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Abstract: DNA Helicase B (HELB) is a conserved helicase in higher eukaryotes with roles in the
initiation of DNA replication and in the DNA damage and replication stress responses. HELB is
a predominately nuclear protein in G1 phase where it is involved in initiation of DNA replication
through interactions with DNA topoisomerase 2-binding protein 1 (TOPBP1), cell division control
protein 45 (CDC45), and DNA polymerase α-primase. HELB also inhibits homologous recombination
by reducing long-range end resection. After phosphorylation by cyclin-dependent kinase 2 (CDK2)
at the G1 to S transition, HELB is predominately localized to the cytosol. However, this cytosolic
localization in S phase is not exclusive. HELB has been reported to localize to chromatin in response
to replication stress and to localize to the common fragile sites 16D (FRA16D) and 3B (FRA3B) and the
rare fragile site XA (FRAXA) in S phase. In addition, HELB is phosphorylated in response to ionizing
radiation and has been shown to localize to chromatin in response to various types of DNA damage,
suggesting it has a role in the DNA damage response.
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1. Introduction

Helicases are vital to any event that requires the separation of the two strands of DNA or RNA
such as DNA repair, replication and recombination. Several helicases in the RecQ and iron-sulfur
helicase families are known to be essential for maintaining genomic stability [1]. Genetic defects
associated with these helicases cause premature aging and predisposition to cancer. DNA Helicase B
(HELB, DHB, or HDHB) is a superfamily 1B helicase that also has roles in genome maintenance. HELB
is highly conserved among vertebrates but has no known orthologs in lower eukaryotes [2]. The gene
for murine HELB showed similarities to the Bacillus subtilis RecD2 and E. coli RecD [3]. Preliminary
studies with mouse and human HELB showed it hydrolyzes ATP and unwinds DNA in the 5′-3′

direction; however, a detailed biochemical analysis is lacking [2,4]. A heat sensitive mutant of HELB
was first discovered in murine FM3A cells [4]. When these cells were arrested in early S phase, HELB
expression in the nucleus was increased [3]. This mutant became inactive at increased temperatures,
and the cells with inactive HELB showed a decreased incidence of DNA replication compared to wild
type cells although the rate of elongation was unaffected [4]. This suggests that the helicase functions
primarily in the early stages of S phase. Mouse HELB co-purified with DNA primase and stimulated
synthesis of short primers but not long oligonucleotides by DNA primase [5], suggesting a role for
mouse HELB in initiation of DNA synthesis. However, after treatment with hydroxyurea to deplete
the dNTP pools, the replication rate in HELB knockout mouse embryonic fibroblasts dropped, thus
suggesting a role for mouse HELB in the recovery from replication stress [6]. HELB knockout mice are
normal under unchallenged conditions [6], and the effects of endogenous replication stress on these
mice are still unknown.
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2. Domain Structure

Human HELB is 1087 amino acids long and contains three functional domains: an amino terminal
domain, a central helicase domain, and a carboxy terminal domain (Figure 1) [7]. Although the function
of the N-terminal domain is not completely understood, it has been shown to physically interact with
CDC45, a component of the CMG (CDC45, MCM2–7, GINS) replicative helicase, in vitro [8], suggesting
that the N-terminal domain may function in protein–protein interactions. The helicase domain contains
the 11 conserved motifs of the Pif1/RecD2-like family of superfamily 1 helicases [9]. The helicase
domain contains a site located in an acidic motif (residues 493–517) between the Walker A (residues
475–482) and Walker B (residues 590–594) helicase motifs involved in ATP hydrolysis that interacts
with the single-stranded DNA-binding protein RPA [10]. In addition to interacting with the N-terminal
domain, CDC45 also associates with the helicase domain in vitro [8]. The helicase domain also contains
an ATM/ATR phosphorylation site at serine 709. The carboxy terminal subcellular localization domain
contains a cyclin-dependent kinase phosphorylation site [7], a nuclear localization sequence [10,11],
and a nuclear export sequence [7].
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Figure 1. HELB domain structure. HELB has a N-terminal domain, a helicase domain that binds
DNA [6], hydrolyzes ATP [2], and interacts with RPA [7], and a subcellular localization domain
(SLD) [7]. The SLD is phosphorylated by CDK2 at the G1 to S transition [7] and the helicase domain is
phosphorylated in response to ionizing radiation [12]. Note that the boundary between the N-terminal
domain and helicase domain here is different than originally reported [2] due to the discovery of the
Q-motif N-terminal to the first helicase motif identified at the time of the original report [9,13].

