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Purpose: This study aimed to use quantitative susceptibility mapping (QSM) to

systematically investigate the changes of iron content in gray matter (GM) nuclei

in patients with long-term anterior circulation artery stenosis (ACAS) and posterior

circulation artery stenosis (PCAS).

Methods: Twenty-five ACAS patients, 25 PCAS patients, and 25 age- and sex-matched

healthy controls underwent QSM examination. Patients were scored using the National

Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS) to assess

the degree of neural function deficiency. On QSM images, iron related susceptibility

of GM nuclei, including bilateral caudate nucleus, putamen (PU), globus pallidus (GP),

thalamus (TH), substantia nigra (SN), red nucleus, and dentate nucleus (DN), were

assessed. Susceptibility was compared between bilateral GM nuclei in healthy controls,

ACAS patients, and PCAS patients. Partial correlation analysis, with age as a covariate,

was separately performed to assess the relationships of susceptibility with NIHSS and

mRS scores.

Results: There were no significant differences between the susceptibilities for left

and right hemispheres in all seven GM nucleus subregions for healthy controls, ACAS

patients, and PCAS patients. Compared with healthy controls, mean susceptibility of

bilateral PU, GP, and SN in ACAS patients and of bilateral PU, GP, SN, and DN in PCAS

patients were significantly increased (all P < 0.05). In addition, mean susceptibility of

bilateral TH and SN in PCAS patients was significantly higher than in ACAS patients

(both P < 0.05). With partial correlation analysis, mean susceptibility at bilateral PU of

ACAS patients was significantly correlated with mRS score (r = 0.415, P < 0.05), and

at bilateral PU in PCAS patients was correlated with NIHSS score (r = 0.424, P < 0.05).

Conclusion: Our findings indicated that abnormal iron metabolism may present in

different subregions of GM nuclei after long-term ACAS and PCAS. In addition, iron

content of PU in patients with ACAS and PCAS was correlated with neurological deficit
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scores. Therefore, iron quantification measured by QSM susceptibility may provide a new

insight to understand the pathological mechanism of ischemic stroke caused by ACAS

and PCAS.

Keywords: anterior circulation artery stenosis, posterior circulation artery stenosis, ischemic stroke, quantitative

susceptibility mapping, iron deposition, gray matter nuclei

INTRODUCTION

Intracranial artery stenosis (ICAS) is one of the main causes
of ischemic stroke, accounting for 30∼50% of total ischemic
stroke cases (1). In cerebral arterial system, ICAS can be

classified into anterior circulation artery stenosis (ACAS)
and posterior circulation artery stenosis (PCAS). For ACAS
or PCAS, brain tissues in blood supply areas can become

ischemic and hypoxic, promoting a series of pathophysiological
reactions, such as neuronal hyperexcitability, mitochondrial
death, free radicals release, apoptosis, necrosis, autophagy, and
inflammation, to cause neuronal damage (2). Eventually, a
range of brain dysfunction diseases, such as speech or motor
disorders, cognitive dysfunction and emotional disorder will
appear, causing great harm and heavy burden to patients,
families, and society. Therefore, the repair of neural function after
ischemic stroke has become a research focus in recent years.

Iron content quantification is essential to evaluate the level of
normal neurophysiological functions (3). As a co-factor for many
enzymes, iron is involved in various important physiological
and biochemical processes in the brain, including the synthesis
of DNA and protein, oxygen transport, electron transport,
oxidative phosphorylation, myelinization, and the synthesis of
neurotransmitters such as dopamine (4). However, iron overload
caused by iron homeostasis imbalance can produce reactive
oxygen species and oxidative stress to cause neuronal damage
(5). Excessive iron deposition in brain has been identified in
many neurological disorders, including cerebrovascular diseases,
Parkinson’s disease (PD), Alzheimer’s disease (AD), and so
on (6, 7). In pre-clinical ischemic stroke models caused by
unilateral middle cerebral artery (MCA) occlusion, increased
iron was reported to deposit in the lesioned hemisphere,
and iron deposition could exacerbate neuronal damage during
ischemia/reperfusion (8). When ICAS occurs, cerebral cells
of the corresponding blood supply region, including vascular
endothelial cells, can become ischemic and hypoxic, which in
turn leads to the destruction of blood-brain barrier. Endothelial
cells are key regulators of iron transport, and blood-brain
barrier is an important structure for regulating iron transport
and metabolism in the brain (9, 10). When both structures
are damaged, iron circulation homeostasis is altered and
excessive iron deposits in the brain. Inadequate blood flow and

oxygen supply induced by ICAS can also trigger a cascade

of pathological non-infectious neuroinflammation, leading to
impaired iron homeostasis in the central nervous system (11).

