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Abstract

Predicting species distributions has long been a valuable tool to plan and focus efforts for bio-

diversity conservation, particularly because such an approach allows researchers and man-

agers to evaluate species distribution changes in response to various threats. Utilizing data

from a long-term monitoring program and land cover data sets, we modeled the probability of

occupancy and colonization for 38 bird Species of Greatest Conservation Need (SGCN) in

the robust design occupancy modeling framework, and used results from the best models to

predict occupancy and colonization on the Iowa landscape. Bird surveys were conducted at

292 properties from April to October, 2006–2014. We calculated landscape habitat character-

istics at multiple spatial scales surrounding each of our surveyed properties to be used in our

models and then used kriging in ArcGIS to create predictive maps of species distributions.

We validated models with data from 2013 using the area under the receiver operating charac-

teristic curve (AUC). Probability of occupancy ranged from 0.001 (SE < 0.001) to 0.995 (SE =

0.004) for all species and probability of colonization ranged from 0.001 (SE < 0.001) to 0.999

(SE < 0.001) for all species. AUC values for predictive models ranged from 0.525–0.924 for

all species, with 17 species having predictive models considered useful (AUC > 0.70). The

most important predictor for occupancy of grassland birds was percentage of the landscape

in grassland habitat, and the most important predictor for woodland birds was percentage of

the landscape in woodland habitat. This emphasizes the need for managers to restore spe-

cific habitats on the landscape. In an era during which funding continues to decrease for con-

servation agencies, our approach aids in determining where to focus limited resources to

best conserve bird species of conservation concern.
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Introduction

Research on the conservation of biodiversity has become increasingly important in the last two

decades, particularly in the face of threats such as habitat loss and fragmentation [1–3], climate

change [3–5], invasive species [6,7], and many others. Humans are responsible for several threats

to wildlife, primarily habitat loss. As the human population continues to grow and human needs

increase, many animals will continue to suffer due to habitat loss. Of all the biodiversity “hot-

spots” remaining in the world, only one-third of the historic habitat supporting the high biodi-

versity in these areas remains [1]. Although habitat loss and degradation affects all wildlife, it has

drastic effects on birds. Nearly 85% of the globally threatened bird species [8] are significantly

threatened by habitat loss. Such effects on birds are also evident at localized scales, for example

Iowa has lost 57% of historic forest habitat, 95% of historic wetland habitat, and 99.9% of historic

grassland habitat since European settlement [9]. As a result, nearly 30% of Iowa’s breeding and

migratory birds are considered Species of Greatest Conservation Need (SGCN), and a majority

of these species are also of heightened conservation status in the Midwest United States [10].

Funding for the conservation of biodiversity and habitat management is severely lacking [11,12]

despite the increasing threats mentioned above. Therefore, identification of priority areas (i.e.,

areas where the most species can be benefitted with the least amount of cost) is critical to effec-

tive conservation planning [11,13].

In 2003, Congress asked all U.S. states to develop a proactive plan to assess the status of wild-

life populations, to identify potential issues facing wildlife in the future, outline and prioritize

actions to conserve all wildlife populations in perpetuity, and identify species in need of conser-

vation action (e.g., SGCN). Known as State Wildlife Action Plans (SWAPs), they were required

of states in order to receive funding through the State and Tribal Wildlife Grants Program, and

by 2005 all 50 states had developed a SWAP [14]. In response to these plans, some states includ-

ing Iowa launched large-scale inventory and monitoring efforts to evaluate the status of wildlife

populations within their borders, inform conservation actions, and continue monitoring wild-

life populations as a response to habitat restoration and management and a changing landscape

(Iowa Multiple Species Inventory and Monitoring (MSIM) Program; http://www.iowadnr.gov/

Environment/WildlifeStewardship/NonGameWildlife/DiversityProjects/MSIM.aspx). Data col-

lected through these monitoring efforts can be used in models to evaluate habitat associations of

all wildlife species, particular those SGCN, and to identify priority areas for conservation action

or areas of high biodiversity based on predicted occupancy of SGCN. These proactive approa-

ches for prioritizing areas of conservation action can help reduce the impact of habitat loss and

alteration on wildlife, thus maintaining biodiversity.

Predicting the distribution of species of conservation concern has long been considered a

valuable tool for conservation planning [15,16] and for the conservation of biodiversity [17].

The benefits of these tools are numerous, allowing biologists and land managers the opportu-

nity to evaluate how species will respond to habitat characteristics on the landscape in order

to focus habitat restoration and management efforts [18–20], and how species will respond to

different climate scenarios in the face of global change [15,21–23]. Even more valuable is the

coupling of data from long-term monitoring projects, such as those mentioned above, with

predictive modeling efforts to evaluate spatial and temporal trends in species distributions

[17,24]. Natural resource agencies are continually faced with decisions to prioritize conserva-

tion actions based on limited funding, and monitoring and species distribution models can

provide scientific information to aid in prioritization.

In this study, we utilized robust design occupancy models [25] to evaluate landscape-scale

habitat associations of 38 terrestrial bird SGCN in Iowa using data collected through the Iowa

MSIM Program developed under the Iowa SWAP [9]. We then developed a spatially-explicit
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prediction of the probability of occupancy of each species across Iowa using results from the

above models. Using occupancy models to predict occupancy of species is a preferred method

because such models incorporate the probability of detecting a given species when estimating

the probability of occupancy, thus minimizing the risk of under-predicting occupancy and

increasing predictive performance [17,26]. Our overall objective was to develop an approach

for predicting species occupancy and colonization using long-term monitoring data and land-

scape characteristics with robust design occupancy models. We then applied our approach to

develop maps identifying priority areas for targeted conservation action for SGCN birds,

which could later be combined to facilitate multi-species conservation and increase biodiver-

sity conservation in Iowa.

