[79]. Horn J, Tjepkema-Cloostermans MC. Somatosensory Evoked Potentials in Patients 
with Hypoxic-Ischemic Brain Injury. Semin Neurol. 2017;37(1):60–65. https://doi. 
org/10.1055/s-0036-1594252. PubMed PMID: WOS:000393256600010.

[80]. Benghanem S, Nguyen LS, Gavaret M, et al. SSEP N20 and P25 amplitudes predict 
poor and good neurologic outcomes after cardiac arrest. Ann Intensive Care. 2022; 
12(1):11. https://doi.org/10.1186/s13613-022-00999-6. PubMed PMID: WOS: 
000769447300001.

[81]. Nobile L, Pognuz ER, Rossetti AO, et al. The characteristics of patients with 
bilateral absent evoked potentials after post-anoxic brain damage: A multicentric 
cohort study. Resuscitation. 2020;149:134–140. https://doi.org/10.1016/j. 
resuscitation.2020.02.017. PubMed PMID: WOS:000522634800020.

[82]. Scarpino M, Carrai R, Lolli F, et al. Neurophysiology for predicting good and poor 
neurological outcome at 12 and 72 h after cardiac arrest: The ProNeCA 
multicentre prospective study. Resuscitation. 2020;147:95–103. https://doi.org/ 
10.1016/j.resuscitation.2019.11.014. PubMed PMID: WOS:000509736600014.

[83]. Barbella G, Novy J, Marques-Vidal P, Oddo M, Rossetti AO. Added value of 
somato-sensory evoked potentials amplitude for prognostication after cardiac 
arrest. Resuscitation. 2020;149:17–23. https://doi.org/10.1016/j. 
resuscitation.2020.01.025. PubMed PMID: WOS:000522634800003.

[84]. Scarpino M, Lolli F, Lanzo G, et al. SSEP amplitude accurately predicts both good 
and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the 
ProNeCA multicentre study. Resuscitation. 2021;163:162–171. https://doi.org/ 
10.1016/j.resuscitation.2021.03.028. PubMed PMID: WOS:000653444500024.

[85]. Aghaeeaval M, Bendahan N, Shivji Z, McInnis C, Jamzad A, Lomax LB, et al., 
editors. Prediction of patient survival following postanoxic coma using EEG data 
and clinical features. 43rd Annual International Conference of the IEEE- 
Engineering-in-Medicine-and-Biology-Society (IEEE EMBC);. 01–05. Electr 
Network. NEW YORK: Ieee; 2021 Nov:2021.

[86]. Soto CL, Dragoi L, Heyn CC, et al. Imaging for Neuroprognostication After Cardiac 
Arrest: Systematic Review and Meta-analysis. Neurocrit Care. 2020;32(1):206–216. 
https://doi.org/10.1007/s12028-019-00842-0. PubMed PMID: WOS: 
000512861100018.

[87]. Kirsch K, Heymel S, Gunther A, et al. Prognostication of neurologic outcome using 
gray-white-matter-ratio in comatose patients after cardiac arrest. BMC Neurol. 
2021;21(1):8. https://doi.org/10.1186/s12883-021-02480-6. PubMed PMID: 
WOS:000721954200001.

[88]. Hanning U, Sporns PB, Lebiedz P, et al. Automated assessment of early hypoxic 
brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest. 
Resuscitation. 2016;104:91–94. https://doi.org/10.1016/j. 
resuscitation.2016.03.018. PubMed PMID: WOS:000377305100021.

[89]. Kenda M, Scheel M, Kemmling A, et al. Automated Assessment of Brain CT After 
Cardiac Arrest-An Observational Derivation/Validation Cohort Study. Crit Care 

P. Ni et al.                                                                                                                                                                                                                                        Resuscitation Plus 20 (2024) 100829 