In addition, previous studies have shown that iron chelation
can attenuate ischemia/reperfusion damage in animal models
(12, 13). Therefore, iron deposition may be a potential biomarker
for ICAS.

Due to the invasive nature of pathological examination
for iron quantification, many iron related neurological studies
only stayed at pre-clinical phase. Consequently, a reliable non-
invasive method for quantitative iron assessment in vivo has been
ideally required. Quantitative susceptibility mapping (QSM),
a promising and non-invasive magnetic resonance imaging
(MRI) technique, can measure susceptibility difference between
magnetic tissues in vivo based on magnetic gradient echo
MR phase data (14). QSM can be used to evaluate iron
content in brain, particularly in gray matter (GM) nuclei,
where iron is a strong paramagnetic source that increases
the magnetic susceptibility of a tissue (15). Previous studies
have demonstrated that susceptibility measured on QSM data
was positively correlated with chemically determined iron
concentration in brain tissue (16, 17). Moreover, QSM has been
used to identify iron metabolism disorders for many neurological
diseases such as AD, PD, and Vascular Dementia (18–20). Du et
al. (21) used QSM to investigate alterations of iron content in
bilateral basal ganglia of brain for patients with MCA occlusion,
and found that iron-related average susceptibility in bilateral
putamen (PU) of patients was significantly increased. While
MCA stenosis, belonging to ACAS, is the most common ICAS
subtype selected to investigate the pathophysiological mechanism
of ischemic stroke, the mortality and disability rates of PCAS-
related ischemic stroke are much higher than those of ACAS
(22). However, PCAS has received little attention so far, especially
concerning the changes of iron metabolism in ischemic stroke
secondary to PCAS.

Abnormal iron metabolism can aggravate neurological
damage through oxidative stress in a vicious cycle (5).
The National Institutes of Health Stroke Scale (NIHSS)
and the modified Rankin Scale (mRS) scores are the most
commonly used clinical scales to evaluate the degree of
neural function deficiency in ischemic stroke (23). Higher
NIHSS or mRS scores indicate more severe neurological
deficit (23). Sun et al. (24) found that iron related QSM
susceptibility of thalamus (TH) in cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL) patients was positively correlated with mRS score,
indicating that excessive iron deposition may exacerbate
clinical symptoms of patients with CADASIL. However, few
studies have quantitatively evaluated brain iron deposition
in both ACAS and PCAS patients and its correlation with
neurological function.

Therefore, the main goal of this study was to systematically
investigate the potential changes of iron content in bilateral
GM nuclei in patients with long-term ACAS and PCAS using
QSM technique, and to explore its correlations with neurological
deficit scores.
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MATERIALS AND METHODS

Subjects
After obtaining Medical Ethics Committee of First Affiliated
Hospital of Shandong First Medical University approval and
informed consent, 50 ischemic stroke patients diagnosed with
long-term ICAS and 25 healthy controls were recruited from
November 2019 to September 2021. All enrolled patients
were confirmed via clinical symptoms, conventional MRI
examination, magnetic resonance angiography (MRA), or digital
subtraction angiography. All 50 patients were subdivided into
ACAS group (n = 25, mean age 56.88 ± 10.93 years, 15 males,
and 10 females), including vascular stenosis of internal carotid
artery (intracranial segment), MCA, anterior cerebral artery, and
PCAS group (n= 25, mean age 56.76± 10.47 years, 18males, and
7 females), including vascular stenosis of posterior cerebral artery
(PCA), basilar artery, vertebral artery (intracranial segment).
At admission, all patients underwent clinical evaluations, using
NIHSS and mRS scores to assess the degree of neural function
deficiency (23). Inclusion criteria of patients were defined
as follows: (1) only ACAS or PCAS involved; (2) long-term
stroke symptoms associated with offending arteries stenosis;
and (3) no previous history of other confounding nervous
system diseases, such as cerebral hemorrhage, subarachnoid
hemorrhage, brain tumor, brain injury, PD, AD, and dementia.
The exclusion criteria of patients included (1) concurrence
of ACAS and PCAS related ischemic stroke; (2) stroke
associated with cardiac embolism; (3) contraindications to MR
examination; (4) incomplete clinical data; and (5) severe artifacts
on MRI images.