Materials and methods

Site selection and survey point establishment

Our work encompassed a wide range of terrestrial and aquatic habitats throughout Iowa. We

selected sites to be surveyed for birds using a stratified random sampling design (Fig 1). All

public properties in Iowa>98 ha (approximately 250 ac) were classified according to 19 habi-

tat types outlined in the Iowa SWAP [9]. We considered only public properties for ease of

access. In addition, we considered only those public properties >98 ha to reduce our sampling

frame due to financial and logistical constraints. We stratified properties into quarters of the

state by splitting the state in half along both north-south and east-west gradients to allow for

equal selection of different habitat types across the state. We selected new properties without

replacement each year from 2006–2014 such that properties of a certain habitat type were

selected from each management district. We also retained 1–5 properties from the sample of

properties each year to constitute a sample of properties surveyed multiple years for compari-

son purposes. By 2014, this resulted in 26 properties being surveyed annually. No specific per-

mission was needed to collect data on properties owned by the Iowa Department of Natural

Resources or various County Conservation Boards. Permission and Special Use Permits were

obtained from the U.S. Fish and Wildlife Service for data collection on National Wildlife Ref-

uges (e.g., DeSoto Bend National Wildlife Refuge, Union Slough National Wildlife Refuge,

Upper Mississippi National Fish and Wildlife Refuge). Permission was obtained from the

National Park Service for data collection on Effigy Mounds National Monument. Our study

did not include data collection for any threatened or endangered species. Field methods for

this study were reviewed and approved by the Iowa State University Institutional Animal Care

and Use Committee (IACUC; Protocol #3-12-7326-Q).

We established a core survey area on each property that encompassed the assigned habitat

type of that property. Core areas on each property were identified as the area of the property

that contained the largest contiguous patch of particular habitat type assigned to that property.

Within the core area, we established seven points approximately 200 m apart and in a hexago-

nal shape (including one point in the center) to allow for adequate coverage of the core area

while minimizing double counting birds [27]. Surveys were only conducted within the core

habitat area on each property.

Bird surveys

We conducted bird surveys at selected properties from April–October each year from 2006–

2014. We divided the survey year into three seasons to focus on both breeding and migratory

birds: spring (April–May) and fall (September–October) focused on migratory birds and sum-

mer (June–July) focused on breeding birds. We conducted three visits to each property at least
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PLOS ONE | DOI:10.1371/journal.pone.0173041 March 16, 2017 3 / 21



4 d apart in each of the three seasons for a total of 9 visits to each property in a survey year.

On each visit, we conducted standardized, 10-min point counts with distance sampling at

all seven survey points from 30 m before sunrise to 4 hr after sunrise. We recorded all birds

seen or heard at each point, estimated the linear distance to each bird seen or heard, and

placed the bird into one of five distance categories: 0–25 m, 26–50 m, 51–75 m, 76–100 m,

and >101 m. We considered the site occupied if a species of interest was detected during at

least one of the seven point counts. Adhering to the primary assumption of distance sam-

pling [28], we recorded the distance to each individual bird when it was first observed and

did not record any subsequent observations. Prior to bird surveys, we measured wind speed

(km/h), cloud cover (%), and temperature (˚C) and did not conduct bird surveys during

periods of fog, prolonged precipitation, or high winds (>20 km/h).

Fig 1. All sites surveyed for birds (black dots) as part of the Iowa Multiple Species Inventory and Monitoring (MSIM) Program in Iowa, 2006–2014.

doi:10.1371/journal.pone.0173041.g001
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Landscape habitat covariates

Using ArcGIS [ver. 10.1; 29], we measured various landscape-level habitat variables within a

200 m, 500 m, and 1000 m radius of each sampled site. We placed a buffer around each of our

sampled sites using the buffer tool in ArcGIS toolbox [Analysis Tools, Proximity, Buffer; 29].

Next, we clipped the 2009 Iowa Landcover file to our site buffers using the “clipraster” com-

mand in the tools extension package Geospatial Modeling Environment [GME; 30]. The 2009

Iowa Landcover file provides information on the land use classification of the Iowa landscape

in 2009 using satellite imagery at a 3 m resolution and includes classifications such as “grass-

land”, “forest”, and “wetland” among others [31]. This is currently the most recent land use

classification for Iowa. We repeated the above two steps for both radii to obtain the land use

description within each radius our surveyed sites. Among the various land-use classifications

in the Landcover file, we selected the “water”, “wetland”, “grassland”, “woodland”, and “agri-

culture” classifications for our analysis because these were the classifications we believed

would most influence our focal species [32,33].

We estimated our landscape-level habitat characteristics at each scale using FRAGSTATS

[ver. 4.2; 34]. For our analyses, we selected the percentage of landscape (PLAND), largest

patch index (LPI), edge density (ED), patch density (PD), and interspersion-juxtaposition (IJI)

metrics. Percentage of landscape measures the area of the focal land-use classification stan-

dardized by the total area of the landscape. LPI is the largest patch of the corresponding land-

use classification standardized by the total landscape area. ED measures the amount of edge on

the landscape corresponding to a single land-use classification standardized by landscape area.

PD measures the number of patches on the landscape corresponding to a single land-use clas-

sification standardized by area. Lastly, IJI measures the degree to which patches of different

land-use classifications are interspersed among each other based on patch adjacencies. We per-

formed these four calculations on the five land-use classifications for each scale resulted in 75

landscape-level variables to be included as covariates in our models (Table 1). We then

assessed correlation among our habitat variables using a simple correlation matrix. Highly cor-

related combinations of two variables (R>0.60 or R<-0.60; n = 129) were not included in the

same model.

Robust design occupancy models

We utilized the robust design occupancy model framework [25] in Program Mark [35] to eval-

uate the effects of the above-mentioned landscape-level habitat characteristics on terrestrial

birds in Iowa. The robust design occupancy model estimates four parameters: 1) probability of

occupancy (ψ), or the probability that the species of interest occupied a sampled site, 2) proba-

bility of colonization (γ), or the probability that a site will was colonized at time t+1 given the

site was not occupied at time t, 3) probability of extinction (ε), or the probability that a site

went extinct at time t+1 given the site was occupied at time t, and 4) detection probability, or

the probability of detecting the species of interest given it was present at the sampled site [p;

25]. For all species, we utilized the reduced robust design occupancy model that estimates ψ, γ,

and p for our analyses for two reasons: 1) we were more interested in estimates of γ because it

provides information on potential habitats to restore to benefit SGCN birds and 2) models

were more likely to converge due to parsimony. Unlike the single-season occupancy model

where sites are closed to changes in occupancy state during the primary sampling season [36],

the robust design occupancy model assumes sites are closed to changes in occupancy state

between secondary sampling intervals (e.g., sampling occasions within a year) but are open to

changes in occupancy state between primary sampling intervals [e.g., years; 25]. This allows

for the evaluation of meta-population dynamics through the process of determining the
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Table 1. Final list of landscape-level habitat covariates modeled on probability of occupancy and

colonization.