3. Subcellular Localization

The localization of human HELB is cell cycle dependent. Subcellular fractionation followed by
immunoblotting and fluorescence microscopy showed that HELB localizes to both the nucleus and
cytoplasm in asynchronous and unstressed cells [7]. However, in G1 phase, HELB is predominantly
nuclear. Phosphorylation of S967 in the SLD domain by CDK2 during the late G1 phase results in the
export of the majority of HELB to the cytoplasm during S phase [7], although some HELB remains in
the soluble nuclear fraction [10]. Both cyclin E/CDK2 and cyclin A/CDK2 were able to phosphorylate
HELB in vitro, but it was suggested that, due to the co-immunoprecipitation of cyclin E with HELB,
cyclin E/CDK2 is the complex which phosphorylates HELB, targeting it for nuclear export [7]. However,
cyclin A2 also associates with HELB [6], suggesting that either cyclin E/CDK2 or cyclin A2/CDK2 could
be responsible for the phosphorylation of the HELB at S967. The CDK2-dependent re-localization of
HELB suggests that HELB may have different roles depending on the phase of the cell cycle which
need to be explored further.

4. Functions of Human HELB

4.1. Role in DNA Replication

Similar to mouse HELB, recombinant human HELB also interacts with DNA polymerase α-primase
(pol-prim) and stimulates the synthesis of RNA primers [2]. HELB also overcomes the inhibition of
RPA on pol-prim mediated RNA primer synthesis [2]. Due to the interaction of HELB with pol-prim,
ATPase-deficient HELB variants have a dominant negative phenotype. HeLa cells microinjected with
wild-type HELB in G1 phase progressed into S phase normally, whereas cells micro-injected with HELB
containing mutations in the Walker A or B motifs exhibited delayed entry into the S phase, indicating that
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HELB is required for timely cell cycle progression [2]. However, normal DNA replication proceeded if HELB
variants were injected after cells entered S phase [2]. In addition, transient knockdown of HELB in U2OS cells
reduced BrdU incorporation into newly synthesized DNA and caused cells to arrest in G1 phase [8]. This
indicates that HELB may be required for replication initiation during the G1 phase (Figure 2A). Moreover,
the Fanning lab showed that HELB interacts directly with both CDC45 and TOPBP1 [8] and depletion
of HELB disrupts the initiation of replication prior to the stable loading of CDC45 on chromatin due to
both a decrease in CDC45 recruitment to chromatin and a delay of S phase [8]. CDC45 and TOPBP1 are
components of the pre-initiation complex [14]. The association of HELB with these components suggests
that the helicase plays a role in the assembly of the pre-initiation complex. HELB localizes to replication
origins during G1 [8], suggesting that it may unwind the origin to load the pre-initiation complex.
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Figure 2. Functions of HELB. Roles for HELB in loading the pre-initiation complex (A), inhibition of
end resection (B), recovery from replication stress (C), and in replication of fragile sties (D) have been
proposed [2,6,10,15].

The functional role of HELB in ongoing DNA replication is not fully understood. Other than the
lack of an effect of HELB ATPase deficient variants that were injected during the S phase [2], we are
not aware of any studies of the function of HELB during replication progression. However, HELB has
been shown to localize to fragile sites during S phase. The helicase was enriched at the repeat region of
the FRAXA rare fragile site in the FMR1 gene, the FRA16D common fragile site (CFS) in the WWOX
gene, and the FRA3B CFS in the FHIT gene [15]. The CGG repeats at FRAXA can form both hairpin and
G-quadruplex structures that stall replication in vitro and in vivo [16–19]. HELB may be recruited to these
regions to unwind secondary repeat structures ahead of DNA polymerase (Figure 2D). The AT-rich CFS
such as FRA16D and FRA3B have also been reported to form secondary structures in vitro that align
with polymerase stall sites [20,21] suggesting that HELB may also unwind secondary structures at CFS.
However, other models of CFS instability such as collisions of replication and transcription complexes [22],
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formation of R-loops during transcription [23,24], and a paucity of origins in the vicinity of CFS [25] have
all been proposed, making the exact role of HELB at these sites difficult to predict.

4.2. Response to Replication Stress

Depletion of HELB in HeLa cells leads to a modest increase in checkpoint signaling as
phosphorylation of CHK1 and phosphorylation of RPA at S4 and S8 increase after treatment with
hydroxyurea [10]. Cells lacking HELB exhibit impaired recovery from replication stress. Cell survival
decreased and chromosomal aberrations increased in the absence of HELB after replication stress,
suggesting that HELB promotes the resolution of replication stress [10].