In addition, 25 healthy controls (mean age 56.80 ±

10.73 years, 14 males, and 11 females) were also recruited
in this study. Each subject had no cerebrovascular disease,
brain injury, neurological, psychiatric, metabolic, or other
systemic diseases that may affect the nervous system. All 25
healthy controls were confirmed without ICAS by MRA and
without obvious abnormalities or only small lacunar infarcts by
routine MRI.

Imaging Acquisition
All MRI experiments were performed on a 3.0 T MRI (Discovery
MR750, GE Healthcare, USA) equipped with a 32-channel
phase-array head coil. All participants underwent routine
MRI, including T1-weighted imaging, fast-spin-echo based T2-
weighted imaging, T2 fluid-attenuated inversion recovery, and
diffusion-weighted imaging, to exclude other cerebral organic
diseases. Three-dimensional time-of-flight MRA was acquired to
confirm the location of affected intracranial artery in patients and
the absence of ICAS in healthy controls.

Three-dimensional spoiled gradient echo was used for QSM
imaging (first TE = 3.0ms, TE interval = 3.1ms, number of
TEs = 8, TR = 28.1ms, FOV = 240 × 240mm, flip angle =

20◦, matrix size = 240 × 240, bandwidth = 62.50 kHz, slice
thickness = 2mm, number of slices = 64, NEX = 0.7, scanning
time = 2min 31 seconds, ASSET (Array Spatial Sensitivity
Coding Technique) with acceleration factor of 2 was used for the
acceleration method).

Imaging Analysis
Several post-processing steps were performed to generate
QSM maps using STI Suite embedded in MATLAB R2017b
(MathWorks, Natick, MA) (25). Firstly, with a Laplacian-based
method, unwrapped phase images were created from wrapped
phase images (25). Secondly, the brain mask was generated from
magnitude images using the brain extraction tool (BET) in FSL
(FMRIB, University of Oxford, Oxford, UK) (26). Thirdly, the
sophisticated harmonic artifact reduction for phase data with
varying spherical kernel sizes (V-SHARP) method, with the
spherical kernel radius ranging from 1 to 12mm, was employed
to remove background fields (25). Finally, QSM images were
obtained by using the least-squares (LSQR)-algorithm-based
method to calculate dipole inversion (25, 27).

The software ImageJ 1.52 (National Institutes of Health,
Bethesda, MD, USA) was used to quantitatively measure the
susceptibility values of each region of interest (ROI) on QSM
images, including bilateral caudate nucleus (CN), PU, globus
pallidus (GP), TH, substantia nigra (SN), red nucleus (RN), and
dentate nucleus (DN) (Figure 1). All ROIs were manually drawn
on three continuous slices that could clearly show the boundary
of GM nucleus by two radiologists (XYW and HMM) with more
than 3 years of experience in diagnosing central nervous system.
Both observers were blinded to clinical and imaging information
of all subjects. Mean susceptibility values for each ROI over two
radiologists were recorded.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism 8.0
(GraphPad Software, Inc., La Jolla, CA, USA) and IBM SPSS 22.0
(Armonk, NY, USA). The Kolmogorov–Smirnov test was used
to analyze the normality of continuous variables. Continuous
variables with normal distribution were expressed as the mean
± standard deviation. Non-normally distributed continuous
variables were represented as median and interquartile range
(IQR). Counting data were represented as frequency and
percentage (%). To compare the demographic and clinical data
among healthy controls, ACAS, and PCAS patients, one-way
analysis of variance was used for age, and Mann–Whitney U-
test was used to analyze continuous variables with non-normal
distribution. The chi-square (χ2) test was used for counting
data and Z-test was used for the post hoc analysis, adjusted
by the Bonferroni correction. Disease duration between ACAS
and PCAS patients was assessed by independent sample t-test.
The inter-observer consistency of susceptibility measurements
was evaluated by intra-class correction coefficient (ICC). The
resultant ICC > 0.75 was considered as good reproducibility.
Paired t-test was used to compare the susceptibility between
the left and right GM nuclei in healthy controls, ACAS,
and PCAS patients, respectively. Independent sample t-test
was used to separately compare the susceptibility differences
between each two of healthy controls, ACAS patients and PCAS
patients. Partial correlation analysis, with age as a covariate, was
performed to assess the relationships of the susceptibility levels
with NIHSS and mRS scores. Statistically significant threshold
was set as P < 0.05.
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FIGURE 1 | Regions of interest depicted on the quantitative susceptibility mapping images. (A) Number 1, 2 = bilateral caudate nucleus; number 3, 4 = bilateral

putamen; number 5, 6 = bilateral globus pallidus; (B) number 7, 8 = bilateral thalamus; (C) number 9, 10 = bilateral substantia nigra; (D) number 11, 12 = bilateral

red nucleus; (E) number 13, 14 = bilateral dentate nucleus.