Land-use classification Spatial scale Variable name

Agriculture 200 m Edge density

Agriculture 200 m Interspersion-juxtaposition

Agriculture 200 m Largest patch index

Agriculture 200 m Percentage of landscape

Agriculture 200 m Patch density

Agriculture 500 m Edge density

Agriculture 500 m Interspersion-juxtaposition

Agriculture 500 m Largest patch index

Agriculture 500 m Percentage of landscape

Agriculture 500 m Patch density

Agriculture 1000 m Edge density

Agriculture 1000 m Interspersion-juxtaposition

Agriculture 1000 m Largest patch index

Agriculture 1000 m Percentage of landscape

Agriculture 1000 m Patch density

Grassland 200 m Edge density

Grassland 200 m Interspersion-juxtaposition

Grassland 200 m Largest patch index

Grassland 200 m Percentage of landscape

Grassland 200 m Patch density

Grassland 500 m Edge density

Grassland 500 m Interspersion-juxtaposition

Grassland 500 m Largest patch index

Grassland 500 m Percentage of landscape

Grassland 500 m Patch density

Grassland 1000 m Edge density

Grassland 1000 m Interspersion-juxtaposition

Grassland 1000 m Largest patch index

Grassland 1000 m Percentage of landscape

Grassland 1000 m Patch density

Woodland 200 m Edge density

Woodland 200 m Interspersion-juxtaposition

Woodland 200 m Largest patch index

Woodland 200 m Percentage of landscape

Woodland 200 m Patch density

Woodland 500 m Edge density

Woodland 500 m Interspersion-juxtaposition

Woodland 500 m Largest patch index

Woodland 500 m Percentage of landscape

Woodland 500 m Patch density

Woodland 1000 m Edge density

Woodland 1000 m Interspersion-juxtaposition

Woodland 1000 m Largest patch index

Woodland 1000 m Percentage of landscape

Woodland 1000 m Patch density

Wetland 200 m Edge density

(Continued )
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probability a site will remain occupied, go locally extinct, or become locally colonized. In addi-

tion, the robust design occupancy model allows covariates to be modeled on the parameters to

improve parameter estimates and provide information on characteristics might influence the

various parameters.

We modeled landscape-level habitat variables on probability of occupancy and probability

of colonization for 38 species of terrestrial birds (Table 2) listed as SGCN by the Iowa Wildlife

Action Plan [9]. We divided the species list into four guilds based on primary habitat associa-

tions: grassland, woodland, scrub-shrub, and all other species (Table 2). The primary sampling

intervals were the years during which bird surveys were conducted (2006–2014) and the sec-

ondary sampling intervals were the survey occasions (days) with each sampling year (April-

October). For each guild, we modeled the same set of habitat variables and interactions for all

scales on both occupancy and colonization probabilities based on biological knowledge and

review of the literature. For example, we modeled all grassland, woodland, and agriculture var-

iables for all scales on birds within the grassland guild as well as two-way interactions of all

grassland and woodland and grassland and agriculture variables. We also modeled time-vary-

ing covariates of wind speed, cloud cover, and temperature on detection probability. We

Table 1. (Continued)

Land-use classification Spatial scale Variable name

Wetland 200 m Interspersion-juxtaposition

Wetland 200 m Largest patch index

Wetland 200 m Percentage of landscape

Wetland 200 m Patch density

Wetland 500 m Edge density

Wetland 500 m Interspersion-juxtaposition

Wetland 500 m Largest patch index

Wetland 500 m Percentage of landscape

Wetland 500 m Patch density

Wetland 1000 m Edge density

Wetland 1000 m Interspersion-juxtaposition

Wetland 1000 m Largest patch index

Wetland 1000 m Percentage of landscape

Wetland 1000 m Patch density

Water 200 m Edge density

Water 200 m Interspersion-juxtaposition

Water 200 m Largest patch index

Water 200 m Percentage of landscape

Water 200 m Patch density

Water 500 m Edge density

Water 500 m Interspersion-juxtaposition

Water 500 m Largest patch index

Water 500 m Percentage of landscape

Water 500 m Patch density

Water 1000 m Edge density

Water 1000 m Interspersion-juxtaposition

Water 1000 m Largest patch index

Water 1000 m Percentage of landscape

Water 1000 m Patch density

doi:10.1371/journal.pone.0173041.t001
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estimated all parameters on an annual basis. We truncated data sets to the known breeding

season for each species [37] to ensure closure among the secondary sampling occasions. For

species that do not breed statewide (7 of 38 species), we restricted data sets by landform region

[38] to surveyed sites within core breeding areas as determined by Iowa Breeding Bird Atlas

data [39]. We did not consider migratory species because they violate the closure assumption

Table 2. List of species, their respective guild, and estimates (standard error; SE) for occupancy (Psi), colonization (Gamma), and detection (p)

probabilities, and area under the receiver operating characteristic curve (AUC).

Species Guild ψ (SE) γ (SE) p (SE) AUC

Trumpeter Swan (Cygnus buccinator) Other 0.071 (0.009) 0.043 (0.005) 0.247 (0.040) 0.673

Northern Bobwhite (Colinus virginianus) Scrub-shrub 0.256 (0.009) 0.145 (0.007) 0.540 (0.042) 0.697

American Bittern (Botaurus lentiginosis) Other 0.193 (0.075) NE 0.099 (0.038) 0.600

Bald Eagle (Haliaeetus leucocephalus) Other 0.277 (0.066) 0.039 (0.038) 0.140 (0.024) 0.541

Northern Harrier (Circus cyaneus) Grassland NE 0.275 (0.016) 0.775 (0.112) NE

Red-shouldered Hawk (Buteo lineatus) Woodland 0.132 (0.016) 0.073 (0.009) 0.267 (0.044) 0.798

Broad-winged Hawk (Buteo platypterus) Woodland NE NE NE NE

Upland Sandpiper (Bartramia longicauda) Grassland NE 0.023 (0.011) 0.368 (0.085) NE

American Woodcock (Scolopax minor) Other NE NE NE NE

Yellow-billed Cuckoo (Coccyzus americanus) Woodland 0.668 (0.041) 0.387 (0.042) 0.532 (0.025) 0.706

Black-billed Cuckoo (Coccyzus erythropthalmus) Woodland 0.576 (0.254) 0.037 (0.032) 0.120 (0.029) 0.743