Replication stress such as the stalling of the replication fork leads to long stretches of ssDNA
coated with RPA. Several studies have shown that HELB interacts with RPA. Two separate groups
performed proteomic screens to identify RPA interacting proteins, one using nuclear extracts of
HEK-293T cells, and the other using whole cell extracts of HEK-293 cells; both identified HELB as an
RPA70-interacting protein [6,26]. The Fanning lab also identified a conserved acidic motif between
the Walker A and B motifs (Figure 1) that directly interacts with a basic cleft of the RPA70 N-terminal
OB-fold domain [10]. Isothermal titration calorimetry with the acidic peptide from HELB and the
RPA70 N-terminal domain revealed affinity in the low micromolar range [10]. Furthermore, NMR and
immunoprecipitation experiments confirmed the physical interaction between HELB and RPA70 and
identified acidic residues E499, D506 and D510 as vital to this interaction [10].

HELB is recruited to chromatin by RPA, but not upon checkpoint signaling, in the response to
replication stress [10]. HELB recruitment to chromatin correlates with the level of chromatin-bound
RPA [10]. HELB localizes to chromatin in response to the treatment of cells with etoposide, camptothecin,
hydroxyurea, UV radiation, and ionizing radiation [7,10] implying a role in the DNA damage response.
During S phase, chromatin bound HELB increases through re-localization of the soluble nuclear HELB,
but not through import of the cytosolic HELB [10]. It remains unknown how the recruitment of
HELB to the chromatin and the interaction with RPA are involved in the recovery from replication
stress. It has been suggested that HELB may work to re-prime the leading strand downstream of
stalled replication forks based on its interaction with pol-prim [10] (Figure 2C). However, re-priming
the leading strand in higher eukaryotes likely involves DNA-directed primase/polymerase protein
(PRIMPOL) instead of pol-prim [27]. PRIMPOL is a DNA primase and DNA polymerase in higher
eukaryotes that is involved in re-priming downstream of stalled replication forks and in translation
synthesis [27]. Pol-prim is RNA primase and DNA polymerase that synthesizes RNA primers with a
short DNA extension during initiation of DNA synthesis [28]. It is not known whether HELB also
interacts with PRIMPOL. Alternatively, HELB may be able to promote the resolution of a reversed fork
in a manner similar to RECQ1 helicase [29]. The exact mechanism of HELB in the replication stress
response is unknown and will be important to determine in the future.

4.3. Response to DNA Damage

The DNA damage response pathway is critical for maintaining genomic integrity. Double-strand
breaks (DSBs), which are particularly deleterious, are repaired by either nonhomologous end joining
(NHEJ) or homologous recombination (HR). Although NHEJ is more error prone than HR, DSBs are
only repaired via HR when there is a sister chromatid present as a repair template. When there is
no sister chromatid, the damage is repaired with NHEJ. In order for HR to occur, the ends of DNA
must be resected to generate the 3′-overhangs needed for strand invasion. Once end resection has
occurred, the cells are committed to repairing the break by HR [30]. For this reason, initiation of end
resection is highly regulated. HELB is central to one of the mechanisms regulating end resection. End
resection occurs in two steps. First, short range resection by MRE11 in complex with RAD50 and
NBS1 (the MRN complex) occurs after initiation by the CtIP endonuclease. This is followed by long
range resection by the 5′-3′ exonuclease EXO1 and DNA2 which has 5′-3′ helicase and endonuclease
activity [30]. After initiation of resection, the ssDNA is coated with RPA. HELB is recruited to DSBs by
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RPA. This is dependent on the acidic RPA interaction motif in HELB but is independent of its catalytic
activity [6]. HELB then inhibits a long-range resection by EXO1 and BLM-DNA2 [6] (Figure 2B). The
mechanism of inhibition of resection is unknown; however, based on the ability of HELB to displace
proteins from DNA, it has been proposed that HELB uses its ATPase activity to dissociate BLM-DNA2
or EXO1 from the DNA after being recruited by RPA [6]. The 5′-3′ directionality of HELB suggests that
HELB may bind the 5′-tail resulting from unwinding by BLM instead of the 3′-tail where it would
translocate away from the nucleases [31]. In order to suppress long-range end resection, HELB requires
ssDNA binding, RPA interaction, and catalytic activity [6]. This inhibition is independent of 53BP1
suppression of end resection; loss of both 53BP1 and HELB results in an additive increase in end
resection, indicating they function in separate pathways. HELB also does not directly affect repair by
NHEJ [6]. HELB localizes to the nucleus in G1 phase and the cytosol in S and G2 phases, thus resulting
in an increase in long-range end resection during the S phase.