TABLE 1 | Demographic and clinical characteristics of all participants.

Healthy controls (n = 25) Patients with ACAS (n = 25) Patients with PCAS (n = 25) Statistical value P-value

Age (years) 56.80 ± 10.73 56.88 ± 10.93 56.76 ± 10.47 0.001 0.999

Sex (male) 14 (56.0%) 15 (60.0%) 18 (72.0%) 1.482 0.477

Disease duration (years) – 4.78 ± 2.71 6.02 ± 3.88 −1.310 0.197

NIHSS score [median (IQR)] – 5 (2–7) 3 (2–7) −0.589 0.556

mRS score [median (IQR)] – 2 (1–3) 1 (1–2) −1.543 0.123

Hypertension 3 (12.0%) 16 (64.0%) 18 (72.0%) 21.230 0.000*ab

Diabetes 2 (8.0%) 12 (48.0%) 10 (40.0%) 10.294 0.006*ab

Hyperlipidemia – 8 (32.0%) 7 (28.0%) 0.095 0.758

Hyperhomocysteinemia – 6 (24.0%) 7 (28.0%) 0.104 0.747

History of smoking 4 (16.0%) 10 (40.0%) 12 (48.0%) 6.122 0.047*ab

History of drinking 3 (12.0%) 8 (32.0%) 14 (56.0%) 10.920 0.004*b

ACAS, anterior circulation artery stenosis; PCAS, posterior circulation artery stenosis; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin scale; IQR, interquartile

range. *P< 0.05. Z-test was used for the post hoc analysis, adjusted by the Bonferroni correction: aSignificant differences between healthy controls and patients with ACAS. bSignificant

differences between healthy controls and patients with PCAS.

RESULTS

Demographic and Clinical Characteristics
Twenty-five patients with ACAS, 25 patients with PCAS, and
25 age- and sex-matched healthy controls were included in
this study. These three groups showed no significant difference
in age and sex (P = 0.999; P = 0.477, Table 1). Among
patients with ACAS, the median (IQR) NIHSS score was
5 points (2–7), and the mRS score was 2 points (1–3).
Among patients with PCAS, the median (IQR) NIHSS score
was 3 points (2–7), and the mRS score was 1 point (1–2).
Detailed clinical characteristics of all subjects were summarized
in Table 1.

Inter-Observer Agreement Analysis
ICC analysis showed high inter-observer agreements for
susceptibility measurements in all seven GM nucleus
subregions between both radiologists (0.850 ≤ ICCs ≤ 0.960,
Supplementary Table 1).

Susceptibility Comparisons Between Left
and Right GM Nucleus Subregions in
Healthy Controls, Patients With ACAS, and
Patients With PCAS
Paired t-test showed no significant differences between the left
and right susceptibility in all seven GM nucleus subregions for
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TABLE 2 | Susceptibility (ppm) comparisons in gray matter nuclei between healthy

controls and patients with ACAS.

ROI Healthy Patients t-value P-value

controls with ACAS

(n = 25) (n = 25)

CN 0.0334 ± 0.0104 0.0342 ± 0.0102 −0.247 0.806

PU 0.0454 ± 0.0140 0.0571 ± 0.0210 −2.316 0.025

GP 0.0910 ± 0.0200 0.1134 ± 0.0331 −2.898 0.006

TH 0.0154 ± 0.0043 0.0151 ± 0.0038 0.324 0.747

SN 0.0965 ± 0.0232 0.1134 ± 0.0222 −2.639 0.011

RN 0.0850 ± 0.0255 0.0898 ± 0.0278 −0.630 0.531

DN 0.0716 ± 0.0183 0.0730 ± 0.0240 −0.220 0.827

ACAS, anterior circulation artery stenosis; ROI, region of interest; CN, caudate nucleus;

PU, putamen; GP, globus pallidus; TH, thalamus; SN, substantia nigra; RN, red nucleus;

DN, dentate nucleus.

healthy controls, patients with ACAS, and patients with PCAS,
respectively (all P > 0.05, Supplementary Table 2). Therefore,
the mean susceptibility values of each bilateral GM nuclei
subregions were used for healthy controls, ACAS patient and
PCAS patient groups in further data analyses, respectively.