Common Nighthawk (Chordeiles minor) Other NE NE NE NE

Belted Kingfisher (Megaceryle alcyon) Other 0.505 (0.052) 0.333 (0.104) 0.197 (0.019) 0.640

Red-headed Woodpecker (Melanerpes erythrocephalus) Woodland 0.572 (0.030) 0.276 (0.061) 0.622 (0.024) 0.610

Northern Flicker (Colaptes auratus) Woodland 0.900 (0.029) NE 0.600 (0.019) 0.656

American Kestrel (Falco sparverius) Grassland 0.194 (0.008) 0.999 (<0.001) 0.055 (0.008) 0.793

Eastern Wood-Pewee (Contopus virens) Woodland 0.979 (0.001) 0.481 (0.008) 0.861 (0.013) 0.906

Acadian Flycatcher (Empidonax virescens) Woodland 0.031 (0.002) 0.068 (0.004) 0.584 (0.040) 0.892

Eastern Kingbird (Tyrannus tyrannus) Grassland 0.762 (0.002) 0.101 (0.002) 0.581 (0.016) 0.722

Bell’s Vireo (Vireo bellii) Scrub-shrub 0.053 (0.002) 0.056 (0.004) 0.336 (0.067) 0.732

Horned Lark (Eremophilia alpestris) Grassland NE NE NE NE

Bank Swallow (Riparia riparia) Other 0.328 (0.020) 0.203 (0.011) 0.202 (0.023) 0.606

Sedge Wren (Cisthorus platensis) Grassland 0.433 (0.009) 0.388 (0.031) 0.621 (0.022) 0.863

Veery (Catharus fuscescens) Woodland 0.041 (0.007) 0.001 (<0.001) 0.206 (0.069) 0.551

Wood Thrush (Hylocichla mustelina) Woodland NE 0.141 (0.026) 0.514 (0.024) NE

Brown Thrasher (Toxostoma rufum) Scrub-shrub 0.749 (0.038) 0.139 (0.070) 0.615 (0.089) 0.525

Prothonotary Warbler (Protonotaria citrea) Other 0.111 (0.009) NE 0.232 (0.050) 0.696

Kentucky Warbler (Geothlypis formosa) Woodland 0.001 (<0.001) 0.101 (0.044) 0.212 (0.051) 0.795

Common Yellowthroat (Geothlypis trichas) Grassland 0.995 (0.004) NE 0.935 (0.006) 0.640

Cerulean Warbler (Setophaga cerulea) Woodland 0.179 (0.102) 0.129 (0.129) 0.685 (0.053) 0.722

Field Sparrow (Spizella pusilla) Scrub-shrub 0.750 (0.028) 0.217 (0.052) 0.752 (0.016) 0.592

Grasshopper Sparrow (Ammodramus savannarum) Grassland 0.346 (0.031) 0.091 (0.034) 0.581 (0.031) 0.661

Henslow’s Sparrow (Ammodramus henslowii) Grassland 0.043 (0.012) 0.018 (0.009) 0.628 (0.051) 0.589

Dickcissel (Spiza americana) Grassland 0.492 (0.015) 0.346 (0.011) 0.457 (0.109) 0.766

Bobolink (Dolichonyx oryzivorus) Grassland 0.396 (0.039) 0.183 (0.062) 0.921 (0.045) 0.848

Eastern Meadowlark (Sturnella magna) Grassland 0.458 (0.011) 0.238 (0.015) 0.782 (0.053) 0.713

Western Meadowlark (Sturnella neglecta) Grassland 0.126 (0.002) 0.111 (0.002) 0.406 (0.032) 0.924

Baltimore Oriole (Icterus galbula) Woodland 0.948 (0.030) 0.999 (<0.001) 0.509 (0.022) 0.668

“NE” denotes parameter not estimated.

doi:10.1371/journal.pone.0173041.t002

Prioritizing areas of conservation action for terrestrial birds

PLOS ONE | DOI:10.1371/journal.pone.0173041 March 16, 2017 8 / 21



of occupancy models [36]. Because we had landcover data from only one year (2009), we

assumed the landscape and the corresponding effects on occupancy and colonization did not

change among our survey years and pooled all survey years for analysis. We evaluated models

using Akaike’s Information Criterion adjusted for small sample sizes [AICc; 40]. Models with

ΔAICc�2 were considered to have strong support [40].

Using estimates of effect size on covariates from the best model for each species, we pre-

dicted cell-specific values of ψ and γ across all of Iowa for each species. To develop a predictive

map of both parameters for each species, we first established a 1000 m point grid across the

entire state resulting in a total sample of 145,729 points across Iowa. We used these points as a

basis for assessing landscape-level habitat characteristics of interest across all of Iowa. Repeat-

ing the process described above for our sampled sites, we placed a buffer around each point,

clipped the 2009 Iowa Landcover file to each buffer, and estimated the above-mentioned land-

scape-level habitat characteristics for each of the three land-use classifications. This process

was completed for a 200 m, 500 m, and 1000 m radius around each point. Once we successfully

estimated landscape-level habitat characteristics for each of the 145,729 points across Iowa, we

then developed predictive models for each parameter for every species using the linear coeffi-

cients of the covariate effects on the respective parameter from the best model. We calculated a

value for both C and γ for each point in the point grid by taking the logit transformation of

the product of the linear coefficient of the covariate or covariates on ψ in the best model and

the value for the covariate at the respective point.

Model predictions

To create the map, we interpolated values of ψ and γ between points in our point grid using

the kriging tool in ArcGIS [Spatial Analyst Tools, Interpolation, Kriging; 29]. This process

involved generating a raster surface from points by interpolating values between points based

on values for established points within a specified search distance (m). Within the kriging tool,

we specified a spherical semivariogram model, set our output cell size to match the radius of

the landscape included in the best robust design occupancy model for the particular species

(200 m, 500 m, or 1000 m), and set our maximum search distance to 1000 m so the interpola-

tion would only consider adjacent points in the point grid. Because the size of our cells for pre-

diction were 1000 m2, we simply used raster algebra to multiply the covariate value of each

individual cell by the effect size of that covariate. Kriging was only used to interpolate among

prediction cells for the 200 m and 500 m scales.