BRCA1- and BRCA2-deficient tumor cells are sensitive to PARP inhibitors (PARPi), due, in part, to
their inability to repair DSBs by HR [32]. However, several mechanisms of PARPi resistance have been
reported [32]. The most common mechanisms of drug resistance involve acquisition of new mutations
which result in a functional BRCA protein or restoration of HR by loss of 53BP1 [33–35]. Knockdown
of HELB in BRCA1-deficient mammary tumor cells results in resistance to PARPi, which suggests that
BRCA1-independent HR is activated in the absence of HELB [6,36]. This is likely due to an increase in
end resection in the absence of HELB [6]. Since HELB DNA-binding motifs, RPA interaction motif, and
catalytic activity are required to suppress end resection [6], this suggests that, similar to loss of 53BP1
activity [33–35], mutations in any of these critical regions of HELB would render BRCA1-deficient
tumors resistant to PARPi. This idea needs to be investigated in tumor samples.

5. Regulation

5.1. Transcriptional Regulation

At the level of transcription, HELB expression is controlled by transcription factors such as STAT-x,
Sp1 and c-ETS [37]. Interestingly, transcription of HELB increases in the response to resveratrol [37].
This is modulated by the GC-box/Sp1 binding sites and the duplicated GGAA-motif in the c-ETS
binding site suggesting that either Sp1 or c-ETS may be involved. Resveratrol is an estrogen receptor
agonist [38], and the estrogen receptor can modulate binding of Sp1 [39], suggesting that Sp1 may
be responsible for the changes in HELB expression with resveratrol. This also suggests that HELB
transcription may respond to estrogen.

The region of the HELB promoter containing the GC-boxes/Sp1 binding sites also has the potential
to fold into G-quadruplex or i-motif structures. A recent bioinformatic analysis found sequences with
the potential to form G-quadruplexes in the promoters and 5′-UTRs of several DNA repair genes
including HELB [40], and the opposite strand has the potential to form i-motifs. G-quadruplexes and
i-motifs are four stranded structures that can form in G- or C-rich regions of the genome, respectively,
that have been shown to regulate transcription of multiple genes [41–44]. The presence of putative
G-quadruplex and i-motif sequences in the HELB promoter suggests that HELB transcription may also
be regulated by formation of these structures although this needs to be tested empirically.

5.2. Post-Translational Regulation

As described earlier, HELB is also regulated by phosphorylation by CDK2 [7,45]. HELB is
predominately a nuclear protein in G1 phase [7]; after phosphorylation by CDK2 at the G1 to
S transition, HELB is predominately localized to the cytosol [7]. Mutations in the HELB nuclear
export sequence increase its nuclear localization during S and G2 phases [6]. This re-localization of
the majority of HELB to the cytosol for S phase appears to serve two important purposes. First, it
may prevent re-replication of the DNA since HELB functions in the assembly of the pre-initiation



Genes 2020, 11, 578 6 of 10

complex [8]. Second, it would relieve the inhibition on long-range end resection to allow DSB repair to
proceed by homologous recombination after sister chromatids are synthesized [6].

In addition to the cell cycle-dependent phosphorylation, HELB is phosphorylated in response to
ionizing radiation on an ATM/ATR consensus site [12]. ATM and ATR kinases are activated by DNA
damage and replication stress, respectively, and they phosphorylate effector proteins to signal DNA
damage and activate the DNA damage response [46]. The specific role of HELB in the DNA damage
response and replication stress response are unknown, but HELB negatively regulates long-range end
resection in G1 phase [6] and localizes to chromatin in response to DNA damage in the S phase [10].
The molecular functions of HELB in response to replication stress remain to be determined.

HELB phosphorylation has also been detected in phospho-proteomic screens at several additional
sites, most often in the C-terminal SLD [47]. Phosphorylation at various sites was detected in normal
and cancer cells, with and without treatment with drugs and inhibitors of different signaling pathways.
Inference of the functional role of these phosphorylation events is difficult based on the existing data
and will require further study.