Susceptibility Comparisons Across Healthy
Controls, Patients With ACAS, and Patients
With PCAS
Using independent sample t-test, ACAS patients exhibited
significantly higher susceptibility than healthy controls in
bilateral PU, GP, and SN (mean: 0.0571 ± 0.0210 vs. 0.0454 ±

0.0140 ppm for PU, P = 0.025; mean: 0.1134 ± 0.0331 vs. 0.0910
± 0.0200 ppm for GP, P = 0.006; mean: 0.1134 ± 0.0222 vs.
0.0965 ± 0.0232 ppm for SN, P = 0.011), while comparable
susceptibility was found in the CN, TH, RN, and DN between
both groups (all P > 0.05) (Table 2; Figure 2).

Independent sample t-test also showed no significant
differences of susceptibility in the CN, TH, and RN between
healthy controls and patients with PCAS (all P > 0.05, Table 2).
However, compared with healthy controls, patients with PCAS
presented significantly higher susceptibility in the PU, GP, SN,
and DN, respectively (mean: 0.0454± 0.0140 vs. 0.0560± 0.0170
ppm for PU, P = 0.020; mean: 0.0910 ± 0.0200 vs. 0.1076 ±

0.0352 ppm for GP, P = 0.046; mean: 0.0965 ± 0.0232 vs. 0.1320
± 0.0326 ppm for SN, P < 0.0001; mean: 0.0716 ± 0.0183 vs.
0.0873± 0.0275 ppm for DN, P = 0.022; Table 3; Figure 2).

In addition, mean susceptibility of bilateral TH and SN in
PCAS patients was significantly higher than in ACAS patients
(mean: 0.0193 ± 0.0094 vs. 0.0151 ± 0.0038 ppm for TH, P =

0.043; mean: 0.1320 ± 0.0326 vs. 0.1134 ± 0.0222 ppm for SN,
P = 0.022), while comparable susceptibility was separately found
in the CN, PU, GP, RN, and DN between both patient groups (all
P > 0.05) (Table 4; Figure 2).

Correlation Analysis of QSM Susceptibility
With NIHSS and mRS Scores
Partial correlation analysis, with age as a covariate, was
further performed to separately evaluate the relationships of

susceptibility levels at bilateral PU, GP, and SN in ACAS patient
group and bilateral PU, GP, TH, SN, and DN in PCAS patient
group with NIHSS and mRS scores. Susceptibility levels of
bilateral PU in patients with ACAS were significantly increased
with mRS score (r = 0.415, P = 0.044; Figure 3A). In addition,
a significant positive correlation was shown between the average
susceptibility of bilateral PU in PCAS patients and NIHSS score
(r = 0.424, P = 0.039; Figure 3B).

DISCUSSION

In this study, we systematically investigated the changes of iron
content in deep GM nuclei for patients with ischemic stroke
secondary to chronic ACAS and PCAS by using QSM. Our
results showed that, compared with healthy controls, mean
susceptibility levels of bilateral PU, GP, and SN in patients
with ACAS and of bilateral PU, GP, SN, and DN in patients
with PCAS were significantly increased, indicating excess iron
deposited in different subregions of deep GM nuclei after long-
term ACAS and PCAS. In addition, mean susceptibility of
bilateral TH and SN in PCAS patients was significantly higher
than in ACAS patients, indicating different patterns of ICAS
have different patterns of iron deposition. After adjustment
for age, average susceptibility levels at bilateral PU of patients
with ACAS were significantly correlated with mRS score, and
at bilateral PU in patients with PCAS were correlated with
NIHSS score.

QSM can be utilized to quantitatively analyze the susceptibility
of bioactive metal, including iron and calcium, by using
phase shift changes caused by magnetic susceptibility effect
(28). In addition, QSM imaging avoids low-frequency phase
shift artifacts at air-tissue interface due to the unwrapping
of phase images and the removal of background fields, and
thus, provides the susceptibility maps with high tissue contrast
and spatial resolution (29). Consistently, previous research has
confirmed that the susceptibility evaluated byQSMwas positively
correlated with chemically determined iron concentration in
brain tissue, particularly in deep GM nuclei (16). Moreover,
many studies indicated increased iron-related susceptibility in
brain tissues, as assessed by QSM, in various neurological
diseases, such as AD, PD, Huntington’s Disease (HD), and
amyotrophic lateral sclerosis (30–33). Therefore, it is reliable
to apply non-invasive QSM imaging to investigate the changes
of iron content in deep GM nuclei for patients with long-term
ACAS and PCAS.