Model validation

We evaluated our models using the area under the receiver operating characteristic curve

(AUC), a threshold-independent procedure that compares the distributions of correctly and

incorrectly classified predictions over a wide range of threshold levels [41]. An average AUC

score of 0.5 represents a prediction of random choice whereas an average AUC score of 1.0 is a

perfect prediction [42]. We used survey year 2013 as our test data set and survey years 2006–

2012 and 2014 as our training data set [43]. We selected survey year 2013 as our test data set,

which represented approximately 20% of the total number of properties surveyed, because

properties surveyed in 2013 were better representative of the spatial variability of habitat across

Iowa. This approach is used frequently in the literature for evaluating performance of logistic

regression and occupancy models for predicting occupancy probability [41,44–46]. We con-

sidered models useful if the respective AUC was > 0.70 [47]. We did not evaluate models for

probability of colonization due to our lack of data for doing so. Evaluating models for proba-

bility of colonization would require multiple sites with repeated visits in our test data set (i.e.
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survey year 2013), of which we only had five. We predicted probability of colonization for each

species because such values are important for conservation planning. However, we suggest

readers use caution when interpreting these values since they are not validated using an inde-

pendent data set.

Cumulative maps

Once we obtained predictive maps for each species, we created additional cumulative maps

that predicted species richness and colonization for all species combined. We also created

cumulative maps of predicted species richness and colonization for species with predictive

models considered useful (AUC > 0.70) within each of the grassland, woodland, and scrub-

shrub species groups. Cumulative maps were created by calculating the sum of the respective

probabilities for all species considered for each map [48]. We did not create cumulative maps

for species in the “other” group because all species within that group either did not have all

parameters estimated or did not have predictive models considered useful.

Results

We surveyed a total of 292 properties across Iowa from 2006–2014 of which 272 were surveyed

only one year and 20 were surveyed in more than one year (Fig 1). Detections of individual

species ranged from 4–1354 (mean = 261) with common nighthawk (Chordeiles minor)
detected on the fewest occasions and common yellowthroat (Geothlypis trichas) detected on

the most occasions.

Robust design occupancy models

For most species, the best predictors of occupancy and colonization were at the 500 m spatial

scale (Table 3). Covariates at the 500 m spatial scale were included in the best model for occu-

pancy for 21 species and in the best model for colonization for 19 species. Covariates at the

1000 m spatial scale were also important predictors of occupancy and colonization for eight

species and 11 species, respectively. Only one species responded to covariates at the 200 m spa-

tial scale for occupancy (upland sandpiper [Bartramia longicauda]) and colonization (northern

harrier [Circus cyaneus]).
For woodland species, the most important predictor (covariate included in best model for

most species) of occupancy and colonization was percentage of the landscape in woodland at

either the 500 m or 1000 m spatial scales (Table 3). Occupancy of most grassland species was

either positively correlated with the percentage of the landscape in grassland at either the 200

m, 500 m, or 1000 m spatial scales or negatively correlated with various characteristics of

woodland on the landscape (Table 3). Colonization of grassland species was not frequently

correlated with any one covariate and included a negative correlation with woodland charac-

teristics, a mix of positive and negative correlations with agriculture characteristics, and posi-

tive correlations with grassland characteristics on the landscape. As expected, occupancy of

most scrub-shrub species was positively associated with both grassland and woodland charac-

teristics that would suggest the use of edge habitat such as patch density of both grassland,

edge density of both grassland and woodland, and percentage of the landscape in both grass-

land and woodland, most of which at the 500 m spatial scale (Table 3). Colonization of scrub-

shrub species showed similar correlations. However, colonization of two scrub-shrub species

(black-billed cuckoo [Coccyzus erythropthalmus] and Bell’s vireo [Vireo bellii]) were negatively

associated with the percentage of the landscape in agriculture at the 500 m spatial scale and

positively associated with the patch density of agriculture at the 500 m spatial scale, respectively

(Table 3). For all other species, occupancy was positively correlated with a variety of
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Table 3. List of best models for each species and the effect size (Psi, Gam, p) and 95% confidence interval (95% CI) for the covariate on each

parameter in the model.

Species Model Psi 95% CI Gam 95% CI p 95% CI

Trumpeter Swan Psi(~Ag1KPLND)Gam(~Wtr500PLND)p(~1) 0.059 (0.051,

0.067)

0.129 (0.103,

0.154)

Northern Bobwhite Psi(~Grs500PLND)Gam(~Grs500PD)p(~Wind) 0.055 (0.053,

0.057)

0.004 (0.004,

0.004)

-0.176 (-0.298,

-0.055)

American Bittern Psi(~Wtl1kPLND)Gam(~1)p(~Cld) 0.252 (0.052,

0.453)

0.014 (0.001,

0.027)

Bald Eagle Psi(~Wtr1kED)Gam(~Ag500LPI)p(~1) 0.022 (-0.001,

0.046)

0.132 (0.032,

0.232)

Northern Harrier Psi(~Wod500PLND)Gam(~Wod200LPI)p(~Temp) -0.512 (-0.528,

-0.495)

-0.039 (-0.043,

-0.035)

-0.064 (-0.087,

-0.040)

Red-shouldered

Hawk

Psi(~Wod1KPLND)Gam(~Ag1KPD)p(~Cld) 0.034 (0.028,

0.040)

0.002 (0.002,

0.002)

-0.008 (-0.016,

0.000)

Upland Sandpiper Psi(~Grs200PLND * Wod200PLND)Gam(~Ag1kLPI)p

(~Wind)

0.077 (-0.017,

0.171)

0.071 (0.008,

0.135)

-0.184 (-0.396,

0.027)

Yellow-billed Cuckoo Psi(~Wod500PLND)Gam(~Wod1kLPI)p(~Wind) 0.060 (0.050,

0.069)

0.042 (0.025,

0.059)

-0.076 (-0.140,

-0.012)

Black-billed Cuckoo Psi(~Wod1KPLND)Gam(~Ag500PLND)p(~1) 0.146 (0.033,

0.258)

-0.287 (-0.481,

-0.092)

Belted Kingfisher Psi(~Wtr500ED)Gam(~Wtl500PLND)p(~1) 0.010 (0.002,

0.019)

-0.114 (-0.267,

0.040)

Red-headed

Woodpecker

Psi(~Wod500PLND)Gam(~Ag500PD)p(~Cld) 0.017 (0.009,

0.025)

-0.002 (-0.004,

0.000)