8 

https://doi.org/10.1155/2021/9590131. PubMed PMID: WOS:000703315400001
https://doi.org/10.1155/2021/9590131. PubMed PMID: WOS:000703315400001
https://doi.org/10.1016/j.accpm.2021.101015. PubMed PMID: WOS:000800038400018
https://doi.org/10.1016/j.accpm.2021.101015. PubMed PMID: WOS:000800038400018
https://doi.org/10.1016/s1474-4422(16)00015-6. PubMed PMID: WOS:000373835900018
https://doi.org/10.1016/s1474-4422(16)00015-6. PubMed PMID: WOS:000373835900018
https://doi.org/10.1016/s1474-4422(16)00015-6. PubMed PMID: WOS:000373835900018
https://doi.org/10.3390/brainsci11070888. PubMed PMID: WOS:000678174400001
https://doi.org/10.3390/brainsci11070888. PubMed PMID: WOS:000678174400001
https://doi.org/10.1001/jamaneurol.2021.5598. PubMed PMID: WOS:000764268100002
https://doi.org/10.1001/jamaneurol.2021.5598. PubMed PMID: WOS:000764268100002
https://doi.org/10.1016/j.resuscitation.2014.09.007. PubMed PMID: WOS:000346603700010
https://doi.org/10.1016/j.resuscitation.2014.09.007. PubMed PMID: WOS:000346603700010
https://doi.org/10.1016/j.resuscitation.2021.11.033. PubMed PMID: WOS:000767338600014
https://doi.org/10.1016/j.resuscitation.2021.11.033. PubMed PMID: WOS:000767338600014
https://doi.org/10.1186/s13054-023-04400-1. PubMed PMID: MEDLINE:36927495
https://doi.org/10.1186/s13054-023-04400-1. PubMed PMID: MEDLINE:36927495
https://doi.org/10.1186/s13054-021-03505-9. PubMed PMID: WOS:000624580500002
https://doi.org/10.1186/s13054-021-03505-9. PubMed PMID: WOS:000624580500002
https://doi.org/10.1016/j.resuscitation.2018.06.027. PubMed PMID: WOS:000443710100025
https://doi.org/10.1016/j.resuscitation.2018.06.027. PubMed PMID: WOS:000443710100025
https://doi.org/10.1007/s12028-019-00717-4. PubMed PMID: WOS:000512861100011
https://doi.org/10.1007/s12028-019-00717-4. PubMed PMID: WOS:000512861100011
https://doi.org/10.1002/ana.22632. PubMed PMID: WOS:000300715300010
https://doi.org/10.1016/j.resuscitation.2020.07.014. PubMed PMID: WOS:000570748100016
https://doi.org/10.1016/j.resuscitation.2020.07.014. PubMed PMID: WOS:000570748100016
https://doi.org/10.1007/s00134-020-06080-9. PubMed PMID: WOS:000537668500003
https://doi.org/10.1007/s00134-020-06080-9. PubMed PMID: WOS:000537668500003
https://doi.org/10.1002/ana.22133. PubMed PMID: WOS:000285953500018
https://doi.org/10.1002/ana.22133. PubMed PMID: WOS:000285953500018
https://doi.org/10.1007/s12028-021-01344-8. PubMed PMID: WOS:000702191100001
https://doi.org/10.1007/s12028-021-01344-8. PubMed PMID: WOS:000702191100001
https://doi.org/10.1016/j.resuscitation.2018.10.002. PubMed PMID: WOS:000451022200021
https://doi.org/10.1016/j.resuscitation.2018.10.002. PubMed PMID: WOS:000451022200021
https://doi.org/10.1016/j.resuscitation.2018.10.002. PubMed PMID: WOS:000451022200021
https://doi.org/10.1007/s00134-015-3834-x. PubMed PMID: WOS:000356952200008
https://doi.org/10.1007/s00134-015-3834-x. PubMed PMID: WOS:000356952200008
https://doi.org/10.1212/wnl.0000000000001742. PubMed PMID: WOS:000357804900006
https://doi.org/10.1212/wnl.0000000000001742. PubMed PMID: WOS:000357804900006
https://doi.org/10.1002/ana.25518. PubMed PMID: WOS:000475670500006
https://doi.org/10.1002/ana.25518. PubMed PMID: WOS:000475670500006