For patients with long-term ACAS, iron-related susceptibility
of bilateral PU, GP, and SN was significantly higher than those
in healthy controls (Figure 4), indicating that ACAS could result
in cerebral iron metabolism disorders in some GM nucleus
subregions. Similar to our finding, Du et al. (21) reported that
average QSM susceptibility of bilateral PU in nine patients with
MCA occlusion was significantly increased. However, increased
iron-related susceptibility at bilateral GP of ACAS patients
observed in our study was different from Du et al.’s study that
lower susceptibility was revealed at bilateral GP in patients with
MCA occlusion. In addition to larger sample size in our study,
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FIGURE 2 | Box-and-whisker plots were used to compare the susceptibility of seven gray matter nucleus subregions across healthy controls, anterior circulation

artery stenosis (ACAS) patients, and posterior circulation artery stenosis (PCAS) patients. Significant difference: *P < 0.05; **P < 0.01; ****P < 0.0001.

TABLE 3 | Susceptibility (ppm) comparisons in gray matter nuclei between healthy

controls and patients with PCAS.

ROI Healthy Patients t-value P-value

ROI controls with PCAS

ROI (n = 25) (n = 25)

CN 0.0334 ± 0.0104 0.0372 ± 0.0095 −1.344 0.185

PU 0.0454 ± 0.0140 0.0560 ± 0.0170 −2.404 0.020

GP 0.0910 ± 0.0200 0.1076 ± 0.0352 −2.044 0.046

TH 0.0154 ± 0.0043 0.0193 ± 0.0094 −1.858 0.069

SN 0.0965 ± 0.0232 0.1320 ± 0.0326 −4.443 <0.000

RN 0.0850 ± 0.0255 0.0935 ± 0.0244 −1.198 0.237

DN 0.0716 ± 0.0183 0.0873 ± 0.0275 −2.373 0.022

PCAS, posterior circulation artery stenosis; ROI, region of interest; CN, caudate nucleus;

PU, putamen; GP, globus pallidus; TH, thalamus; SN, substantia nigra; RN, red nucleus;

DN, dentate nucleus.

not identical patient types, of which Du et al. only focused
on MCA occlusion, may also explain this discrepancy between
two studies.

TABLE 4 | Susceptibility (ppm) comparisons in gray matter nuclei between

patients with ACAS and PCAS.

ROI Patients Patients t-value P-value

with ACAS with PCAS

(n = 25) (n = 25)

CN 0.0342 ± 0.0102 0.0372 ± 0.0095 −1.104 0.275

PU 0.0571 ± 0.0210 0.0560 ± 0.0170 0.198 0.844

GP 0.1134 ± 0.0331 0.1076 ± 0.0352 0.603 0.549

TH 0.0151 ± 0.0038 0.0193 ± 0.0094 −2.076 0.043

SN 0.1134 ± 0.0222 0.1320 ± 0.0326 −2.362 0.022

RN 0.0898 ± 0.0278 0.0935 ± 0.0244 −0.500 0.620

DN 0.0730 ± 0.0240 0.0873 ± 0.0275 −1.967 0.055

ACAS, anterior circulation artery stenosis; PCAS, posterior circulation artery stenosis; ROI,

region of interest; CN, caudate nucleus; PU, putamen; GP, globus pallidus; TH, thalamus;

SN, substantia nigra; RN, red nucleus; DN, dentate nucleus.

Increased iron-related susceptibility of bilateral PU, GP,
SN, and DN was observed in patients with long-term PCAS
relative to healthy controls (Figure 4). This result indicated
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FIGURE 3 | Partial correlation analysis between mean susceptibility at bilateral putamen (PU) with NIHSS and mRS scores, adjusted for age. (A) In anterior circulation

artery stenosis (ACAS) patients, mean susceptibility of bilateral PU was significantly increased with mRS score (r = 0.415, P = 0.044); (B) In posterior circulation artery

stenosis (PCAS) patients, mean susceptibility of bilateral PU was significantly increased with NIHSS score (r = 0.424, P = 0.039).

FIGURE 4 | Comparisons of susceptibility in gray matter nuclei among a healthy control (A–D, a 65-year-old male), a patient with long-term anterior circulation artery

stenosis (ACAS) (E–H, a 62-year-old male) and a patient with long-term posterior circulation artery stenosis (PCAS) (I–L, a 65-year-old male). Higher mean

susceptibility of bilateral putamen (PU), globus pallidus (GP), and substantia nigra (SN) was shown in the ACAS patient, and of bilateral PU, GP, thalamus (TH), SN,

and dentate nucleus (DN) was shown in the PCAS patient.