The cell cycle-dependent regulation of HELB is not entirely dependent on cyclin-dependent
kinases and the nuclear export sequence, as some cell cycle-dependent regulation is still observed
when the nuclear export sequence is mutated [6]. HELB may also be regulated by ubiquitin
attachment. Ubiquitylation of multiple sites on HELB has been detected in proteomics screens
using antibodies to detect ubiquitin modifications [48–50]. These modifications may regulate HELB
levels by ubiquitin-dependent proteolysis. Supporting this idea is the observation that HELB interacts
with the E3 ubiquitin ligase SKP2 [6]. In addition, many proteins involved in the replication stress
response are ubiquitylated when the replication fork stalls to initiate DNA repair [51]. Hence,
ubiquitylation of HELB may activate its role in the replication stress response. The role of each of these
ubiquitin modifications remains to be determined.

6. Effects of Variants

Interestingly, two low frequency, missense variants of HELB (rs75770066 and rs148126992) are
associated with the premature onset of natural menopause [52]. In fact, these two single-nucleotide
polymorphisms (SNPs) in high linkage disequilibrium were the only signal which reached genome-wide
significance in the discovery phase [52]. A younger age at natural menopause is correlated with a
greater risk of osteoporosis and heart disease and a decreased risk of breast cancer [53–55]. Age at
menopause also affects fertility since fertility often ends 10 years before menopause [56]. Like age at
natural menopause, a cluster of single-nucleotide polymorphisms (SNPs) in HELB is also associated
with female infertility, based on data from the Michigan Genomics Initiative (MGI) (Table 1).

Table 1. HELB SNPs are Associated with Infertility in Females. Thirteen SNPs in the HELB Gene are
Associated with Female Infertility Based on Data from MGI. MAF is Minor Allele Frequency; Positions
were Determined Using GRCh37.

SNP Alleles Variant MAF Position (Chr:12) P-Value

rs12301608 C/T Intronic 0.0125 66,707,644 2.24 × 10−5

rs12228262 G/C Intronic 0.0125 66,708,507 2.28 × 10−5

rs10878404 C/T Intronic 0.0122 66,709,488 1.74 × 10−5

rs76187362 A/G Intronic 0.0125 66,711,895 2.47 × 10−5

rs79976130 C/T Intronic 0.0125 66,712,652 2.52 × 10−5

rs10878406 T/C Intronic 0.0122 66,713,978 3.63 × 10−5

rs10878407 C/T Intronic 0.0124 66,717,202 5.38 × 10−5

rs35536133 T/A Exonic/synonymous 0.0124 66,717,784 6.06 × 10−5

rs28551050 G/T Intronic 0.0124 66,718,207 6.62 × 10−5

rs10878408 C/G Intronic 0.0122 66,718,973 6.31 × 10−5

rs139815108 C/T Intronic 0.0113 66,718,957 3.44 × 10−5

rs34109029 G/T Intronic 0.0124 66,717,910 6.29 × 10−5

rs60549090 G/T Intronic 0.0122 66,705,808 1.63 × 10−5
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DSB repair associated with meiotic recombination has a major effect on oocyte quantity and,
therefore, age at natural menopause [52]. Meiotic recombination is similar to homologous recombination
in many ways and relies on the same end resection machinery [57]. Aberrant meiotic recombination
results in cell cycle arrest and reduced oocyte viability, as incorrectly repaired DSBs can easily lead
to genome instability and trigger apoptosis [52]. Interestingly, one of the HELB variants associated
with age at natural menopause (rs75770066) is D506G. Aspartate-506 (D506) is in the acidic peptide
that interacts with RPA [10], suggesting that impaired interactions with RPA may be the cause of
this phenotype. The effect of this amino acid change alone is unknown, but a combination of E499A,
D506A, and D510A in vitro is sufficient to interfere with the localization to DNA in response to
replication stress [10] and relieve the inhibition on end resection [6]. Since HELB negatively regulates
homologous recombination through its interaction with RPA, this suggests HELB may also limit
meiotic recombination in an RPA dependent manner. This would prevent excessive recombination and
suggests that HELB’s role in DSB repair may be critical in oocytes.

7. Conclusions

HELB has multiple functions in DNA replication and repair. However, many questions remain
to be answered about HELB’s role in these processes as many of the molecular details are unknown.
In particular, little is known about how HELB increases a cell’s ability to withstand replication stress
beyond its localization to the DNA in response to treatment with agents which induce replication
stress. The role of HELB in replication initiation is also not completely understood as it interacts with
multiple proteins involved in this process. Although the function of HELB in response to DSBs has
been well characterized, the effect of this on processes such as meiosis is unclear. However, it is clear
that HELB plays critical roles in multiple processes essential to genome maintenance and its activity
needs to be further studied.
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