https://doi.org/10.1212/wnl.0000000000002462. PubMed PMID: WOS:000374887700009
https://doi.org/10.1212/wnl.0000000000002462. PubMed PMID: WOS:000374887700009
https://doi.org/10.1016/j.clinph.2019.07.014. PubMed PMID: WOS:000485832400018
https://doi.org/10.1016/j.clinph.2019.07.014. PubMed PMID: WOS:000485832400018
https://doi.org/10.1186/cc11230. PubMed PMID: WOS:000313196800056
https://doi.org/10.1186/cc11230. PubMed PMID: WOS:000313196800056
https://doi.org/10.1097/ccm.0000000000002412. PubMed PMID: WOS:000405469600006
https://doi.org/10.1097/ccm.0000000000002412. PubMed PMID: WOS:000405469600006
https://doi.org/10.1016/j.clinph.2018.10.004. PubMed PMID: WOS:000451761000008
https://doi.org/10.1016/j.clinph.2018.10.004. PubMed PMID: WOS:000451761000008
https://doi.org/10.1007/s12028-022-01449-8. PubMed PMID: WOS:000762917800001
https://doi.org/10.1007/s12028-022-01449-8. PubMed PMID: WOS:000762917800001
https://doi.org/10.1002/ana.25507. PubMed PMID: WOS:000471671600003
https://doi.org/10.1002/ana.25507. PubMed PMID: WOS:000471671600003
https://doi.org/10.1016/j.resuscitation.2021.10.034. PubMed PMID: MEDLINE:34699925
https://doi.org/10.1016/j.resuscitation.2021.10.034. PubMed PMID: MEDLINE:34699925
https://doi.org/10.1109/tbme.2021.3139007. PubMed PMID: WOS:000803112800030
https://doi.org/10.1109/tbme.2021.3139007. PubMed PMID: WOS:000803112800030
https://doi.org/10.1097/ccm.0000000000003840. PubMed PMID: WOS:000509227100027
https://doi.org/10.1097/ccm.0000000000003840. PubMed PMID: WOS:000509227100027
https://doi.org/10.1055/s-0036-1594252. PubMed PMID: WOS:000393256600010
https://doi.org/10.1055/s-0036-1594252. PubMed PMID: WOS:000393256600010
https://doi.org/10.1186/s13613-022-00999-6. PubMed PMID: WOS:000769447300001
https://doi.org/10.1186/s13613-022-00999-6. PubMed PMID: WOS:000769447300001
https://doi.org/10.1016/j.resuscitation.2020.02.017. PubMed PMID: WOS:000522634800020
https://doi.org/10.1016/j.resuscitation.2020.02.017. PubMed PMID: WOS:000522634800020
https://doi.org/10.1016/j.resuscitation.2019.11.014. PubMed PMID: WOS:000509736600014
https://doi.org/10.1016/j.resuscitation.2019.11.014. PubMed PMID: WOS:000509736600014
https://doi.org/10.1016/j.resuscitation.2020.01.025. PubMed PMID: WOS:000522634800003
https://doi.org/10.1016/j.resuscitation.2020.01.025. PubMed PMID: WOS:000522634800003
https://doi.org/10.1016/j.resuscitation.2021.03.028. PubMed PMID: WOS:000653444500024
https://doi.org/10.1016/j.resuscitation.2021.03.028. PubMed PMID: WOS:000653444500024
http://refhub.elsevier.com/S2666-5204(24)00280-7/h0425
http://refhub.elsevier.com/S2666-5204(24)00280-7/h0425
http://refhub.elsevier.com/S2666-5204(24)00280-7/h0425
http://refhub.elsevier.com/S2666-5204(24)00280-7/h0425
http://refhub.elsevier.com/S2666-5204(24)00280-7/h0425
https://doi.org/10.1007/s12028-019-00842-0. PubMed PMID: WOS:000512861100018
https://doi.org/10.1007/s12028-019-00842-0. PubMed PMID: WOS:000512861100018
https://doi.org/10.1186/s12883-021-02480-6. PubMed PMID: WOS:000721954200001
https://doi.org/10.1186/s12883-021-02480-6. PubMed PMID: WOS:000721954200001
https://doi.org/10.1016/j.resuscitation.2016.03.018. PubMed PMID: WOS:000377305100021
https://doi.org/10.1016/j.resuscitation.2016.03.018. PubMed PMID: WOS:000377305100021