that some GM nucleus subregions, including PU, GP, SN,
and DN, were vulnerable to abnormal iron deposition after
long-term PCAS. Liu et al. (34) used phase shifts from phase
images of susceptibility weighted imaging to evaluate focal brain
iron alterations in old patients with ischemic cerebrovascular
disease, and found that iron content in PU and GP was
significantly increased in patients with previous ischemic stroke

history. This finding is consistent with ours. To be noted, our
results demonstrated that mean susceptibility of bilateral SN
and DN was significantly increased in patients with PCAS,
which has not been reported previously. The basal ganglia
and TH contain important structures closely associated with
nervous system function. Therefore, these regions received highly
clinical interest and were often investigated for ischemic stroke.
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Recently, in addition to basal ganglia and TH, alterations of
iron content in other GM nucleus subregions, including SN,
RN, and DN, have been confirmed to be closely related with
many neurological disorders, such as PD, degenerative cerebellar
ataxia, and CADASIL (24, 30, 35). Therefore, in this study, iron
alterations of bilateral SN and DN in patients with PCAS and of
bilateral SN in patients with ACAS may provide a new insight
to understand the pathological mechanism of ischemic stroke
caused by ICAS.

Interestingly, we found that for patients with ACAS, except
for PU and GP regions where main blood supply comes from
anterior circulation arteries, remote SN region also showed
increased iron deposition. Similarly, in addition to SN and
DN regions mainly supplied by posterior circulation arteries,
the supratentorial PU and GP regions also presented elevated
iron content in patients with PCAS. Previous studies have
confirmed that after long-time cerebral ischemia and hypoxia,
neuropathological changes not only occur in focal ischemia
areas, but also in anatomically or functionally connected brain
regions distant from ischemia areas (36, 37). In neuroanatomical
and pathological studies, fibrous pathways between SN and
striatum (CN, PU, and GP) have been extensively described
(38). Neurodegeneration of SN secondary to ischemic injury of
striatum has been widely reported in animal stroke models (39,
40). There may be an iron metabolism pathway of “cerebellum–
brainstem (SN)–basal ganglia” in brain tissue, and iron is
transported and metabolized in nerve cells along the above-
mentioned nerve fiber pathway (41). When degeneration of
nerve fibers occurs in any of the above parts or nerve conduction
function is damaged by insufficient blood supply, iron cannot
be excreted normally and excessive iron can deposit accordingly
(41). Linck et al. (42) utilized R2∗ mapping to explore iron
alterations of SN in patients with supratentorial ischemic stroke,
and found that SN ipsilateral to the lesion presented greater iron
content 1 year after stroke. Indeed, our results of both ACAS
and PCAS patients could indirectly demonstrate the existence of
known fibrous pathways between SN and basal ganglia.

Compared with ACAS patients, increased susceptibility of
bilateral TH and SN was observed in PCAS patients, indicating
that specific GM nuclei subregions, including TH and SN, were
more vulnerable to abnormal iron deposition after long-term
PCAS than ACAS (Figure 4). It is well-known that the main
blood supply of TH and SN comes from posterior circulation
arteries, so both regions may be more susceptible to increased
iron deposition after PCAS. Interestingly, there was no different
susceptibility in bilateral TH between healthy controls and
patients with PCAS, but the susceptibility of TH in PCAS patients
showed a higher trend toward healthy controls with P-value of
0.069. We speculate that, given a larger sample, TH may exhibit
significantly increased susceptibility in PCAS patients than in
healthy controls. Similar to our study, in a previous study that
used signal intensity variation on T2∗-weighted images to reflect
the changes of iron content, ischemic stroke patients, including
those with infarcts in the distribution of PCA, showed increased
iron accumulation in TH on the side ipsilateral to the infarct
(43). Compared with healthy controls, both ACAS and PCAS
patients exhibited significantly increased susceptibility in PU

and GP. However, no significant difference of susceptibility was
revealed in PU and GP between both patient cohorts. This may
be because that the effect of ACAS on iron deposition in PU and
GP regions, mainly supplied by anterior circulation arteries, is
weaker than that of PCAS on SN regions supplied dominantly
by posterior circulation arteries. As mentioned above, there may
be an iron metabolism pathway between SN and basal ganglia
(41). Therefore, iron deposition in SN was significantly affected
by PCAS, resulting in increased iron deposition in PU and GP for
PCAS patients. Thatmight explain why comparable susceptibility
was found in the PU and GP between both patient groups. From
the comparison results of both patient cohorts, it suggested that
specific GM nuclei subregions, including TH and SN, were more
vulnerable to abnormal iron deposition after PCAS than after
ACAS. Currently, few studies have focused on iron deposition in
GM nuclei after PCAS, so further studies with larger samples are
needed to explore different iron deposition patterns after ACAS
and PCAS.