-0.004 (-0.008,

-0.001)

Northern Flicker Psi(~Wod500ED)Gam(~Wod500PLND * Wod500LPI)p

(~Wind)

0.009 (0.005,

0.012)

0.032 (0.002,

0.061)

-0.119 (-0.164,

-0.074)

Eastern Wood-Pewee Psi(~Wod500PLND)Gam(~Wod1KPLND)p(~Wind) 0.128 (0.125,

0.131)

0.071 (0.069,

0.072)

-0.110 (-0.168,

-0.052)

American Kestrel Psi(~Grs500LPI)Gam(~Grs500LPI)p(~1) 0.123 (0.119,

0.126)

0.922 (0.320,

1.525)

Acadian Flycatcher Psi(~Wod500PLND)Gam(~Wod500PLND)p(~Wind) 0.092 (0.090,

0.094)

0.07 (0.068,

0.072)

0.086 (-0.020,

0.192)

Eastern Kingbird Psi(~Wod500LPI)Gam(~Ag1kLPI)p(~1) -0.050 (-0.051,

-0.050)

-0.145 (-0.150,

-0.141)

Bell’s Vireo Psi(~Wod1KPD)Gam(~Ag500PD)p(~Wind) 0.006 (0.006,

0.006)

0.003 (0.003,

0.003)

0.351 (0.049,

0.652)

Bank Swallow Psi(~Ag1KPLND)Gam(~Wtl1kPLND)p(~1) 0.030 (0.024,

0.036)

-0.063 (-0.110,

-0.016)

Sedge Wren Psi(~Wtl500PLND * Grs500PLND)Gam(~Wtl500PLND *
Grs500PLND)p(~1)

0.008 (0.008,

0.009)

0.008 (0.007,

0.008)

Veery Psi(~Wod1kED)Gam(~Ag500LPI)p(~Wind) 0.005 (0.004,

0.006)

-0.578 (-0.655,

-0.501)

0.179 (-0.005,

0.362)

Wood Thrush Psi(~Wod500LPI)Gam(~Wod500PLND)p(~Wind) -2.065 (-4.839,

0.710)

0.063 (0.047,

0.078)

Brown Thrasher Psi(~Grs500ED * Wod500ED)Gam(~Grs1KPD)p(~Temp) 0.003 (0.001,

0.005)

-0.013 (-0.025,

-0.002)

Prothonotary Warbler Psi(~Wod500PD)Gam(~Wod500PLND * Wtl500PD)p(~1) -0.017 (-0.018,

-0.015)

Kentucky Warbler Psi(~Wod500PD)Gam(~Wod500PLND)p(~Wind) -0.073 (-0.195,

0.049)

0.061 (0.012,

0.109)

0.162 (0.023,

0.301)

Common

Yellowthroat

Psi(~Wtl500PLND * Grs500PLND)Gam(~Wtl1kLPI)p(~1) -0.026 (-0.141,

0.090)

Cerulean Warbler Psi(~Wod1KPD)Gam(~Wod1KPD)p(~1) -0.050 (-0.086,

-0.014)

-0.052 (-0.129,

0.024)

(Continued )
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characteristics including edge density of water at the 500 m spatial scale, percentage of the

landscape in agriculture at the 1000 m spatial scale, and percentage of the landscape in wet-

lands at the 1000 m spatial scale. Colonization was not estimated, likely due to lack of opportu-

nity in the data, or exhibited a non-significant correlation with one or more characteristics for

most other species. However, colonization was positively correlated with the percentage of the

landscape in water at the 500 m spatial scale for trumpeter swan (Cygnus buccinator) and the

largest patch index of agriculture at the 500 m spatial scale for bald eagle (Haliaeetus leucoce-
phalus), and was negatively correlated with the percentage of the landscape in wetlands at the

1000 m spatial scale for bank swallow (Riparia riparia; Table 3). Wind speed was the most fre-

quent covariate affecting detection probability, appearing as an important covariate in the best

model for 14 of our 34 species (Table 3). A constant effect on detection probability was also

important, appearing in the best model for 12 of 34 species (Table 3). Temperature and cloud

cover were important covariates on detection probability for five and three species,

respectively.

Occupancy probability ranged from 0.030 to 0.995 for all species (Table 2), with the lowest

occupancy probability estimated for acadian flycatcher (Empidonax virescens) and the highest

occupancy probability estimated for common yellowthroat. Occupancy probability was esti-

mated as zero or was not estimated for eight species. Occupancy probabilities were generally

higher for scrub-shrub species (mean = 0.477) than for grassland (mean = 0.354), woodland

(mean = 0.404), and all other species (mean = 0.247). Colonization probability ranged from

0.020 for Henslow’s sparrow (Ammodramus henslowii) to 0.481 for eastern wood-pewee

(Contopus virens). Colonization probability was generally greater for grassland species

(mean = 0.315) than for scrub-shrub (mean = 0.171), woodland (mean = 0.241), and all other

species (mean = 0.270). Colonization probability was not estimated for nine species. The

Table 3. (Continued)

Species Model Psi 95% CI Gam 95% CI p 95% CI

Field Sparrow Psi(~Wod500PD)Gam(~Wod500PD)p(~Wind) 0.008 (0.004,

0.011)

0.003 (-0.001,

0.007)

-0.094 (-0.140,

-0.049)

Grasshopper

Sparrow

Psi(~Grs500PLND)Gam(~Wod1KPLND)p(~Wind) 0.048 (0.032,

0.064)

-0.041 (-0.078,

-0.003)

-0.066 (-0.134,

0.003)

Henslow’s Sparrow Psi(~Grs1KPLND)Gam(~Grs1KPLND)p(~1) 0.060 (0.031,

0.088)

0.090 (0.029,

0.151)

Dickcissel Psi(~Wod500PLND)Gam(~Wod500PLND)p(~Temp) -0.064 (-0.067,

-0.062)

-0.042 (-0.043,

-0.040)

0.014 (0.001,

0.028)

Bobolink Psi(~Grs500PLND)Gam(~Grs500LPI)p(~Temp) 0.103 (0.077,

0.129)

0.115 (0.030,

0.200)

-0.036 (-0.055,

-0.016)

Eastern Meadowlark Psi(~Wod500LPI)Gam(~Ag500LPI)p(~Temp) -0.045 (-0.046,

-0.043)