Med. 2021;49(12):E1212–E1222. https://doi.org/10.1097/ 
ccm.0000000000005198. PubMed PMID: WOS:000720046300003.

[90]. Silva S, Peran P, Kerhuel L, et al. Brain Gray Matter MRI Morphometry for 
Neuroprognostication After Cardiac Arrest. Crit Care Med. 2017;45(8):E763–E771. 
https://doi.org/10.1097/ccm.0000000000002379. PubMed PMID: WOS: 
000405469600003.

[91]. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat 
Rev Neurol. 2014;10(3):156–166. https://doi.org/10.1038/nrneurol.2014.15. 
PubMed PMID: WOS:000332642600008.

[92]. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, et al. Default network 
connectivity reflects the level of consciousness in non-communicative brain- 
damaged patients. Brain. 2010;133:161–171. https://doi.org/10.1093/brain/ 
awp313. PubMed PMID: WOS:000273492800014.

[93]. Pugin D, Hofmeister J, Gasche Y, et al. Resting-State Brain Activity for Early 
Prediction Outcome in Postanoxic Patients in a Coma with Indeterminate Clinical 
Prognosis. Am J Neuroradiol. 2020;41(6):1022–1030. https://doi.org/10.3174/ 
ajnr.A6572. PubMed PMID: WOS:000548058500023.

[94]. Shen DG, Wu GR, Suk HI. Deep Learning in Medical Image Analysis. In: Yarmush 
ML, editor. Annual Review of Biomedical Engineering, Vol 19. Annual Review of 
Biomedical Engineering. 19. Palo Alto: Annual Reviews; 2017. p. 221-48.

[95]. Mattia GM, Sarton B, Villain E, et al. Multimodal MRI-Based Whole-Brain 
Assessment in Patients In Anoxoischemic Coma by Using 3D Convolutional Neural 
Networks. Neurocrit Care. 2022;37(SUPPL 2):303–312. https://doi.org/10.1007/ 
s12028-022-01525-z. PubMed PMID: WOS:000829717000003.

[96]. Lee HY, Kuo PC, Qian F, Li CH, Hu JR, Hsu WT, et al. Prediction of In-Hospital 
Cardiac Arrest in the Intensive Care Unit: Machine Learning-Based Multimodal 
Approach. JMIR Med Inform. 2024;12:e49142. Epub 20240723. doi: 10.2196/ 
49142. PubMed PMID: 39051152; PubMed Central PMCID: PMCPMC11287234.

[97]. Wang CH, Tay J, Wu CY, Wu MC, Su PI, Fang YD, et al. External Validation and 
Comparison of Statistical and Machine Learning-Based Models in Predicting 
Outcomes Following Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective 
Analysis. J Am Heart Assoc. 2024;13(20):e037088. Epub 20241011. doi: 10.1161/ 
jaha.124.037088. PubMed PMID: 39392158.

P. Ni et al.                                                                                                                                                                                                                                        Resuscitation Plus 20 (2024) 100829 

9 

https://doi.org/10.1097/ccm.0000000000005198. PubMed PMID: WOS:000720046300003
https://doi.org/10.1097/ccm.0000000000005198. PubMed PMID: WOS:000720046300003
https://doi.org/10.1097/ccm.0000000000002379. PubMed PMID: WOS:000405469600003
https://doi.org/10.1097/ccm.0000000000002379. PubMed PMID: WOS:000405469600003
https://doi.org/10.1038/nrneurol.2014.15. PubMed PMID: WOS:000332642600008
https://doi.org/10.1038/nrneurol.2014.15. PubMed PMID: WOS:000332642600008
https://doi.org/10.1093/brain/awp313. PubMed PMID: WOS:000273492800014
https://doi.org/10.1093/brain/awp313. PubMed PMID: WOS:000273492800014
https://doi.org/10.3174/ajnr.A6572. PubMed PMID: WOS:000548058500023
https://doi.org/10.3174/ajnr.A6572. PubMed PMID: WOS:000548058500023
https://doi.org/10.1007/s12028-022-01525-z. PubMed PMID: WOS:000829717000003
https://doi.org/10.1007/s12028-022-01525-z. PubMed PMID: WOS:000829717000003

	Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest
	Introduction
	Machine learning in CA
	Multi-feature models for neuro-prognostication
	Demography
	Arrest characteristics
	Clinical variables
	Biomarkers
	Physical examination
	Electroencephalogram (EEG)
	Electrophysiology
	Imaging

	Limitations and prospections
	Conclusion
	Author contributions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgments
	References