In addition, our study showed that after adjustment for age,
average susceptibility levels of bilateral PU in patients with ACAS
were positively correlated with mRS score, and of bilateral PU in
patients with PCAS were positively correlated with NIHSS score.
NIHSS and mRS scores are the most commonly used clinical
scales to evaluate the degree of neural function deficiency in
ischemic stroke. Higher NIHSS or mRS scores indicate more
severe neurological deficit. Therefore, for both ACAS and PCAS
patients, increased iron accumulation in PUwas found associated
with worse neural function in our study. PU is an important
component of basal ganglia, playing an important role on normal
brain function and behavior. A previous study has shown that
PU abnormalities found by resting-state functional MRI were
associated with clinical pain and motor disturbance in complex
regional pain syndrome (44). Domínguez et al. (45) found that
iron related QSM susceptibility of PU in HD patients was higher
than those in healthy controls, and iron content of PU in
symptomatic HD patients was positively correlated with disease
severity. Another study suggested that iron content of the left
PU was significantly increased in type 2 diabetes with mild
cognitive impairment and it was closely correlated with cognitive
deficits (46). Our findings also supported that increased iron
accumulation in PU was closely associated with neural function
deficiency in patients with ACAS and PCAS. However, we are not
able to illustrate whether neurological dysfunction after ischemic
stroke leads to increased iron deposition or iron deposition
exacerbates neurological deficits in the current study. Therefore,
long-term follow-up research in evaluating changes of iron levels
and neurological deficits with a large clinical cohort is requested
to further investigate this aspect.

In ischemic stroke, the physiological and pathological
mechanisms of neuronal damage caused by long-term ischemia
and hypoxia are complex, involving free radical damage,
inflammatory overactivation, toxic effects of excitatory amino
acids, apoptosis or necrosis, etc. (47). Among them, iron-
mediated free radicals play an important role in ischemic brain
injury. Iron is a catalyst of biomolecular oxidative damage and
an important factor of oxidative stress. Iron overload enhances
Fenton reactions to produce a large number of toxic hydroxyl
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radicals, and these free radicals attack the unsaturated lipid
chains on the cell membrane to cause lipid peroxidation (48).
Lipid peroxidation not only occurs immediately after cerebral
ischemia/reperfusion, but also continues to promote neuronal
death for a long time after ischemia/reperfusion (49). In addition
to catalyzing the production of free radicals and promoting lipid
peroxidation, iron also has a direct toxic effect. Excessive iron can
combine with intracellular organic compounds to produce highly
reactive iron or ferric ions, causing damage to lysosomal, and
mitochondrial membranes and further leading to degeneration
of cell structure and function (50). Therefore, in this study,
increased iron deposition in specific GM nucleus subregions
observed in ACAS and PCAS patientsmay contribute to neuronal
damage and provide a possible explanation for the neurological
symptoms after ischemic stroke.

This study has several limitations. First, a limited sample
size was applied in this study, which could introduce potential
selection bias. Second, approximate degree of neurological
impairment in patients with ACAS and PCAS was evaluated
using NIHSS and mRS scores, but extensive clinical evaluations,
including motor, language and cognitive functions, were not
assessed in this study. Third, as a cross-sectional study, we
could not observe the dynamic relationship between neurological
deficit and iron content in specific GM nucleus regions.
Therefore, follow-up longitudinal studies in a larger clinical
cohort with extensive clinical evaluations to look at people
with ICAS and monitor their iron deposition and degree of
neurological impairment are requested for further validation.

CONCLUSION

In conclusion, using QSM imaging, several GM nucleus
subregions, including bilateral PU, GP, and SN in ACAS patients
and PU, GP, SN, and DN in PCAS patients, exhibited increased
iron deposition, indicating that abnormal iron metabolism may
present in different subregions of deep GM nuclei after long-
term ACAS and PCAS. In addition, iron levels of bilateral TH
and SN in PCAS patients were significantly higher than in ACAS
patients, indicating that specific GM nuclei subregions were
more vulnerable to abnormal iron deposition after PCAS than
after ACAS. Iron content of PU in patients with ACAS and

PCAS was correlated with neurological deficit scores. Therefore,
iron quantification measured by QSM susceptibility may provide
a new insight to understand the pathological mechanism of
ischemic stroke caused by ACAS and PCAS, and iron deposition
may play an important role in the process of neurological deficits
in ischemic stroke.
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