0.079 (0.065,

0.093)

-0.021 (-0.031,

-0.011)

Western Meadowlark Psi(~Wod500PLND)Gam(~Grs500LPI)p(~Wind) -0.058 (-0.058,

-0.057)

0.052 (0.050,

0.053)

0.087 (0.021,

0.152)

Baltimore Oriole Psi(~Wod500ED)Gam(~Wod500PLND)p(~Wind) 0.013 (0.007,

0.020)

0.281 (-0.058,

0.620)

0.110 (0.062,

0.158)

Covariates modeled on Psi and Gam are a combination of the following abbreviations: “Ag” represents agriculture, “Wtr” represents water, “Wtl” represents

wetland, “Grs” represents grassland, “Wod” represents woodland, “200” represents the 200 m spatial scale, “500” represents the 500 m spatial scale, “1k”

represents the 1000 m spatial scale, “PLND” represents percentage of the landscape, “PD” represents patch density, “ED” represents edge density, and

“LPI” represents largest patch index. Therefore, as an example, “Ag1kPLND” represents the percentage of the landscape in agriculture at the 1000 m

spatial scale. Covariates modeled on p are as follows: “Wind” represents wind speed (km/h), “Cloud” represents cloud cover (%), “Temp” represents

temperature (˚C), and “1” represents a constant effect. Bold text indicates a significant effect (confidence interval did not include zero).

doi:10.1371/journal.pone.0173041.t003
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lowest detection probability, 0.055, was estimated for American kestrel (Falco sparverius) and

the highest detection probability, 0.935, for common yellowthroat. Detection probability was

generally greater for grassland species (mean = 0.592) than for scrub-shrub (mean = 0.473),

woodland (mean = 0.508), and all other species (mean = 0.186). Detection probability was not

estimated for four species.

Model validation

Predictive models for occupancy were considered useful (AUC > 0.70) for 17 of 31 species for

which models were evaluated. AUC values for occupancy probability ranged from 0.525 for

brown thrasher (Toxostoma rufum) to 0.924 for western meadowlark (Sturnella neglecta). We

did not evaluate models for eight species for which occupancy probability was not estimated.

Discussion

Our approach uses data from a long-term monitoring program to assess landscape habitat

associations and predict occupancy and colonization as a function of landscape variables

obtained from high-resolution (3 m) landcover data (Fig 2, Fig 3, Fig 4, Fig 5). For 17 of 31 spe-

cies, our predictive models for occupancy were considered, thus illustrating the utility of our

approach in predicting distributions for some species of conservation concern. Using models

that incorporate imperfect detection minimizes the possibility of underestimating occupancy

and colonization and thus the extent of the potential distribution and colonization of each spe-

cies [49]. Our study is one of few to predict the probability of colonization for multiple species

[17], a parameter that can be very useful to managers for targeting habitat restoration efforts in

areas not currently occupied by a species of interest.

Landscape habitat associations

Percentage of the landscape in a particular habitat class was the most important characteristic

predicting occupancy of most of our study species. The probability of occupancy for most

woodland, grassland, and scrub-shrub species was positively correlated with percentage of the

landscape in woodland, grassland, or a combination of both, respectively. One of the funda-

mental requirements of adequate habitat is sufficient space for an animal to move, locate a

mate, avoid potential predators or aggressive interactions with conspecifics, and obtain food

and water, all of which are critical to its well-being [50]. Lack of sufficient space can reduce the

survival of an individual animal, which can decrease the carrying capacity of an area and ulti-

mately result in population declines of a species [50]. The importance of space, or the amount

of habitat on the landscape, has been demonstrated in the literature. For example, a previous

study [33] demonstrated that species richness of woodland birds decreases drastically as cover

of trees drops below 10% on the landscape. For grassland birds, studies have also found the

abundance of grassland habitat on the landscape influences probability of occupancy and spe-

cies richness of grassland bird species at a particular area [32,51–53]. Our study not only estab-

lished percentage of habitat on the landscape as an important predictor of bird probability of

occupancy, but also predicted areas of both high and low probabilities of occupancy for species

based on this landscape characteristic. This study is important to land managers interested in

restoring and managing habitat for birds of conservation concern in two ways: 1) areas of high

species occupancy inform managers where to focus habitat management efforts, particularly if

the species is confirmed at the site, and 2) areas of low occupancy inform managers where to

focus habitat restoration and land acquisition efforts to increase the suitability of the area for

the species of interest. This study is also important for future research because it illustrates
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areas to focus surveys, especially for species which lack data on population trends, and to con-

duct on-site evaluations of species habitat associations.

Although other studies have evaluated colonization of habitat patches by various bird spe-

cies [54–56], no study to our knowledge has used this information to predict probability of col-

onization of multiple bird species on the landscape. Patch isolation is frequently cited as a

significant influence of patch colonization by birds [55,56]. Additionally, patch size is not only

an important influence on colonization but also influences the persistence of a species at a par-

ticular patch [54]. Largest patch index was an important predictor of probability of coloniza-

tion for some woodland and grassland species in our study. However, the amount of habitat

on the landscape (i.e., PLAND) was of greater importance for colonization probability of both

grassland and woodland species. Percentage of the landscape in woodland at various spatial

scales was positively correlated with probability of colonization for five woodland species and

negatively correlated with probability of colonization for two grassland species. Percentage of

the landscape in grassland at various spatial scales was positively correlated with probability of

colonization for two grassland species. These results suggest that, although patch size is an

important predictor of probability of colonization for some birds, the amount of habitat on the

landscape is of greater importance to probability of colonization particularly on an intensively

modified landscape such as Iowa. Greater than 99% of the Iowa landscape has been converted

Fig 2. Predicted probability of occupancy and colonization for three bird Species of Greatest Conservation Need (SGCN) in Iowa using the

covariates on Psi and Gamma from the best model for each species. Maps display values for one grassland species (Bobolink [Dolichonyx oryzivorus]),

one woodland species (Acadian Flycatcher [Empidonax virescens]), and one scrub-shrub species (Bell’s Vireo [Vireo bellii]), all of which had predicted

models considered useful (AUC > 0.70). (a) Predicted probability of occupancy for Bobolink, (b) Predicted probability of occupancy for Acadian Flycatcher,

(c) Predicted probability of occupancy for Bell’s Vireo, (d) Predicted probability of colonization for Bobolink, (e) Predicted probability of colonization for

Acadian Flycatcher, (f) Predicted probability of colonization for Bell’s Vireo.

doi:10.1371/journal.pone.0173041.g002
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to agriculture, and the influence of this drastic change on probability of colonization is evident

in our results. Probability of colonization for eight species was significantly correlated, either

positively or negatively, with either the amount of agriculture on the landscape of the size of

agriculture patches on the landscape. This result should be interpreted with caution because it

is possible that the effect of these agriculture variables on our parameters is a result of the high

amount and lack of variation of agriculture on the landscape. Conversely, this result could sug-

gest that some species such as upland sandpiper are successfully colonize areas with increased

agriculture on the landscape whereas other species such as black-billed cuckoo and eastern

kingbird will only colonize areas with less agriculture on the landscape. Nonetheless, the ability

to predict probability of colonization on any landscape is critical to prioritizing areas of con-

servation actions for birds.

There are caveats to our approach that need to be considered. First, we did not consider

annual variation when estimating both occupancy and colonization probabilities, both of

which are expected to vary annually [17]. We modeled both occupancy and colonization prob-

abilities as a function of landscape covariates obtained for a single year of landcover data.

Because our landscape covariates were constant across all years of monitoring data, we did not

expect occupancy and colonization probabilities to vary annually. Although we acknowledge

the likelihood of the landscape changing during the duration of our study, obtaining high-res-

olution landcover data on an annual basis is not feasible. Additionally, we did not incorporate

Fig 3. Predicted probability of occupancy and colonization for three range-restricted bird Species of Greatest Conservation Need (SGCN) in Iowa

using the covariates on Psi and Gamma from the best model for each species. Predictive models for all species displayed were considered useful

(AUC > 0.70). (a) Predicted probability of occupancy for Northern Bobwhite (Colinus virginianus), (b) Predicted probability of occupancy for Red-shouldered

Hawk (Buteo lineatus), (c) Predicted probability of occupancy for Kentucky Warbler (Geothlypis formosa), (d) Predicted probability of colonization for

Northern Bobwhite, (e) Predicted probability of colonization for Red-shouldered Hawk, (f) Predicted probability of colonization for Kentucky Warbler.

doi:10.1371/journal.pone.0173041.g003
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on-site habitat characteristics in our models. Several studies speak to the value of incorporating

both landscape- and local-level variables in analyses of habitat associations [57,58]. However,

these studies were typically focused on small geographic areas and not conducted at a statewide

level. Furthermore, there are currently no sources of on-site habitat data for Iowa in its

entirety, which would render prediction of occupancy and colonization based on these charac-

teristics impossible. We were unable to validate predicted values for probability of colonization

due to lack of data in our test data set. However, outlining the approach for predicting proba-

bility of colonization is important for repeatability of our study and applicability to other data

sets. Lastly, we were unable to develop useful predictive models for 14 of our 31 study species.

This could be due to lack of sufficient data or because we didn’t include appropriate covariates

for these individual species in our models, which is related to other caveats mentioned above.

Although predictive models for these species were not useful for management purposes, it

didn’t necessarily mean that the model isn’t valid [59]. Collection of additional data could help

improve these models for future use. Despite these caveats, we contend that our results provide

valuable information to scientists and land managers that informs future research and man-

agement efforts on bird species of conservation concern.

Fig 4. Predicted species richness and species colonization for all bird Species of Greatest Conservation Need (SGCN) included in this study in

Iowa. Estimates were combined by calculating the sum of all estimated values of Psi and Gamma from the best model for each species. We combined

estimates for all species included in the study for both Psi (a) and Gamma (c). We also combined estimates for those species with predictive models that

were considered useful (AUC > 0.70) for both Psi (b) and Gamma (d).

doi:10.1371/journal.pone.0173041.g004
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Value of predictive models

Predictive species occupancy and colonization models have high value for conservation plan-

ning. Such models provide valuable information for developing strategies to prioritize conser-

vation action, an effort that will continue to be critical in conserving biodiversity throughout

the world [13]. Predictive species occupancy models are important for planning wildlife

reserve networks, suggesting benefits to (1) the land manager by providing information to

focus conservation efforts, and (2) to the species by affecting habitat management and restora-

tion in areas of greatest potential use [15]. In a period of reduced funding for conservation,

unbiased knowledge of species occurrence is especially important in effective conservation

spending [60].

Conclusions

Reduced funding is resulting in increased pressure for state and provincial fish and wildlife

agencies to focus spending in areas of high conservation potential. Despite its success in pre-

venting endangered species listings in several states since its inception in 2001, the State and

Tribal Wildlife Grants Program was never fully funded and has experienced a 35% decline in

funds allocation since 2010 [14]. At yet a smaller scale, counties and municipalities cite a lack

Fig 5. Predicted species richness and colonization for grassland, woodland, and scrub-shrub bird Species of Greatest Conservation Need

(SGCN) in Iowa. Estimates were combined by calculating the sum of all estimated values of Psi and Gamma from the best model for each species with

predictive models that were considered useful (AUC > 0.70) within each group. (a) Predicted species richness for grassland bird SGCN, (b) Predicted

species richness for woodland bird SGCN, (c) Predicted species richness of scrub-shrub bird SGCN, (d) Predicted species colonization for grassland bird

SGCN, (e) Predicted species colonization for woodland bird SGCN, (f) Predicted species colonization for scrub-shrub SGCN.

doi:10.1371/journal.pone.0173041.g005
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of staff and funding for conservation planning in their jurisdictions [61]. The lack of staff and

funding for conservation makes the prioritization of areas through predictive species occupancy

models very important. Reduced funding aside, the lack of reliable scientific information on dis-

tributions of species of conservation concern is making implementation of conservation plans

difficult for state, provincial, and local governments [61,62]. Our study provides a practical

framework for predicting species occupancy and colonization from a long-term monitoring

data set which builds off methods provided in other studies [17,49] and can be applied to other

areas where data are available. This approach produces predictive maps which requires little

interpolation of occupancy and colonization values among points with a large degree of spatial

separation. Our approach can be utilized with data from other state or regional long-term moni-

toring programs as well as other landscape-scale habitat data (e.g., National Land Cover Data-

base [NLCD] or other state landcover data sets). As threats to biodiversity continue to increase,

predictive modeling for conservation planning will become increasingly important in the efforts

to preserve biodiversity into the future.
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